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Abstract: Estimators derived from a divergence criterion such as ϕ−divergences are generally
more robust than the maximum likelihood ones. We are interested in particular in the so-called
minimum dual ϕ–divergence estimator (MDϕDE), an estimator built using a dual representation
of ϕ–divergences. We present in this paper an iterative proximal point algorithm that permits the
calculation of such an estimator. The algorithm contains by construction the well-known Expectation
Maximization (EM) algorithm. Our work is based on the paper of Tseng on the likelihood function.
We provide some convergence properties by adapting the ideas of Tseng. We improve Tseng’s results
by relaxing the identifiability condition on the proximal term, a condition which is not verified for
most mixture models and is hard to be verified for “non mixture” ones. Convergence of the EM
algorithm in a two-component Gaussian mixture is discussed in the spirit of our approach. Several
experimental results on mixture models are provided to confirm the validity of the approach.

Keywords: ϕ–divergences; robust estimation; EM algorithm; proximal-point algorithms; mixture models

1. Introduction

The Expectation Maximization (EM) algorithm is a well-known method for calculating the
maximum likelihood estimator of a model where incomplete data is considered. For example, when
working with mixture models in the context of clustering, the labels or classes of observations
are unknown during the training phase. Several variants of the EM algorithm were proposed
(see [1]). Another way to look at the EM algorithm is as a proximal point problem (see [2,3]).
Indeed, one may rewrite the conditional expectation of the complete log-likelihood as a sum of
the log-likelihood function and a distance-like function over the conditional densities of the labels
provided an observation. Generally, the proximal term has a regularization effect in the sense that a
proximal point algorithm is more stable and frequently outperforms classical optimization algorithms
(see [4]). Chrétien and Hero [5] prove superlinear convergence of a proximal point algorithm derived
from the EM algorithm. Notice that EM-type algorithms usually enjoy no more than linear convergence.

Taking into consideration the need for robust estimators, and the fact that the maximum likelihood
estimator (MLE) is the least robust estimator among the class of divergence-type estimators that
we present below, we generalize the EM algorithm (and the version of Tseng [2]) by replacing the
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log-likelihood function by an estimator of a ϕ−divergence between the true distribution of the data and
the model. A ϕ–divergence in the sense of Csiszár [6] is defined in the same way as [7] by:

Dϕ(Q, P) =
∫

ϕ

(
dQ
dP

(y)
)

dP(y),

where ϕ is a nonnegative strictly convex function. Examples of such divergences are: the
Kullback–Leibler (KL) divergence , the modified KL divergence, the Hellinger distanceamong others.
All these well-known divergences belong to the class of Cressie-Read functions [8] defined by

ϕγ(x) =
xγ − γx + γ− 1

γ(γ− 1)
for γ ∈ R \ {0, 1}. (1)

for γ = 1
2 , 0, 1 respectively. For γ ∈ {0, 1}, the limit is calculated, and we denote ϕ0(x) = − log x+ x− 1

for the case of the modified KL and ϕ1(x) = x log x− x + 1 for the KL.
Since the ϕ−divergence calculus uses the unknown true distribution, we need to estimate it.

We consider the dual estimator of the divergence introduced independently by [9,10]. The use
of this estimator is motivated by many reasons. Its minimum coincides with the MLE for
ϕ(t) = − log(t) + t− 1. In addition, it has the same form for discrete and continuous models, and does
not consider any partitioning or smoothing.

Let (Pφ)φ∈Φ be a parametric model with Φ ⊂ Rd, and denote φT as the true set of parameters.
Let dy be the Lebesgue measure defined on R. Suppose that ∀φ ∈ Φ, the probability measure Pφ is
absolutely continuous with respect to dy and denote pφ the corresponding probability density. The
dual estimator of the ϕ−divergence given an n−sample y1, · · · , yn is given by:

D̂ϕ(pφ, pφT) = sup
α∈Φ

∫
ϕ′
(

pφ

pα

)
(x)pφ(x)dx− 1

n

n

∑
i=1

ϕ#
(

pφ

pα

)
(yi), (2)

with ϕ#(t) = tϕ′(t)− ϕ(t). Al Mohamad [11] argues that this formula works well under the model;
however, when we are not, this quantity largely underestimates the divergence between the true
distribution and the model, and proposes the following modification:

D̃ϕ(pφ, pφT) =
∫

ϕ′
(

pφ

Kn,w

)
(x)pφ(x)dx− 1

n

n

∑
i=1

ϕ#
(

pφ

Kn,w

)
(yi), (3)

where Kn,w is the Rosenblatt–Parzen kernel estimate with window parameter w. Whether it is D̂ϕ,
or D̃ϕ, the minimum dual ϕ−divergence estimator (MDϕDE) is defined as the argument of the infimum
of the dual approximation:

φ̂n = arg inf
φ∈Φ

D̂ϕ(pφ, pφT), (4)

φ̃n = arg inf
φ∈Φ

D̃ϕ(pφ, pφT). (5)

Asymptotic properties and consistency of these two estimators can be found in [7,11]. Robustness
properties were also studied using the influence function approach in [11,12]. The kernel-based
MDϕDE (5) seems to be a better estimator than the classical MDϕDE (4) in the sense that the former
is robust whereas the later is generally not. Under the model, the estimator given by (4) is, however,
more efficient, especially when the true density of the data is unbounded. More investigation is needed
in the context of unbounded densities, since we may use asymmetric kernels in order to improve the
efficiency of the kernel-based MDϕDE, see [11] for more details.

In this paper, we propose calculation of the MDϕDE using an iterative procedure based on the
work of Tseng [2] on the log-likelihood function. This procedure has the form of a proximal point
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algorithm, and extends the EM algorithm. Our convergence proof demands some regularity (continuity
and differentiability) of the estimated divergence with respect to the parameter vector φ) which is not
simply checked using (2). Recent results in the book of Rockafellar and Wets [13] provide sufficient
conditions to prove continuity and differentiability of supremal functions of the form of (2) with
respect to φ. Differentiability with respect to φ still remains a very hard task; therefore, our results
cover cases when the objective function is not differentiable.

