N

N

Name suggestions during feature identification: the
variclouds approach
Jabier Martinez, Tewfik Ziadi, Tegawendé Bissyandé, Jacques Klein, Yves Le

Traon

» To cite this version:

Jabier Martinez, Tewfik Ziadi, Tegawendé Bissyandé, Jacques Klein, Yves Le Traon. Name suggestions
during feature identification: the variclouds approach. SPLC ’16 - 20th International Systems and
Software Product Line Conference , Sep 2016, Beijing, China. pp.119-123, 10.1145/2934466.2934480 .
hal-01375389

HAL Id: hal-01375389
https://hal.sorbonne-universite.fr /hal-01375389
Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-01375389
https://hal.archives-ouvertes.fr

Name Suggestions during Feature Identification:
The VariClouds Approach

Jabier Martinez
SnT, University of Luxembourg
& LIP8, Sorbonne Universités,
UPMC Univ Paris 06, CNRS
jabier.martinez@uni.lu

ABSTRACT

Reengineering a Software Product Line from legacy vari-
ants remains a challenging endeavour. Among various chal-
lenges, it is a complex task to retrieve enough information
for inferring the variability from experts’ domain knowl-
edge and from the semantics of software elements. We pro-
pose the VariClouds process that can be leveraged by do-
main experts to understand the semantics behind the dif-
ferent blocks identified during software variants analysis.
VariClouds is based on interactive word cloud visualisations
providing name suggestions for these blocks using tf-idf as
weighting factor. We evaluate our approach by assessing
its added-value to several previous works in the literature
where no tool support was provided to domain experts to
characterise features from software blocks.

CCS Concepts

eSoftware and its engineering — Software reverse en-
gineering; Software product lines;

Keywords

Software Product Lines; Feature Identification; Visualisa-
tion; Word Clouds; Feature Naming

1. INTRODUCTION

Software Product Lines (SPLs) are reported to have nu-
merous benefits, among which their established capabilities
to reduce time-to-market, to increase productivity and to
ensure product quality [12]. Unfortunately, the barriers to
achieve SPL adoption are equally numerous, ranging from
organizational issues to purely technical details. In practice,
before considering assuming the high up-front investment
towards systematic and planned reuse with SPL, develop-
ers more commonly rely on ad-hoc reuse techniques such
as copy-paste-modify [3]. When managing variants becomes
challenging, developers may consider reverse engineering the
underlying SPL to benefit from its advantages in validating,

Tewfik Ziadi
LIP6, Sorbonne Universités,
UPMC Univ Paris 06, CNRS
Paris, France

tewfik.ziadi@lip6.fr

Tegawendé F. Bissyandé
Jacques Klein

Yves Le Traon
SnT, University of Luxembourg
firstname.surname@uni.lu

generating and maintaining new variants. Our work aims at
facilitating the first encounter between the domain experts
and the variants so as to help in understanding the semantics
hidden in the variants and in the variability among them.

In the SPL reengineering context, the first objective in ez-
tractive approaches [8] is feature identification where a set of
artefact variants are taken as input for comparison and anal-
ysis without assuming a complete upfront knowledge of the
features. A feature is then a prominent or distinctive charac-
teristic, quality or user-visible aspect of a software system or
systems [7]. In practice, automated comparison approaches
will identify distinguishable blocks shared by software vari-
ants, and will require domain experts to manually map them
with actual features [2, 9, 10, 18]. To that end, domain ex-
perts must look at the elements of the blocks, understand
their semantics, and guess the functionality that each block
provides when present in a variant.

Although nascent in the SPL engineering field, the use of
visualisation techniques have proven helpful in supporting
stakeholders with their work tasks. We present VariClouds
as a practical approach to support domain experts feature
labeling during feature identification. In other words, we
help experts to name the identified blocks. This support is
based on a summarization of the content of each identified
block in order to suggest feature names. We leverage word
clouds, a widely adopted visualisation for textual data [16].
Blocks can be renamed by interacting with the suggested
words of the clouds. We also propose an automated ap-
proach for heuristically assigning the names.

