
HAL Id: hal-01375414
https://hal.sorbonne-universite.fr/hal-01375414v1

Submitted on 6 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Meduse: an Approach for Tailoring Software
Development Process

Sara Casare, Tewfik Ziadi, Anarosa a F Brandão, Zahia Guessoum

To cite this version:
Sara Casare, Tewfik Ziadi, Anarosa a F Brandão, Zahia Guessoum. Meduse: an Approach for Tailoring
Software Development Process. International Conference on Engineering of Complex Computer Sys-
tems (ICECCS), Nov 2016, Dubai, United Arab Emirates. pp.197-200, �10.1109/ICECCS.2016.033�.
�hal-01375414�

https://hal.sorbonne-universite.fr/hal-01375414v1
https://hal.archives-ouvertes.fr

Meduse: an Approach for Tailoring Software Development
Process

Sara Casare1, Tewfik Ziadi2
1 LTI, University of São Paulo, Brazil

2 LIP6, University Paris-Sorbonne, France
4 CReSTIC, University Reims, France

Anarosa A. F. Brandão2,3, Zahia Guessoum2,4
3 Computing Engineering and Digital Systems Department

University of São Paulo, Brazil

Abstract—Software processes, as software products, are variable

across projects and thus a one-size-fits-all approach does not work

out for development processes. We propose Meduse, an approach for

tailoring development processes according to project needs. Such an

approach, which is based on software product line and method

engineering techniques, takes into account processes similarities (i.e.

commonalities) and differences (i.e. variabilities), as well as reusable

process fragments. Having processes tailored on demand according to

the project needs shall reduce project risks, rise best practices

adoption by the development team, support project planning and

budget managing, among other benefits.

Keywords - Process Tailoring; Software Product Line; Software

Process Line; Method Engineering.

I. INTRODUCTION

Software Processes aim at improving the quality and
productivity of software development by encoding sets of well-
known practices for realizing them. Several modelling
languages and tools have been proposed to represent and
manage software process in the Method Engineering field
[1][2]. Among them we find the Software and System Process
Engineering Meta-model (SPEM) [3], which is the de facto
standard for modelling and managing processes. Fig. 1
illustrates an example of a software process to develop agile
projects based on Extreme Programming (XP) [4] described
using SPEM standard notations. This software process defines
three ordered phases: Write Story Phase, Write Code Phase and
Integration Test Phase. Each phase comprises a set of
activities. For instance, the Write Code Phase contains three
activities related to code writing.

Fig. 1. An example of a software process to develop agile projects

Specifying software processes using standard modelling
languages allows capitalizing the best practices from
companies throughout different projects. However, as
underlined by Rombach [5] and Brinkkemper [1] among
others, a software development process should not be used
before being tailored according to current project needs.

Otherwise, the project risks wasting work already done and
producing artifacts of little added value. To illustrate this, let
us consider the example of the software process of Fig. 1.
Indeed, in some agile projects the Write Story Phase can be
omitted whenever the requirement specification phase is
skipped. In addition, refactoring is not a mandatory activity
inside the coding phase. Therefore, this software process
should be tailored according to some variability factors that are
related to the specificities of each project.

 One promising approach of achieving process tailoring is
what is designed as Software Process Lines [5][6]. Software
Process Line Engineering (SPrLE) aims to organize a family of
processes according to their similarities (i.e. commonalities)
and differences (i.e. variabilities) in order to achieve a better
process tailoring according to a specific project needs. SPrLE
reuses concepts proposed by Software Product Line
Engineering (SPLE) [7][8]. The basic idea is to apply concepts
of product lines to the domain of software process models.
This mainly includes two main principles: i) mechanisms to
explicitly specify variability in software processes, and ii)
mechanisms to tailor (also called derive) specific process
variants according to each project needs.

 Many SPrLE approaches have been proposed in last years
[9][10][11]. However two limitations can be clearly identified,
being the first concerned to variability specification. Indeed,
most existing approaches consider variability at fine-grained
process elements in software processes, like work products,
roles, and tasks. In this paper, we advocate the idea that
variability should be specified in terms of user needs at the
domain level independently from the process elements that are
more related to the implementation details. Besides, the general
framework proposed by the SPLE community [8] suggests to
specify the variability at the problem space side that is related
to domain analysis, which is independent from the solution
space side that is related to domain implementation. The
second limitation concerns the tailoring of the process variants.
While variability is only specified at fine-grained process
elements, tailoring software process according to specific needs
of a project requires to explicitly reasoning on these several
fine-grained process elements to identify the process elements
that map the project needs. We believe that this practice is by
no means of the principal of product derivation in SPLE.
Indeed, product derivation should be guided by a reasoning that
is based on the user needs that are defined at a high level of
abstraction and not at the fine-grained elements like the tasks
and roles of the implementation side.