The paper is organized as follows: in Section 2, we present the general context. We also present the
derivation of our algorithm from the EM algorithm and passing by Tseng’s generalization. In Section 3,
we present some convergence properties. We discuss in Section 4 a variant of the algorithm with a
theoretical global infimum, and an example of the two-Gaussian mixture model and a convergence
proof of the EM algorithm in the spirit of our approach. Finally, Section 5 contains simulations
confirming our claim about the efficiency and the robustness of our approach in comparison with
the MLE. The algorithm is also applied to the so-called minimum density power divergence (MDPD)
introduced by [14].

2. A Description of the Algorithm

2.1. General Context and Notations

Let (X, Y) be a couple of random variables with joint probability density function f (x, y|φ)
parametrized by a vector of parameters φ ∈ Φ ⊂ Rd. Let (X1, Y1), · · · , (Xn, Yn) be n copies of (X, Y)
independently and identically distributed. Finally, let (x1, y1), · · · , (xn, yn) be n realizations of the n
copies of (X, Y). The xis are the unobserved data (labels) and the yis are the observations. The vector
of parameters φ is unknown and needs to be estimated. The observed data yi are supposed to be
real numbers, and the labels xi belong to a space X not necessarily finite unless mentioned otherwise.
The marginal density of the observed data is given by pφ(y) =

∫
f (x, y|φ)dx, where dx is a measure

defined on the label space (for example, the counting measure if we work with mixture models).
For a parametrized function f with a parameter a, we write f (x|a). We use the notation φk for

sequences with the index above. The derivatives of a real valued function ψ defined on R are denoted
ψ′, ψ′′, etc. We denote∇ f the gradient of a real function f defined on Rd. For a generic function of two
(vectorial) arguments D(φ|θ), then∇1D(φ|θ) denotes the gradient with respect to the first (vectorial)
variable. Finally, for any set A, we use int(A) to denote the interior of A.

2.2. EM Algorithm and Tseng’s Generalization

The EM algorithm estimates the unknown parameter vector by (see [15]):

φk+1 = arg max
Φ

E
[
log( f (X, Y|φ))

∣∣∣Y = y, φk
]

,

where X = (X1, · · · , Xn), Y = (Y1, · · · , Yn) and y = (y1, · · · , yn). By independence between the couples
(Xi, Yi)’s, the previous iteration may be written as:

φk+1 = arg max
Φ

n

∑
i=1

E
[
log( f (Xi, Yi|φ))

∣∣∣Yi = yi, φk
]

= arg max
Φ

n

∑
i=1

∫
X

log( f (x, yi|φ))hi(x|φk)dx, (6)

where hi(x|φk) = f (x,yi|φk)
p

φk (yi)
is the conditional density of the labels (at step k) provided yi which we

suppose to be positive dx−almost everywhere. It is well-known that the EM iterations can be rewritten
as a difference between the log-likelihood and a Kullback–Liebler distance-like function. Indeed,
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φk+1 = arg max
Φ

n

∑
i=1

∫
X

log
(
hi(x|φ)× pφ(yi)

)
hi(x|φk)dx

= arg max
Φ

n

∑
i=1

∫
X

log
(

pφ(yi)
)

hi(x|φk)dx +
n

∑
i=1

∫
X

log (hi(x|φ)) hi(x|φk)dx

= arg max
Φ

n

∑
i=1

log
(

pφ(yi)
)
+

n

∑
i=1

∫
X

log
(

hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx

+
n

∑
i=1

∫
X

log
(

hi(x|φk)
)

hi(x|φk)dx.

The final line is justified by the fact that hi(x|φ) is a density, therefore it integrates to 1. The additional
term does not depend on φ and, hence, can be omitted. We now have the following iterative procedure:

φk+1 = arg max
Φ

n

∑
i=1

log
(

pφ(yi|φ)
)
+

n

∑
i=1

∫
X

log
(

hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx.

The previous iteration has the form of a proximal point maximization of the log-likelihood, i.e.,
a perturbation of the log-likelihood by a distance-like function defined on the conditional densities
of the labels. Tseng [2] generalizes this iteration by allowing any nonnegative convex function ψ to
replace the t 7→ − log(t) function. Tseng’s recurrence is defined by:

φk+1 = arg sup
φ

J(φ)−Dψ(φ, φk), (7)

where J is the log-likelihood function and Dψ is given by:

Dψ(φ, φk) =
n

∑
i=1

∫
X

ψ

(
hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx, (8)

for any real nonnegative convex function ψ such that ψ(1) = ψ′(1) = 0. Dψ(φ1, φ2) is nonnegative, and
Dψ(φ1, φ2) = 0 if and only if ∀i, hi(x|φ1) = hi(x|φ2) dx almost everywhere.

2.3. Generalization of Tseng’s Algorithm

We use the relationship between maximizing the log-likelihood and minimizing the
Kullback–Liebler divergence to generalize the previous algorithm. We, therefore, replace the
log-likelihood function by an estimate of a ϕ−divergence Dϕ between the true distribution and
the model. We use the dual estimators of the divergence presented earlier in the introduction (2)
or (3), which we denote in the same manner D̂ϕ, unless mentioned otherwise. Our new algorithm is
defined by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT) +
1
n

Dψ(φ, φk), (9)

where Dψ(φ, φk) is defined by (8). When ϕ(t) = − log(t) + t − 1, it is easy to see that we get
recurrence (7). Indeed, for the case of (2) we have:

D̂ϕ(pφ, pφT) = sup
α

1
n

n

∑
i=1

log(pα(yi))−
1
n

n

∑
i=1

log(pφ(yi)).
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Using the fact that the first term in D̂ϕ(pφ, pφT) does not depend on φ, so it does not count in the
arg inf defining φk+1, we easily get (7). The same applies for the case of (3). For notational simplicity,
from now on, we redefine Dψ with a normalization by n, i.e.,

Dψ(φ, φk) =
1
n

n

∑
i=1

∫
X

ψ

(
hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx. (10)

Hence, our set of algorithms is redefined by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT) + Dψ(φ, φk). (11)

We will see later that this iteration forces the divergence to decrease and that, under suitable
conditions, it converges to a (local) minimum of D̂ϕ(pφ, pφT). It results that algorithm (11) being a way
to calculate both the MDϕDE (4) and the kernel-based MDϕDE (5).