VariClouds aims at being generic (e.g. source code, de-
sign models or component based systems), by assuming
that an artefact can be decomposed into elements and that
words can be automatically extracted from them. Our im-
plementation of VariClouds is available in the BUT4Reuse
framework [10].

We assess the soundness of VariClouds via experiments
for answering the following research questions:

e RQ-1: To what extent the blocks of implementation
elements (e.g. source code elements) can automatically
provide insights that correspond to expert judgement
about the semantics of these blocks?

e RQ-2: Is the word cloud visualisation paradigm effec-
tive for naming during feature identification?

The paper is structured as follows: Section 2 presents
background concepts and our motivation. Section 3 details
VariClouds and Section 4 presents its evaluation. Section 5
discusses the threats to validity. Section 6 presents related
work and Section 7 concludes the paper.

2. BACKGROUND AND MOTIVATION
2.1 Feature identification

To distinguish features and their associated artefact ele-
ments, researchers have proposed to analyze and compare
artefact variants for identifying their common and variable
parts [2, 6, 9, 10, 13, 18, 21]. We refer to each of such dis-
tinguishable parts as a Block [10]. Existing techniques are
based either on static analysis using diff match policies, or
on dynamic analysis of the system. Some approaches fur-
ther leverage information retrieval (IR) techniques. In the
use of VariClouds, we assume an effective block identifica-
tion technique is available and yields the necessary blocks
for use as part of the feature identification process. Thus, it
is important to clarify that block identification techniques
themselves are out of the scope of this paper. In Figure 1,
we illustrate the block identification process via an exam-
ple where each artefact (ellipses) is represented as a set of
elements (rhombuses) and the blocks are identified as the
different intersections obtained through the Interdependent
elements algorithm [20]. For example, Block 0 is common
to all artefacts, Block 1 is shared by all artefacts except
Artefact 1, and Block 4 is specific to Artefact m. This
algorithm will be the one used in the case studies of this
work.

Artefact 2

Artefact 3

Block 1

Block 3

Block 4

Artefactn *j .

Figure 1: Artefact variants and identified distinguishable
Blocks. Source [10]

2.2 Word Clouds and Weighting Factors

Word clouds gained momentum in the Web as aggrega-
tors of activity, as a means to measure popularity, and as
a mechanism for social tagging/indexing [16]. Word clouds
have been also used for text summarization and analysis in
several domains. The principle underlying word clouds is a
weighting factor of the words appearing in a document. This
weighting factor is used to change the relevance of the word
in the visualisation, typically by assigning larger font sizes
to the more weighted words. Term frequency (noted tf) is a
metric consisting in giving more relevance to the terms that
appear with more frequency in a document d. When dealing
with a set D of several documents di, ..., d,, term frequency-
inverse document frequency (t£-idf) is another metric used
in IR. For a document d, tf-idf penalizes common terms
that appear across most of the documents in D and encour-
ages those terms that are more specific to d. In this work, we
used the formulas presented in Equations (1). Inverse docu-
ment frequency idf measures how much rare or common a
term is across all the documents using a logarithmic scale,
and tf-idf uses raw term frequency tf multiplied by idf
to penalize or encourage a term depending on its occurrence
across D.