In order to overcome such limitations this paper proposes
Meduse, a new SPrLE approach to tailor software processes
according to project needs that tackles process tailoring as a
process variant management problem, as presented in the
remaining sections.

II. MEDUSE APPROACH OVERVIEW

Meduse proposes developing process lines based on both
SPLE and Method Engineering principles. On one hand,
Meduse takes advantages of SPLE principles and techniques to
manage process variability at a high level of abstraction, as
well as to automatically derive valid process variants. On the
other hand, it adopts Method Engineering principles to build
reusable process artifacts, called process fragments, to be
linked to the process variability model.

 Meduse follows the general SPLE framework proposed by
Apel et al.[8], and encompasses four phases: domain analysis,
domain implementation, requirement analysis, and variant
implementation. Fig. 2 presents the big picture of the Meduse
approach, showing both process line artifacts and the final
process variant that is automatically generated according to
project needs. First, during domain analysis we propose to
represent the process domain knowledge in terms of
commonalities and variabilities among members of a same
process line by means of a popular SPLE artifact, a Feature
Model [12]. Second, to deal with domain implementation we
propose using reusable process fragments together with a
compositional approach based on the Pure Delta-oriented
programming [13], in which process derivation relies on the
application of process delta modules over an empty process:
the modification proposed by a process delta module consists
of the addition and/or removals of reusable process fragments
from the process variant. By using process delta modules we
can define the partially-ordered sequence in which process
fragments will appear in the process variant, since process delta
modules are grouped in fixed-ordered partitions, and modules
in the same partition can be applied in any order, as suggested
in [13]. Therefore, by adopting the Pure Delta-oriented
programming our approach covers an important issue of
software process derivation: software processes are represented
as a partially-ordered sequence of work. Third, process variants
are specified through feature selection according to project

needs using another popular SPLE artifact, a Feature
Configuration [12]. Finally, we propose a tool – the Meduse
Composer - that automatically derives the specified process
variant: it takes the empty process as starting point of the work
breakdown structure and incrementally adds or removes
process fragments according to the modifications specified in
the process delta modules connected with the selected features.
In the following we present the proposed approach, starting
with the Process Domain Analysis.

III. PROCESS DOMAIN ANALYSIS

Based on Kang et al. [12] we define a Process Feature as a
distinctively identifiable process characteristic required by the
process users. On one hand, process features are used to
communicate process capabilities at a high level of abstraction.
On the other hand, they establish how members of a process
line can vary. Process features are organized in a feature model
that describes relationships between them, and formally
specifies which feature selections are valid. This is made by
hierarchically representing features in a diagram, where edges
are used to represent parent-child relationships between them
(see Fig. 3), as suggested in [12].

 We may use process features to represent the major areas of
concern that a process line shall cover. Thus, they may
represent software technical disciplines, like requirement,
analysis, design, implementation, and test disciplines, as well
as software development practices covered by the process line,
as code standards and pair programming. Last but not least,
process features may be used to show how project management
aspects may vary among the family members. Fig. 3 depicts an
example of a feature diagram containing four features:
Implementation, Testing, UnitTest, and IntegrationTest. Such a
diagram shows that we shall have family members including
Implementation and/or Testing disciplines, but whenever we
have a process variant containing Testing, UnitTest is
mandatory, while IntegrationTest is an optional feature.

One of the main advantages of using feature models to
represent process variability is that we can use a Satisfiability
(SAT) solver tool to determine whether a feature model is
consistent, i.e. we have at least one valid process configuration,
and whether or not a given feature configuration is valid, and
therefore it will give rise to a valid process variant.