3. Some Convergence Properties of φk

We show here how, according to some possible situations, one may prove convergence of the
algorithm defined by (11). Let φ0 be a given initialization, and define

Φ0 := {φ ∈ Φ : D̂ϕ(pφ, pφT) ≤ D̂ϕ(pφ0 , pφT)},

which we suppose to be a subset of int(Φ). The idea of defining this set in this context is inherited
from the paper Wu [16], which provided the first correct proof of convergence for the EM algorithm.
Before going any further, we recall the following definition of a (generalized) stationary point.

Definition 1. Let f : Rd → R be a real valued function. If f is differentiable at a point φ∗ such that∇ f (φ∗) = 0,
we then say that φ∗ is a stationary point of f. If f is not differentiable at φ∗ but the subgradient of f at φ∗, say
∂ f (φ∗), exists such that 0 ∈ ∂ f (φ∗), then φ∗ is called a generalized stationary point of f.

Remark 1. In the whole paper, the subgradient is defined for any function not necessarily convex
(see Definition 8.3) in [13] for more details.

We will be using the following assumptions:

A0. Functions φ 7→ D̂ϕ(pφ|pφT), Dψ are lower semicontinuous;
A1. Functions φ 7→ D̂ϕ(pφ|pφT), Dψ and∇1Dψ are defined and continuous on, respectively, Φ, Φ×Φ

and Φ×Φ;
AC. Function φ 7→ ∇D̂ϕ(pφ|pφT) is defined and continuous on Φ;
A2. Φ0 is a compact subset of int(Φ);
A3. Dψ(φ, φ̄) > 0 for all φ̄ 6= φ ∈ Φ.

Recall also that we suppose that hi(x|φ) > 0, dx − a.e. We relax the convexity assumption of
function ψ. We only suppose that ψ is nonnegative and ψ(t) = 0 iff t = 1. In addition, ψ′(t) = 0 if t = 1.

Continuity and differentiability assumptions of function φ 7→ D̂ϕ(pφ|pφT) for the case of (3) can be
easily checked using Lebesgue theorems. The continuity assumption for the case of (2) can be checked
using Theorem 1.17 or Corollary 10.14 in [13]. Differentiability can also be checked using Corollary
10.14 or Theorem 10.31 in the same book. In what concerns Dψ, continuity and differentiability can be
obtained merely by fulfilling Lebesgue theorems conditions. When working with mixture models, we
only need the continuity and differentiability of ψ and functions hi. The later is easily deduced from
regularity assumptions on the model. For assumption A2, there is no universal method, see Section 4.2
for an Example. Assumption A3 can be checked using Lemma 2 in [2].

We start the convergence properties by proving that the objective function D̂ϕ(pφ|pφT) decreases
alongside the the sequence (φk)k, and give a possible set of conditions for the existence of the
sequence (φk)k.
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Proposition 1. (a) Assume that the sequence (φk)k is well defined in Φ, then D̂ϕ(pφk+1 |pφT) ≤ D̂ϕ(pφk |pφT),
and (b) ∀k, φk ∈ Φ0. (c) Assume A0 and A2 are verified, then the sequence (φk)k is defined and bounded.
Moreover, the sequence (D̂ϕ(pφk |pφT))k converges.

Proof. We prove (a). We have by definition of the arginf:

D̂ϕ(pφk+1 , pφT) + Dψ(φ
k+1, φk) ≤ D̂ϕ(pφk , pφT) + Dψ(φ

k, φk).

We use the fact that Dψ(φk, φk) = 0 for the right-hand side and that Dψ(φk+1, φk) ≥ 0 for the left-hand
side of the previous inequality. Hence, D̂ϕ(pφk+1 , pφT) ≤ D̂ϕ(pφk , pφT).

We prove (b) using the decreasing property previously proved in (a). We have by recurrence
∀k, D̂ϕ(pφk+1 , pφT) ≤ D̂ϕ(pφk , pφT) ≤ · · · ≤ D̂ϕ(pφ0 , pφT). The result follows directly by definition of Φ0.

We prove (c) by induction on k. For k = 0, clearly φ0 is well defined since we choose it. The choice
of the initial point φ0 of the sequence may influence the convergence of the sequence. See the Example
of the Gaussian mixture in Section 4.2. Suppose, for some k ≥ 0, that φk exists. We prove that the
infimum is attained in Φ0. Let φ ∈ Φ be any vector at which the value of the optimized function has a
value less than its value at φk, i.e., D̂ϕ(pφ, pφT) + Dψ(φ, φk) ≤ D̂ϕ(pφk , pφT) + Dψ(φk, φk). We have:

D̂ϕ(pφ, pφT) ≤ D̂ϕ(pφ, pφT) + Dψ(φ, φk)

≤ D̂ϕ(pφk , pφT) + Dψ(φ
k, φk)

≤ D̂ϕ(pφk , pφT)

≤ D̂ϕ(pφ0 , pφT).

The first line follows from the non negativity of Dψ. As D̂ϕ(pφ, pφT) ≤ D̂ϕ(pφ0 , pφT), then φ ∈ Φ0.
Thus, the infimum can be calculated for vectors in Φ0 instead of Φ. Since Φ0 is compact and the
optimized function is lower semicontinuous (the sum of two lower semicontinuous functions), then
the infimum exists and is attained in Φ0. We may now define φk+1 to be a vector whose corresponding
value is equal to the infimum.