: o |D|
idf (term;, D) = log (Hd € D :term; € d}|) (1)
tf-idf(terms, d, D) = tf(termy, d) x idf (term, D)

2.3 Motivation: Why VariClouds?

Most contributions in the literature of SPL migration, in-
cluding our own previous work, overlook the feature naming
step during identification. Since current automated blocks
identification processes are not focused on the naming prob-
lem nor in support for final users through visualisation, of-
ten this step is carried out manually and with no defined
process [1, 2, 9, 10, 18, 21]. The lack of support for nam-
ing in state-of-the-art approaches is an important threat to
their efficiency and challenges their adoption. In fact, mi-
gration scenarios can vary in number of blocks, features,
stakeholders and in the degree of availability of the domain
knowledge. Several domains of expertise are often required
to build a product and different stakeholders are responsible
for different functionalities. In this context, we can assume
that domain knowledge about the features of legacy vari-
ants is scattered across the organization. Our work, does
not assume domain knowledge about the features. This as-
sumption is perhaps too pessimistic and is thus limited to
a few scenarios. However, assuming that an exhaustive list
of features can be easily elicited from domain knowledge is
also too idealistic. Our work is motivated by the needs to
1) close the gap for providing support for the manual task
of naming during feature identification by leveraging legacy
variants and 2) speed up and improve the quality of feature
identification.

3. THE VariClouds APPROACH

We detail VariClouds by first explaining how words are
retrieved from product variants, and then overviewing the
approach phases from the perspective of a domain expert.

3.1 Retrieving the words

Implementation specificities for different artefact types
(e.g. source code or models) must be dealt with through the
adapter concept [10]. An adapter is responsible for decom-
posing a given instance of its associated artefact type into a
set of Elements. To support VariClouds, each adapter must
be enriched for yielding the words exposed for each Element.
A word is therefore a term inferred from an implementation
element (e.g. the name of a java method). We overview how
the relevant adapters to our case studies were implemented:

Source code: Source code is represented in the form
of their Abstract Syntax Trees (AST). AST nodes, mainly
classes and methods, usually have meaningful names pro-
vided by developers, which can be exploited to retrieve rele-
vant words regarding the implemented functionality. In this
work, we use names of classes, methods and declared fields.

Models: Meta-Object Facility models can be decom-
posed in atomic model elements [9, 11]. We consider the
Class, Attribute and Reference which are the mainly used
concepts to define domain specific languages (DSL). To get
the name of a Class instance we use its EMF Item La-
bel Provider defined by the DSL implementation. For At-
tributes, we get their value in string format. We ignored the
text from References in the current implementation. Finally,
we tokenize the text of Class and Attribute.

Eclipse: Eclipse plugins are the components that provide
different functionalities targeting different development sce-
narios. The Eclipse adapter decomposes an Eclipse installa-
tion in its set of plugins. For each Plugin we take its name
as defined by the plugin providers in the plugin metadata.
We tokenize the plugin name to obtain the set of words.

3.2 Using VariClouds

An overview of the process is shown in Figure 2. The
inputs are the legacy variants and the blocks obtained from
an automatic block identification process. The outputs are
the emerging vocabulary and insights for helping in naming
during feature identification. VariClouds define two phases
for the domain experts: 1) Preparation of the word clouds
and 2) Block naming. Each phase is explained using as
example the Vending Machine Statecharts case study [11].

Inputs VariClouds

Phase 1: Preparation

Sy et =
Variants w '_‘W°rdC|°Ud5 Emerging domain

vocabulary

Outputs

2% Srfurati
WordCloud configuration

{é} Block
identification Phase 2: Blocks naming
@ a Manual
ﬁ w Renaming |E§'.I
Renamed blocks
ke Automatic
Blocks renaming

for feature
Figure 2: Overview of the VariClouds process

identification

3.2.1 Phase 1: Preparation of the word clouds

The word clouds can be created using the words from any
set of Elements. Figure 3a presents a word cloud using tf
considering all the variants. Therefore, it is a summarization
of the whole family of variants. Figure 3b displays the words
which are frequent tf in Vending Machine 1. We could also
display another word cloud of a variant but using tf-idf
showing the words that make this variant special regarding
the other variants. The domain experts can explore these
kind of word clouds in order to decide to use word filters or to
refine the configuration of a given filter. Filters are intended
to provide more meaningful word clouds by preprocessing
the words of the elements provided by the adapter. In this
work we have implemented a set of traditional filters (shown
in Figure 4) which activation are optional to the domain
experts. We also provide an extension to add new filters.