Fig. 2. A big picture of Meduse approach

Fig. 3. An example of a Feature Diagram for a process line

IV. PROCESS DOMAIN IMPLEMENTATION

While feature models allow representing features in the
domain analysis side, on the implementation side Meduse
adopts Pure Delta-oriented programming to deal with process
variabilities. By adopting this approach, a Meduse process line
comprises a list of process delta modules connected to features
through applications conditions, and a set of reusable process
fragments embedded in these deltas, as described in the
remainder of this section.

A. Reusable Process Fragment

Based on the Method Engineering notions [1] [2], we
define a Process Fragment as a reusable process building
block that represents a portion of some work breakdown
structure of a software development process in terms of process
meta-model elements. In order to form such a work breakdown
structure, a process fragment may contain iterations, phases
and activities, which in their turn may encompass task(s) that
usually produces work product(s), and is performed by
development role(s). Fig. 4 shows an example of process
fragment using SPEM as the underlying process meta-model:
the Execute Unit Test Activity encompasses two tasks, Create
Unit Test Cases and Run Unit Tests. These tasks are performed
by a Developer and produce Test Cases and Tested Source
Code as work products.

Fig. 4. A process fragment for Unit Test

B. Process Delta Module

Based on the Pure Delta-oriented Programming approach,
we define a Process Delta Module as a container that
encompasses modifications to processes in terms of additions
and/or removals of process fragments. Therefore, a delta
module allows to add or remove portions of reusable process
breakdown structures previously specified as reusable process
fragments.

Following our example, Fig. 5 depicts two process delta
modules: DevCode and TestU. The former proposes the
addition of the Develop Source Code process fragment, while

the latter proposes the addition of Set Test Environment and
Execute Unit Test fragments.

Fig. 5. Two process delta modules for dealing with coding and testing

C. List of Process Delta Modules and Application Conditions

We adopted application conditions [13] to create the
connection between the modifications prescribed in process
delta modules and the process features. In Meduse, an
Application Condition is a propositional formula attached to
every process delta module through a when clause. It
determines for which features the specified modifications are to
be carried out. Examples of application conditions are
presented in Fig. 6. The list formed by all process delta
modules and attached application conditions determines the
modifications required to derive process variants, and the order
in which such delta modules must be applied during process
derivation.

 Moreover, process delta modules are grouped in partitions,
which are enclosed by brackets (e.g. […….]). Process delta
modules in the same partition may be applied in any order.
However, the order of the set of partitions is fixed. On one
hand, the fixed partition order can be used to generate
processes that require a total ordered work breakdown
structure. On the other hand, partial order inside a partition can
be used to generate processes that require work break structures
containing group of activities that may be executed in any
order. Fig. 6 illustrates a list of four process delta modules
attached to application conditions involving features presented
in Fig. 3. In this example, the process delta module DevCode
shall be applied whenever the feature configuration contains
the Implementation feature, TestU whenever it contains
UnitTest feature, TestI whenever IntegrationTest feature is
present, and finally Deploy shall be applied whenever we have
both Implementation and IntegrationTest features.
Additionally, these modules are defined in distinct partitions
and thus this list establishes that all derived process variants
would follow a total ordered work breakdown structure.

Fig. 6. A list of Process Deltas and Application Conditions

V. REQUIREMENT ANALYSIS AND VARIANT DERIVATION

The selection of a set of features for a particular project is
made through a feature configuration. Fig. 7 shows a valid
feature configuration for the feature model previously
presented (see Fig. 3), where Implementation, Testing and

UnitTest form the set of selected features, which excludes
IntegrationTest feature.

Fig. 7. A valid feature configuration

Process variant derivation consists of incrementally
applying to an empty process the modifications specified by
the process delta modules connected with valid application
conditions. By a valid application condition we mean an
application condition that consists of a propositional formula
that is evaluated to true for the given feature configuration [13].

The derivation of a process variant for a given feature
configuration is achieved according to the following steps,
implemented by the Meduse Composer: (i) Find all process
delta modules that shall be applied to the process variant, i.e.,
those modules attached to an application condition evaluated to
true for the given feature configuration. For example, whenever
a feature configuration encompasses the features
Implementation and Testing, the process delta modules
DevCode and TestU shall be selected (ii) Generate the process
variant by applying the modification proposed by the selected
process delta modules respecting the total order on the
partitioning of process delta modules. Note that the first
process delta is applied to the empty process and thus it must
start by adding process fragments, and not removing them.