Convergence of the sequence (D̂ϕ(pφk , pφT))k comes from the fact that it is non increasing and
bounded. It is non increasing by virtue of (a). Boundedness comes from the lower semicontinuity
of φ 7→ D̂ϕ(pφ, pφT). Indeed, ∀k, D̂ϕ(pφk , pφT) ≥ infφ∈Φ0 D̂ϕ(pφ, pφT). The infimum of a proper lower
semicontinuous function on a compact set exists and is attained on this set. Hence, the quantity
infφ∈Φ0 D̂ϕ(pφ, pφT) exists and is finite. This ends the proof.

Compactness in part (c) can be replaced by inf-compactness of function φ 7→ D̂ϕ(pφ|pφT) and
continuity of Dψ with respect to its first argument. The convergence of the sequence (D̂ϕ(φk|φT))k is
an interesting property, since, in general, there is no theoretical guarantee, or it is difficult to prove
that the whole sequence (φk)k converges. It may also continue to fluctuate around a minimum. The
decrease of the error criterion D̂ϕ(φk|φT) between two iterations helps us decide when to stop the
iterative procedure.

Proposition 2. Suppose A1 verified, Φ0 is closed and {φk+1− φk} → 0.

(a) If AC is verified, then any limit point of (φk)k is a stationary point of φ 7→ D̂ϕ(pφ|pφT);
(b) If AC is dropped, then any limit point of (φk)k is a “generalized” stationary point of φ 7→ D̂ϕ(pφ|pφT),

i.e., zero belongs to the subgradient of φ 7→ D̂ϕ(pφ|pφT) calculated at the limit point.

Proof. We prove (a). Let (φnk)k be a convergent subsequence of (φk)k which converges to φ∞. First,
φ∞ ∈ Φ0, because Φ0 is closed and the subsequence (φnk) is a sequence of elements of Φ0 (proved in
Proposition 1b).
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Let us now show that the subsequence (φnk+1) also converges to φ∞. We simply have:

‖φnk+1− φ∞‖ ≤ ‖φnk − φ∞‖+ ‖φnk+1− φnk‖.

Since φk+1− φk → 0 and φnk → φ∞, we conclude that φnk+1 → φ∞.
By definition of φnk+1, it verifies the infimum in recurrence (11), so that the gradient of the

optimized function is zero:

∇D̂ϕ(p
φnk+1 , pφT) +∇Dψ(φ

nk+1, φnk) = 0.

Using the continuity assumptions A1 and AC of the gradients, one can pass to the limit with
no problem:

∇D̂ϕ(pφ∞ , pφT) +∇Dψ(φ
∞, φ∞) = 0.

However, the gradient∇Dψ(φ∞, φ∞) = 0 because (recall that ψ′(1) = 0) for any φ ∈ Φ

∇Dψ(φ, φ) =
n

∑
i=1

∫
X

∇hi(x|φ)
hi(x|φ)

ψ′
(

hi(x|φ)
hi(x|φ)

)
hi(x|φ)dx =

n

∑
i=1

∫
X
∇hi(x|φ)ψ′(1)dx,

which is equal to zero since ψ′(1) = 0. This implies that∇D̂ϕ(pφ∞ , pφT) = 0.
We prove (b). We use again the definition of the arginf. As the optimized function is not necessarily

differentiable at the points of the sequence (φk)k, a necessary condition for φk+1 to be an infimum is that
0 belongs to the subgradient of the function on φk+1. Since Dψ(φ, φk) is assumed to be differentiable,
the optimality condition is translated into:

−∇Dψ(φ
k+1, φk) ∈ ∂D̂ϕ(pφk+1 , pφT) ∀k.

Since D̂ϕ(pφ, pφT) is continuous, then its subgradient is outer semicontinuous (see [13] Chapter 8,
Proposition 7). We use the same arguments presented in (a) to conclude the existence of two
subsequences (φnk)k and (φnk+1)k which converge to the same limit φ∞. By definition of outer
semicontinuity, and since φnk+1 → φ∞, we have:

lim sup
φnk+1→φ∞

∂D̂ϕ(p
φnk+1 , pφT) ⊂ ∂D̂ϕ(pφ∞ , pφT). (12)

We want to prove that 0 ∈ lim sup
φnk+1→φ∞ ∂D̂ϕ(p

φnk+1 , pφT). By definition of the (outer) limsup
(see [13] Chapter 4, Definition 1 or Chapter 5B):

lim sup
φ→φ∞

∂D̂ϕ(pφ, pφT) =
{

u|∃φk → φ∞,∃uk → u with uk ∈ ∂D̂ϕ(pφk , pφT)
}

.

In our scenario, φ = φnk+1, φk = φnk+1, u = 0 and uk = ∇1Dψ(φnk+1, φnk). The continuity of∇1Dψ

with respect to both arguments and the fact that the two subsequences φnk+1 and φnk converge to the
same limit, imply that uk → ∇1Dψ(φ∞, φ∞) = 0. Hence, u = 0 ∈ lim sup

φnk+1→φ∞ ∂D̂ϕ(p
φnk+1 , pφT).

By inclusion (12), we get our result:
0 ∈ ∂D̂ϕ(pφ∞ , pφT).

This ends the proof.

The assumption {φk+1− φk} → 0 used in Proposition 2 is not easy to be checked unless one has a
close formula of φk. The following proposition gives a method to prove such assumption. This method
seems simpler, but it is not verified in many mixture models (see Section 4.2 for a counter Example).
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Proposition 3. Assume that A1, A2 and A3 are verified, then {φk+1 − φk} → 0. Thus, by Proposition 2
(according to whether AC is verified or not), any limit point of the sequence φk is a (generalized) stationary point
of D̂ϕ(.|φT).

Proof. By contradiction, let us suppose that φk+1 − φk does not converge to 0. There exists a
subsequence such that ‖φN0(k)+1−φN0(k)‖ > ε, ∀k ≥ k0. Since (φk)k belongs to the compact set Φ0, there
exists a convergent subsequence (φN1◦N0(k))k such that φN1◦N0(k) → φ̄. The sequence (φN1◦N0(k)+1)k
belongs to the compact set Φ0; therefore, we can extract a further subsequence (φN2◦N1◦N0(k)+1)k such
that φN2◦N1◦N0(k)+1 → φ̃. Besides φ̂ 6= φ̃. Finally since the sequence (φN1◦N0(k))k is convergent, a further
subsequence also converges to the same limit φ̄. We have proved the existence of a subsequence of
(φk)k such that φN(k)+1 − φN(k) does not converge to 0 and such that φN(k)+1 → φ̃, φN(k) → φ̄ with
φ̄ 6= φ̃.