3.2.2 Phase 2: Block naming

Blocks are obtained using the block identification algo-
rithm. Then, the domain experts use interactive word cloud
constructed with the elements of each block in order to name
each block. The hypothesis of the VariClouds approach for
block naming is that relevant words are those that make

a/WayS cance/ cash COde coffee DOfn
“E deliver
displayed "™

enough enter entry jdle

a/Ways cancel code correct credit card

deliver dlSplayed

drink ener enty jdle machine

machine main message main message method
method ™ P payment Pin Py payment p i price
PRy price product region p n

product region select soda

ring select soda statechart 2 tone re

ng

vending ™ statechart tyne vending "nd

a) All tf b) Variant 1 tf
Figure 3: Word cloud examples of vending machine variants

Elements
&) © ©° o
Artefact type Camel Part-of-

adapter Case speech Tag
Get Words splitter remover

Figure 4: Optional filters from the Elements’ words to the
final word cloud

each block special regarding the rest of the blocks. For this
reason, tf-idf weighting factor is used. Figure 5 shows
the tf-idf word clouds of the blocks identified while au-
tomatically analysing and comparing the vending machine
statechart variants. The domain experts can interact on the
suggested names to set the block names.

always cancel (giyer dISp /aye d drink
ety jdle machine main message

method payment price product region

Block 0 select stetechart yending
eash coin enough insert
Block 1 not pay
Block 9 code enter SOda
BlOCk 3 code Coffee enter
Bl k 4 code enter tea
OC!

" play ring tone

Block 5
Figure 5: Word clouds of the identified blocks in the Vending
Machine Statechart variants

VariClouds also proposes an automatic algorithm to set
the names of each block for further refinement. The pa-
rameter k is the initial number of words to be used when
renaming. Using & = 1 each block name will initially have
only the word with highest tf-idf score. As we will present
later, given the empirical results of our case studies, by de-
fault we suggest to use at least k = 2. For each block, we
assign the concatenation of the first & words with the high-
est tf-idf scores. When renaming all blocks, it is possible
that two or more blocks have the same name. We avoid
name conflicts by iteratively appending the word with the
next highest score until there are no conflicts. If there are
no more remaining words in the ranking and there are still
conflicts, different numbers are appended.

4. EVALUATION

In order to evaluate RQ-1, we selected six previously pub-
lished case studies where the name of the features are re-
ported. This provides us a ground truth to evaluate the
naming process given that the result of the manual naming
is available in these publications. ArgoUML are 10 vari-
ants [2, 20] with an average of 141 KLoC of Java source
code. Notepad are 8 variants [21] with an average of 691
LoC. Draw application are 12 variants [6] with an average
of 200 LoC and Mobile media are 8 variants [19] with 1.7

KLoC in average. In-Flight Entertainment systems are 3
model variants [9] with an average of 7182 classes. The term
classes should not to be confused strictly with UML Classes.
The different types of classes of a model are defined in the
DSL specification. Vending Machine Statecharts are 6
variants [11] with an average of 17 classes. Banking Sys-
tems are 3 variants [9] with an average of 25 classes.

We evaluate RQ-2 using the Eclipse case study [10] with
domain experts. We consider 12 Eclipse IDE variants of the
Eclipse Kepler release with an average of 609 plugins. We
provide time measurements and qualitative results.