Following our example, modifications proposed by
DevCode and TestU modules are applied to the process variant,
by adding the process fragments Develop Source Code, Set
Test Environment and Execute Unit Test. Fig. 8 depicts a
process variant derived according to the feature configuration
of our example. Such a process encompasses the Building
Cycle Phase that comprises three activities for dealing with
source code development and unit testing. Moreover, Fig. 8
offers an expanded view of the last activity, showing its two
tasks: Create Unit Test Case and Run Unit Test tasks.

Fig. 8. A process variant derived according to a feature configuration

VI. IMPLEMENTATION

We have developed a prototype implementation of Meduse,
in which we adopted FeatureIDE [14] as tool to specify the
feature model and to create feature configurations, as well as
SPEM and Eclipse Process Framework1 to manage process
fragments and delta modules. Moreover, the Meduse Composer

1 https://eclipse.org/epf/

was developed and fully integrated as a new composer within
the FeatureIDE to automatically derive process variant
according to a given feature configuration, ensuring the
partially-ordered sequence of process fragments specified in
the process line. Interested readers may access the Meduse
website2 to see process variants automatically derived by this
prototype.

VII. CONCLUSION

This paper proposed Meduse, an approach to automatically
tailor software processes according to project needs. Meduse
follows the general approach for SPLE combined with Method
Engineering principles. Contrary to existing SPrLE approaches
[9][10][11], Meduse is built by a rigorous respect of SPLE
principles: process variability is specified in terms of project
needs at a high level of abstraction (at the problem space),
while process derivation (at the problem solution space) is
guided by a reasoning based on these needs, independently
from the process elements used in the SPrLE implementation.

ACKNOWLEDGEMENT

Sara Casare was supported by CNPq (grant #233828/2014-1),

Brazil.

REFERENCES

[1] S. Brinkkemper, “Method Engineering: Engineering of Information
Systems Development Methods and Tools,” Information and Software
Technology, vol. 38 (4), pp. 275-280, 1996.

[2] A.F. Harmsen, Situational Method Engineering, M. E. & Young, 1997.

[3] OMG. Object Management Group, “Software & Systems Process
Engineering Meta-Model Specification,” version 2.0, OMG document
number: formal/2008-04-01, 2008.

[4] K. Beck, “Embracing change with extreme programming,” Computer,
vol. 32(10), pp.70-77, 1999.

[5] D. Rombach, “Integrated Software Process and Product Lines,” in: Li,
M., Boehm, B., Osterweil, L., (Eds.) ISPW, Beijing, China: Springer,
pp. 83-90, 2005.

[6] S. M. Sutton Jr, and L. J. Osterweil, “Product families and process
families,” in Software Process Workshop, PSSPL, IEEE, 1996.

[7] P. Clements, and L. Northrop, Software Product Lines: Practices and
Patterns, Addison-Wesley Longman Publishing Co. Inc., Boston, 2001.

[8] S. Apel, D. Batory, C. Kästner, and G. Saake, “Feature-Oriented
Software Product Lines,” Berlin: Springer, 2013.

[9] J. Simmonds, M. Bastarrica, L. Silvestre, and A. Quispe, “Analyzing
methodologies and tools for specifying variability in software
processes,” TR/DCC-2011-12, Univer. de Chile, 2011.

[10] E. Rouillé, B. Combemale, O. Barais, D. Touzet, and J. M.
Jézéquel, "Leveraging CVL to manage variability in software process
lines," in APSEC 2012, vol. 1, pp. 148-157, IEEE, 2012.

[11] J. A. Hurtado, M. C. Bastarrica, S. F. Ochoa, and J. Simmonds, “MDE
software process lines in small companies,” Journal of Systems and
Software, vol. 86(5), pp. 1153-1171, 2013.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” (No.
CMU/SEI-90-TR-21), Carnegie-Mellon Univ, 1990.

[13] I. Schaefer, and F. Damiani, “Pure delta-oriented programming,” in
Proceedings of the 2nd International Workshop on Feature-Oriented
Software Development (FOSD), pp. 49-56, ACM, 2011.

[14] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T Leich,
“FeatureIDE: An extensible framework for feature-oriented software
development,” Science of Computer Program., vol. 79, pp.70-85, 2014.

2 https://pages.lip6.fr/Tewfik.Ziadi/iceccs16/