The real sequence (D̂ϕ(pφk , pφT))k converges as proved in Proposition 1c. As a result, both
sequences D̂ϕ(pφN(k)+1 , pφT) and D̂ϕ(pφN(k) , pφT) converge to the same limit being subsequences of the
same convergent sequence. In the proof of Proposition 1, we can deduce the following inequality:

D̂(pφk+1 , pφT) + Dψ(φ
k+1, φk) ≤ D̂(pφk , pφT), (13)

which is also verified for any substitution of k by N(k). By passing to the limit on k, we get Dψ(φ̃, φ̄) ≤ 0.
However, the distance-like function Dψ is nonnegative, so that it becomes zero. Using assumption A3,
Dψ(φ̃, φ̄) = 0 implies that φ̃ = φ̄. This contradicts the hypothesis that φk+1− φk does not converge to 0.

The second part of the Proposition is a direct result of Proposition 2.

Corollary 1. Under assumptions of Proposition 3, the set of accumulation points of (φk)k is a connected
compact set. Moreover, if φ 7→ D̂(pφ, pφT) is strictly convex in the neighborhood of a limit point of the sequence
(φk)k, then the whole sequence (φk)k converges to a local minimum of D̂(pφ, pφT).

Proof. Since the sequence (φ)k is bounded and verifies φk+1 − φk → 0, then Theorem 28.1 in [17]
implies that the set of accumulation points of (φk)k is a connected compact set. It is not empty since Φ0

is compact. The remaining of the proof is a direct result of Theorem 3.3.1 from [18]. The strict concavity
of the objective function around an accumulation point is replaced here by the strict convexity of the
estimated divergence.

Proposition 3 and Corollary 1 describe what we may hope to get of the sequence φk. Convergence
of the whole sequence is bound by a local convexity assumption in the neighborhood of a limit point.
Although simple, this assumption remains difficult to be checked since we do not know where might
be the limit points. In addition, assumption A3 is very restrictive, and is not verified in mixture models.

Propositions 2 and 3 were developed for the likelihood function in the paper of Tseng [2]. Similar
results for a general class of functions replacing D̂ϕ and Dψ which may not be differentiable (but still
continuous) are presented in [3]. In these results, assumption A3 is essential. Although in [18] this
problem is avoided, their approach demands that the log-likelihood has −∞ limit as ‖φ‖ → ∞. This is
simply not verified for mixture models. We present a similar method to the one in [18] based on the
idea of Tseng [2] of using the set Φ0 which is valid for mixtures. We lose, however, the guarantee of
consecutive decrease of the sequence (φk)k.

Proposition 4. Assume A1, AC and A2 verified. Any limit point of the sequence (φk)k is a stationary point
of φ→ D̂(pφ, pφT). If AC is dropped, then 0 belongs to the subgradient of φ 7→ D̂(pφ, pφT) calculated at the
limit point.

Proof. If (φk)k converges to, say, φ∞, then the result falls simply from Proposition 2.
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If (φk)k does not converge. Since Φ0 is compact and ∀k, φk ∈ Φ0 (proved in Proposition 1), there
exists a subsequence (φN0(k))k such that φN0(k) → φ̃. Let us take the subsequence (φN0(k)−1)k. This
subsequence does not necessarily converge; it is still contained in the compact Φ0, so that we can extract
a further subsequence (φN1◦N0(k)−1)k which converges to, say, φ̄. Now, the subsequence (φN1◦N0(k))k
converges to φ̃, because it is a subsequence of (φN0(k))k. We have proved until now the existence of two
convergent subsequences φN(k)−1 and φN(k) with a priori different limits. For simplicity and without
any loss of generality, we will consider these subsequences to be φk and φk+1, respectively.

Conserving previous notations, suppose that φk+1 → φ̃ and φk → φ̄. We use again inequality (13):

D̂(pφk+1 , pφT) + Dψ(φ
k+1, φk) ≤ D̂(pφk , pφT).

By taking the limits of the two parts of the inequality as k tends to infinity, and using the continuity
of the two functions, we have

D̂(pφ̃, pφT) + Dψ(φ̃, φ̄) ≤ D̂(pφ̄, pφT).

Recall that under A1-2, the sequence
(

D̂ϕ(pφk , pφT)
)

k
converges, so that it has the same limit

for any subsequence, i.e., D̂(pφ̃, pφT) = D̂(pφ̄, pφT). We also use the fact that the distance-like
function Dψ is non negative to deduce that Dψ(φ̃, φ̄) = 0. Looking closely at the definition of this
divergence (10), we get that if the sum is zero, then each term is also zero since all terms are nonnegative.
This means that:

∀i ∈ {1, · · · , n},
∫
X

ψ

(
hi(x|φ̃)
hi(x|φ̄)

)
hi(x|φ̄)dx = 0.

The integrands are nonnegative functions, so they vanish almost everywhere with respect to the
measure dx defined on the space of labels.

∀i ∈ {1, · · · , n}, ψ

(
hi(x|φ̃)
hi(x|φ̄)

)
hi(x|φ̄) = 0 dx− a.e.

The conditional densities hi are supposed to be positive (which can be ensured by a suitable choice
of the initial point φ0), i.e., hi(x|φ̄) > 0, dx− a.e. Hence, ψ

(
hi(x|φ̃)
hi(x|φ̄)

)
= 0, dx− a.e. On the other hand, ψ

is chosen in a way that ψ(z) = 0 iff z = 1. Therefore:

∀i ∈ {1, · · · , n}, hi(x|φ̃) = hi(x|φ̄) dx− a.e. (14)

Since φk+1 is, by definition, an infimum of φ 7→ D̂(pφ, pφT) + Dψ(φ, φk), then the gradient of this
function is zero on φk+1. It results that:

∇D̂(pφk+1 , pφT) +∇Dψ(φ
k+1, φk) = 0, ∀k.