4.1 RQ-1: Quality of the word clouds

Mean Reciprocal Rank (MRR) [17] captures how early the
relevant result appears in a ranking. It is considered that
MRR measures users’ effort in their search length. This is
the case of word clouds where the user looks at the largest
name, then to the second largest and so on. The reciprocal
rank (RR) of a given feature name in its associated block
is calculated as 1/rank; where rank; is the position in the
ranking where the feature name from the ground truth ap-
pears. Let F' be all the features, MRR formula is presented
in Equation 2. A MRR of 1 means that all feature names

were the largest in the word cloud of its associated block.
|F|
1 1
MRR= — 2
|F| ; rank; @

In the worst case scenario the name is not found in any
rank position. In this special case we consider 1/rank; = 0
and we will discuss these cases separately. The core compo-
nents that are common to all variants use to be encompassed
in a feature which name are Core or Base. These names use
not to be part of the emerging vocabulary and for this rea-
son, we refer to as MRR2, the MRR metric where the Core
or Base feature is excluded from the set F'. Table 1 shows
the results. If a name is not found we denote it with the
empty set symbol (). M Rank shows the average of the rank
of the features without considering the core feature and the
features that were not found.

The mean of MRR2 in this set of case studies is 0.79. This
result is promising and, therefore, guarantee the soundness
of the VariClouds which will show the largest words for the
most relevant terms thus reducing users’ search effort. The
mean of MRank is 1.62 which indicates that, ignoring the
core features and the not found features, the feature names
appear in the first 2 positions of the ranking. Despite the
promising average results, there are some unsuccessful re-

sults that cannot be neglected. We discuss the two main
reasons for unsuccessful RR results with a special focus on
the two not-found feature names (rank = ().

Mismatch between domain names and implemen-
tation details: In the case of Cognitive support in Ar-
goUML, there is a complete mismatch between the feature
name and the vocabulary emerging from the implementa-
tion. The largest words of its associated blocks are cr, criti-
cized and design. Cognitive support is actually implemented
in the Critics subsystem [4].

Filters undesired effect: In the case of WithdrawWith-
outLimit of the Banking systems, with and without, despite
being prepositions, were important words which were dis-
carded by the parts-of-speech tag remover. By deactivating
this filter, MRR2 can be 0.875 if we consider without simi-
lar to WithdrawWithoutLimit (withdraw and limit are the
rank items following the first one that is without). In the
preparation phase, the camel case splitter was activated for
all the source code based case studies. However, in the case
of the Notepad case study, camel case is not the main style
followed by the developers. Fortunately, it did not affect
the RR (e.g. there are methods called finD or field decla-
rations called findNexT therefore the largest words for the
Find feature were find, fin and d.

4.2 RQ-2: Word Clouds as visualisation

Plain textual representations were used in previous works
to characterize implementation elements (e.g. [1, 2, 11, 21]).
The textual representation of all the elements of each block
were presented without any summarization. In previous
work we considered the scenario of Eclipse variants [10]. We
requested the expertise of 3 domain experts who analysed,
independently from each other, the Elements’ textual rep-
resentations of the 61 Blocks that were identified. As re-
ported [10], this manual task took an average of 51 minutes.

For the evaluation of RQ-2 we consider the Eclipse case
study. We evaluated VariClouds with 3 domain experts
on Eclipse which are not the same persons as in previous
work [10]. Independently from each other, they performed
feature identification tasks using the word clouds as support
for the element textual representations of each block. We
asked to report their mental process for block naming. All
of them stated the following process: 1) Read very quickly
the textual descriptions of the elements (beginning, middle
and end) to have an initial clue about the logic and iden-
tify a word in their mind, 2) Read the word cloud largest