Taking the limit on k, and using the continuity of the derivatives, we get that:

∇D̂(pφ̃, pφT) +∇Dψ(φ̃, φ̄) = 0. (15)

Let us write explicitly the gradient of the second divergence:

∇Dψ(φ̃, φ̄) =
n

∑
i=1

∫
X

∇hi(x|φ̃)
hi(x|φ̄)

ψ′
(

hi(x|φ̃)
hi(x|φ̄)

)
hi(x|φ̄).

We use now the identities (14), and the fact that ψ′(1) = 0, to deduce that:

∇Dψ(φ̃, φ̄) = 0.
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This entails using (15) that∇D̂(pφ̃, pφT) = 0.
Comparing the proved result with the notation considered at the beginning of the proof, we have

proved that the limit of the subsequence (φN1◦N0(k))k is a stationary point of the objective function.
Therefore, the final step is to deduce the same result on the original convergent subsequence (φN0(k))k.
This is simply due to the fact that (φN1◦N0(k))k is a subsequence of the convergent sequence (φN0(k))k,
hence they have the same limit.

When assumption AC is dropped, similar arguments to those used in the proof of Proposition 2b.
are employed. The optimality condition in (11) implies :

−∇Dψ(φ
k+1, φk) ∈ ∂D̂ϕ(pφk+1 , pφT) ∀k.

Function φ 7→ D̂ϕ(pφ, pφT) is continuous, hence its subgradient is outer semicontinuous and:

lim sup
φk+1→φ∞

∂D̂ϕ(pφk+1 , pφT) ⊂ ∂D̂ϕ(pφ̃, pφT). (16)

By definition of the limsup:

lim sup
φ→φ∞

∂D̂ϕ(pφ, pφT) =
{

u|∃φk → φ∞,∃uk → u with uk ∈ ∂D̂ϕ(pφk , pφT)
}

.

In our scenario, φ = φk+1, φk = φk+1, u = 0 and uk = ∇1Dψ(φk+1, φk). We have proved above
in this proof that ∇1Dψ(φ̃, φ̄) = 0 using only the convergence of (D̂ϕ(pφk , pφT))k, inequality (13)

and the properties of Dψ. Assumption AC was not needed. Hence, uk → 0. This proves that
u = 0 ∈ lim supφk+1→φ∞ ∂D̂ϕ(p

φnk+1 , pφT). Finally, using the inclusion (16), we get our result:

0 ∈ ∂D̂ϕ(pφ̃, pφT),

which ends the proof.

The proof of the previous proposition is very similar to the proof of Proposition 2. The key idea
is to use the sequence of conditional densities hi(x|φk) instead of the sequence φk. According to the
application, one may be interested only in Proposition 1 or in Propositions 2–4. If one is interested
in the parameters, Propositions 2 to 4 should be used, since we need a stable limit of (φk)k. If we are
only interested in minimizing an error criterion D̂ϕ(pφ, pφT) between the estimated distribution and
the true one, Proposition 1 should be sufficient.

4. Case Studies

4.1. An Algorithm With Theoretically Global Infimum Attainment

We present a variant of algorithm (11) which ensures theoretically the convergence to a global
infimum of the objective function D̂ϕ(pφ, pφT) as soon as there exists a convergent subsequence of
(φk)k. The idea is the same as Theorem 3.2.4 in [18]. Define φk+1 by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT) + βkDψ(φ, φk).

The proof of convergence is very simple and does not depend on the differentiability of any of
the two functions D̂ϕ or Dψ. We only assume A1 and A2 to be verified. Let (φN(k))k be a convergent
subsequence. Let φ∞ be its limit. This is guaranteed by the compactness of Φ0 and the fact that
the whole sequence (φk)k resides in Φ0 (see Proposition 1b). Suppose also that the sequence (βk)k
converges to 0 as k goes to infinity.
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Now assumptions of Theorem 3.2.4. from [18] are verified. Thus, using the same lines from
the proof of this theorem (inverting all inequalities since we are minimizing instead of maximizing),
we may prove that φ∞ is a global infimum of the estimated divergence, that is

D̂ϕ(pφ∞ , pφT) ≤ D̂ϕ(pφ, pφT), ∀φ ∈ Φ.

The problem with this approach is that it depends heavily on the fact that the supremum on
each step of the algorithm is calculated exactly. This does not happen in general unless function
D̂ϕ(pφ, pφT) + βkDψ(φ, φk) is convex or that we dispose of an algorithm that can perfectly solve non
convex optimization problems (In this case, there is no meaning in applying an iterative proximal
algorithm. We would have used the optimization algorithm directly on the objective function
D̂ϕ(pφ, pφT)). Although in our approach, we use a similar assumption to prove the consecutive
decreasing of D̂ϕ(pφ, pφT), we can replace the infimum calculus in (11) by two things. We require at each
step that we find a local infimum of D̂ϕ(pφ, pφT) + Dψ(φ, φk) whose evaluation with φ 7→ D̂ϕ(pφ, pφT)

is less than the previous term of the sequence φk. If we can no longer find any local minima verifying
the claim, the procedure stops with φk+1 = φk. This ensures the availability of all the proofs presented
in this paper with no change.

4.2. The Two-Component Gaussian Mixture

We suppose that the model (pφ)φ∈Φ is a mixture of two gaussian densities, and that we are only
interested in estimating the means µ = (µ1, µ2) ∈ R2 and the proportion λ ∈ [η, 1− η]. The use of
η is to avoid cancellation of any of the two components, and to keep the hypothesis hi(x|φ) > 0 for
x = 1, 2 verified. We also suppose that the components variances are reduced (σi = 1). The model
takes the form

pλ,µ(x) =
λ√
2π

e−
1
2 (x−µ1)

2
+

1− λ√
2π

e−
1
2 (x−µ2)

2
. (17)

Here, Φ = [η, 1− η]×R2. The regularization term Dψ is defined by (8) where:

hi(1|φ) =
λe−

1
2 (yi−µ1)

2

λe−
1
2 (yi−µ1)2

+ (1− λ)e−
1
2 (yi−µ2)2

, hi(2|φ) = 1− hi(1|φ).

Functions hi are clearly of class C1(int(Φ)), and so does Dψ. We prove that Φ0 is closed and
bounded, which is sufficient to conclude its compactness, since the space [η, 1− η]×R2 provided with
the euclidean distance is complete.

If we are using the dual estimator of the ϕ−divergence given by (2), then assumption A0 can
be verified using the maximum theorem of Berge [19]. There is still a great difficulty in studying
the properties (closedness or compactness) of the set Φ0. Moreover, all convergence properties of
the sequence φk require the continuity of the estimated ϕ−divergence D̂ϕ(pφ, pφT) with respect to φ.
In order to prove the continuity of the estimated divergence, we need to assume that Φ is compact,
i.e., assume that the means are included in an interval of the form [µmin, µmax]. Now, using Theorem
10.31 from [13], φ 7→ D̂ϕ(pφ, pφT) is continuous and differentiable almost everywhere with respect to φ.

The compactness assumption of Φ implies directly the compactness of Φ0. Indeed,

Φ0 =
{

φ ∈ Φ, D̂ϕ(pφ, pφT) ≤ D̂ϕ(pφ0 , pφT)
}

= D̂ϕ(pφ, pφT)−1
(
(−∞, D̂ϕ(pφ0 , pφT)]

)
.

Φ0 is then the inverse image by a continuous function of a closed set, so it is closed in Φ. Hence, it
is compact.
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Conclusion 1. Using Propositions 4 and 1, if Φ = [η, 1− η]× [µmin, µmax]2, the sequence (D̂ϕ(pφk , pφT))k

defined through Formula (2) converges and there exists a subsequence (φN(k)) which converges to a stationary
point of the estimated divergence. Moreover, every limit point of the sequence (φk)k is a stationary point of the
estimated divergence.

If we are using the kernel-based dual estimator given by (3) with a Gaussian kernel density
estimator, then function φ 7→ D̂ϕ(pφ, pφT) is continuously differentiable over Φ even if the means µ1

and µ2 are not bounded. For example, take ϕ = ϕγ defined by (1). There is one condition which relates
the window of the kernel, say w, with the value of γ. Indeed, using Formula (3), we can write

D̂ϕ(pφ, pφT) =
1

γ− 1

∫ pγ
φ

Kγ−1
n,w

(y)dy− 1
γn

n

∑
i=1

pγ
φ

Kγ
n,w

(yi)−
1

γ(γ− 1)
.

In order to study the continuity and the differentiability of the estimated divergence with respect
to φ, it suffices to study the integral term. We have

pγ
φ

Kγ−1
n,w

(y) =

(
λ√
2π

exp
[
− 1

2(y− µ1)
2
]
+ 1−λ√

2π
exp

[
− 1

2(y− µ2)
2
])γ

(
1

nw ∑n
i=1 exp

[
− (y−yi)2

2w2

])γ−1 .

The dominating term at infinity in the nominator is exp(−γy2/2), whereas it is
exp(−(γ− 1)y2/(2w2)) in the denominator. It suffices now in order that the integrand to be bounded
by an integrable function independently of φ = (λ, µ) that we have −γ + (γ− 1)/w2 < 0. That is
−γw2 + γ− 1 < 0, which is equivalent to γ(w2− 1) < −1. This argument also holds if we differentiate
the integrand with respect to λ or either of the means µ1 or µ2. For γ = 2 (the Pearson’s χ2), we need
w2 > 1/2. For γ = 1/2 (the Hellinger), there is no condition on w.

Closedness of Φ0 is proved similarly to the previous case. Boundedness, however, must be treated
differently since Φ is not necessarily compact and is supposed to be Φ = [η, 1− η]×R2. For simplicity,
take ϕ = ϕγ. The idea is to choose φ0 an initialization for the proximal algorithm in a way that Φ0 does
not include unbounded values of the means. Continuity of φ 7→ D̂ϕ(pφ, pφT) permits calculation of
the limits when either (or both) of the means tends to infinity. If both the means go to infinity, then
pφ(x)→ 0,∀x. Thus, for γ ∈ (0, ∞) \ {1}, we have D̂ϕ(pφ, pφT)→ 1

γ(γ−1) . For γ < 0, the limit is infinity.
If only one of the means tends to ∞, then the corresponding component vanishes from the mixture.
Thus, if we choose φ0 such that:

D̂ϕ(pφ0 , pφT) < min
(

1
γ(γ− 1)

, inf
λ,µ

D̂ϕ(p(λ,∞,µ), pφT)

)
if γ ∈ (0, ∞) \ {1}, (18)

D̂ϕ(pφ0 , pφT) < inf
λ,µ

D̂ϕ(p(λ,∞,µ), pφT) if γ < 0, (19)

then the algorithm starts at a point of Φ whose function value is inferior to the limits of D̂ϕ(pφ, pφT)

at infinity. By Proposition 1, the algorithm will continue to decrease the value of D̂ϕ(pφ, pφT) and
never goes back to the limits at infinity. In addition, the definition of Φ0 permits to conclude that if
φ0 is chosen according to conditions (18) and (19), then Φ0 is bounded. Thus, Φ0 becomes compact.
Unfortunately the value of infλ,µ D̂ϕ(p(λ,∞,µ), pφT) can be calculated but numerically. We will see next
that in the case of the likelihood function, a similar condition will be imposed for the compactness of
Φ0, and there will be no need for any numerical calculus.