Table 1: Evaluation of the quality of the word clouds

MRR2 MRR MRank Rank of each feature, () for not found
ArgoUML 0.71 0.63 1.57 Core (0), Logging (1), Activity diagram (1), State diagram (1),
Collaboration diagram (1), Sequence diagram (4),
Use case diagram (1), Deployment diagram (2),
Cognitive support ()
Notepad 0.83 0.62 1.33 Base (0), Cut-Copy-Paste (1), Find (1), Undo-Redo (2)
Draw application 1.00 0.80 1.00 Base (0), Line(1), Rect (1), Color (1), Wipe (1)
Mobile media 0.63 0.57 3.33 Core (), ExceptionHandling (1), LabelMedia (2), Sorting (6),
Favourites (1), Photo (2), Music (2), Video (1),
SMS (1), CopyMedia (14)
In-Flight Entertainment 1.00 0.66 1.00 Core (0), Wi-Fi (1), ExteriorVideo (1)
Vending Machines 0.76 0.69 1.83 Main (4), Soda (1), Coffee (1), Tea (1),
Cash payment (4), Credit card payment (3), Ring tone alert (1)
Banking systems 0.62 0.50 1.33 BankCore (0), CurrencyConverter (2), WithdrawWithLimit (1),

Consortium (1), WithdrawWithoutLimit (()

Mean: 0.79 0.63 1.62

names and contrast them with the one in their mind, 3) Se-
lect one from the word cloud or use the guessed one, and 4)
Optionally refine the selected word with an extra word.

The average time was reduced in this case study from 51
to 28 minutes (=45% decrease). All of them stated that
the word clouds were useful for assigning the names. Spe-
cially when they were not completely sure about the logic
of the block. They stated that the word clouds served as
reinforcement or confirmation for the naming decision. Ac-
cording to the time reduction and their mental process, we
can say that word clouds reduce domain experts’ compre-
hension time and help them to be more confident with the
naming decisions while accelerating the process.

S. THREATS TO VALIDITY

We cannot assure that the findings can be generalized.
The feature names from SPL literature and the words used
by the developers that implemented the artefacts are con-
ditioned to human factors (i.e. decided by experts). Also,
each case study considers variants that belongs to the same
developers. In the Eclipse case study, even if we consider
that the new domain experts have a very similar background
to the previous domain experts, we cannot assure that the
difference is because they have a different set of skills.

VariClouds claims for genericity in supporting artefact
types but it assumes the existence of an adapter. Some
artefacts can have the limitation that their elements may
have absence of meaningful names (e.g. compiled or obfus-
cated). In the same way, VariClouds assumes the existence
of a block identification algorithm. BUT4Reuse [10] pro-
vides a set of these algorithms. Nevertheless, it is accepted
that there are many factors that affect the quality of the
results of these algorithms (e.g. [6, 9, 14, 21]). The research
conducted to propose VariClouds is complementary to block
identification given that VariClouds is focused in the inter-
action and visualisation for domain experts.

6. RELATED WORK

Apart from the works already mentioned in Section 2.3,
a related work can be found in a small remark of Shatnawi
et al. [15]. For the purpose of readability of an example,
they assign names based on “the most frequent tokens” of
the identified blocks. The objective of their paper is other so
they do not evaluate these namings and they do not provide
details about the process. We conducted experiments using
t£ to verify our intuition that tf-idf provides better results.

Davril et al. [5] presented a feature naming approach as
part of their automatic feature model extraction method. As
input they focused on large sets of product descriptions in
natural language. Their approach is fully automatic while
we propose a visualisation to include the domain experts
early in the naming process.

7. CONCLUSION

VariClouds is an approach that extensively uses word cloud
visualisations in order to provide insights of the emerging
vocabulary and variability from a set of variants. It is de-
signed for helping domain experts in feature identification
and naming. We evaluated it in several case studies deal-
ing with different artefact types to show its soundness and
genericness. As further work we aim to evaluate the use of
weights for different Element types. For example, in source
code, we can consider that words belonging to a class name
have more relevance than words from a method name.

8. ACKNOWLEDGMENTS

Funded by FNR Luxembourg under the AFR grant agree-
ment 7898764. The authors would also like to thank Arthur
Joanny for his great work and help in the implementation.

References

[1] Ra’Fat Al-Msie’deen, Abdelhak-Djamel Seriai, Marianne
Huchard, Christelle Urtado, and Sylvain Vauttier. Min-
ing features from the object-oriented source code of software
variants by combining lexical and structural similarity. In
ICSR, 2013.
Ra’Fat Al-Msie’deen, Abdelhak-Djamel Seriai, Mari-
anne Huchard, Christelle Urtado, Sylvain Vauttier, and
Hamzeh Eyal Salman. Mining features from the object-
oriented source code of a collection of software variants us-
ing formal concept analysis and latent semantic indexing. In
SEKE, 2013.
Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M.
Atlee, Martin Becker, Krzysztof Czarnecki, and Andrzej Wa-
sowski. A survey of variability modeling in industrial prac-
tice. In VaMoS, 2013.
Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo
Figueiredo. Extracting software product lines: A case study
using conditional compilation. In CSMR, 2011.
[5] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu
Acher, Jane Cleland-Huang, and Patrick Heymans. Feature

model extraction from large collections of informal product
descriptions. In ESEC/FSE, 2013.

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-

Herrejon, and Alexander Egyed. Enhancing clone-and-own

with systematic reuse for developing software variants. In

ICSME, 2014.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and

A. S. Peterson. Feature-oriented domain analysis (foda) fea-

sibility study. Technical report, Carnegie-Mellon University

Software Engineering Institute, 1990.

Charles W. Krueger. Easing the transition to software mass

customization. In PFE, 2001.

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé,

Jacques Klein, and Yves Le Traon. Automating the ex-

traction of model-based software product lines from model

variants. In ASE, 2015.

[10] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé,
Jacques Klein, and Yves Le Traon. Bottom-up adoption of
software product lines: a generic and extensible approach.
In SPLC, 2015.

[11] Jabier Martinez, Tewfik Ziadi, Jacques Klein, and Yves Le
Traon. Identifying and visualising commonality and vari-
ability in model variants. In ECMFA, 2014.

[12] Linda M. Northrop, Paul C. Clements, et al. A Framework

for Software Product Line Practice, Version 5.0. www.sei.

cmu.edu/productlines/framework.html, 2009.

[13] Julia Rubin and Marsha Chechik. Combining related prod-
ucts into product lines. In FASE, 2012.

[14] Julia Rubin and Marsha Chechik. N-way model merging. In
ESEC/FSE, 2013.

[15] Anas Shatnawi, Abdelhak Seriai, and Houari A. Sahraoui.
Recovering architectural variability of a family of product
variants. In ICSR, 2015.

[16] Gene Smith. Tagging: People-powered Metadata for the So-
cial Web. New Riders Publishing, 2007.

[17] Ellen M. Voorhees. The TREC-8 question answering track
report. In TREC, 1999.

[18] Yiming Yang, Xin Peng, and Wenyun Zhao. Domain feature
model recovery from multiple applications using data access
semantics and formal concept analysis. In WCRE, 2009.

[19] T. Young and G. Murphy. Using AspectJ to build a product
line for mobile devices. In AOSD, 2005.

[20] Tewfik Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva,
and Mikal Ziane. Feature identification from the source code
of product variants. In CSMR, 2012.

[21] Tewfik Ziadi, Christopher Henard, Mike Papadakis, Mikal
Ziane, and Yves Le Traon. Towards a language-independent

approach for reverse-engineering of software product lines.
In SAC, 2014.

[2

3

[4

6

8

9

www.sei.cmu.edu/productlines/framework.html
www.sei.cmu.edu/productlines/framework.html

	Introduction
	Background and Motivation
	Feature identification
	Word Clouds and Weighting Factors
	Motivation: Why VariClouds?

	The VariClouds approach
	Retrieving the words
	Using VariClouds
	Phase 1: Preparation of the word clouds
	Phase 2: Block naming

	Evaluation
	RQ-1: Quality of the word clouds
	RQ-2: Word Clouds as visualisation

	Threats to validity
	Related work
	Conclusion
	Acknowledgments