Conclusion 2. Using Propositions 4 and 1, under conditions (18) and (19) the sequence (D̂ϕ(pφk , pφT))k

defined through Formula (3) converges and there exists a subsequence (φN(k)) that converges to a stationary
point of the estimated divergence. Moreover, every limit point of the sequence (φk)k is a stationary point of the
estimated divergence.
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In the case of the likelihood ϕ(t) = − log(t) + t− 1, the set Φ0 can be written as:

Φ0 =
{

φ ∈ Φ, JN (φ) ≥ JN (φ0)
}

= J−1
N

(
[JN (φ0),+∞)

)
,

where JN is the log-likelihood function of the Gaussian mixture model. The log-likelihood function JN
is clearly of class C1(int(Φ)). We prove that Φ0 is closed and bounded which is sufficient to conclude its
compactness, since the space [η, 1− η]×R2 provided with the euclidean distance is complete.

Closedness. The set Φ0 is the inverse image by a continuous function (the log-likelihood) of a
closed set. Therefore it is closed in [η, 1− η]×R2.

Boundedness. By contradiction, suppose that Φ0 is unbounded, then there exists a sequence (φl)l
which tends to infinity. Since λl ∈ [η, 1− η], then either of µl

1 or µl
2 tends to infinity. Suppose that both

µl
1 and µl

2 tend to infinity, we then have JN (φl) → −∞. Any finite initialization φ0 will imply that
JN (φ0) > −∞ so that ∀φ ∈ Φ0, JN (φ) ≥ JN (φ0) > −∞. Thus, it is impossible for both µl

1 and µl
2 to go

to infinity.
Suppose that µl

1 → ∞, and that µl
2 converges (or that µl

2 is bounded; in such case we extract a
convergent subsequence) to µ2. The limit of the likelihood has the form:

L(λ, ∞, φ2) =
n

∏
i=1

(1− λ)√
2π

e−
1
2 (yi−µ2)

2
,

which is bounded by its value for λ = 0 and µ2 = 1
n ∑n

i=1 yi. Indeed, since 1− λ ≤ 1, we have:

L(λ, ∞, φ2) ≤
n

∏
i=1

1√
2π

e−
1
2 (yi−µ2)

2
.

The right-hand side of this inequality is the likelihood of a Gaussian modelN (µ2, 0), so that it is
maximized when µ2 = 1

n ∑n
i=1 yi. Thus, if φ0 is chosen in a way that JN (φ0) > JN

(
0, ∞, 1

n ∑n
i=1 yi

)
, the

case when µ1 tends to infinity and µ2 is bounded would never be allowed. For the other case where
µ2 → ∞ and µ1 is bounded, we choose φ0 in a way that JN (φ0) > JN

(
1, 1

n ∑n
i=1 yi, ∞

)
. In conclusion,

with a choice of φ0 such that:

JN (φ0) > max

[
JN

(
0, ∞,

1
n

n

∑
i=1

yi

)
, JN

(
1,

1
n

n

∑
i=1

yi, ∞

)]
, (20)

the set Φ0 is bounded.
This condition on φ0 is very natural and means that we need to begin at a point at least better

than the extreme cases where we only have one component in the mixture. This can be easily verified
by choosing a random vector φ0, and calculating the corresponding log-likelihood value. If JN (φ0)

does not verify the previous condition, we draw again another random vector until satisfaction.

Conclusion 3. Using Propositions 4 and 1, under condition (20) the sequence (JN (φk))k converges and there
exists a subsequence (φN(k)) which converges to a stationary point of the likelihood function. Moreover, every
limit point of the sequence (φk)k is a stationary point of the likelihood.

Assumption A3 is not fulfilled (this part applies for all aforementioned situations). As mentioned
in the paper of Tseng [2], for the two Gaussian mixture example, by changing µ1 and µ2 by the same
amount and suitably adjusting λ, the value of hi(x|φ) would be unchanged. We explore this more
thoroughly by writing the corresponding equations. Let us suppose, absurdly, that for distinct φ and φ′,
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we have Dψ(φ|φ′) = 0. By definition of Dψ, it is given by a sum of nonnegative terms, which implies
that all terms need to be equal to zero. The following lines are equivalent ∀i ∈ {1, · · · , n}:

hi(0|λ, µ1, µ2) = hi(0|λ′, µ′1, µ′2),

λe−
1
2 (yi−µ1)

2

λe−
1
2 (yi−µ1)2

+ (1− λ)e−
1
2 (yi−µ2)2

=
λ′e−

1
2 (yi−µ′1)

2

λ′e−
1
2 (yi−µ′1)

2
+ (1− λ′)e−

1
2 (yi−µ′2)

2
,

log
(

1− λ

λ

)
− 1

2
(yi − µ2)

2 +
1
2
(yi − µ1)

2 = log
(

1− λ′

λ′

)
− 1

2
(yi − µ′2)

2 +
1
2
(yi − µ′1)

2.

Looking at this set of n equations as an equality of two polynomials on y of degree 1 at n points,
we deduce that as we have two distinct observations, say, y1 and y2, the two polynomials need to have
the same coefficients. Thus, the set of n equations is equivalent to the following two equations:{

µ1− µ2 = µ′1− µ′2
log
(

1−λ
λ

)
+ 1

2 µ2
1−

1
2 µ2

2 = log
(

1−λ′
λ′

)
+ 1

2 µ′1
2− 1

2 µ′2
2.

(21)

These two equations with three variables have an infinite number of solutions. Take, for example,
µ1 = 0, µ2 = 1, λ = 2

3 , µ′1 = 1
2 , µ′2 = 3

2 , λ′ = 1
2 .

Remark 2. The previous conclusion can be extended to any two-component mixture of exponential families
having the form:

pφ(y) = λe∑
m1
i=1 θ1,iyi−F(θ1) + (1− λ)e∑

m2
i=1 θ2,iyi−F(θ2).

One may write the corresponding n equations. The polynomial of yi has a degree of at most max(m1, m2).
Thus, if one disposes of max(m1, m2) + 1 distinct observations, the two polynomials will have the same set of
coefficients. Finally, if (θ1, θ2) ∈ Rd−1 with d > max(m1, m2), then assumption A3 does not hold.

Unfortunately, we have no an information about the difference between consecutive terms
‖φk+1 − φk‖ except for the case of ψ(t) = ϕ(t) = − log(t) + t− 1 which corresponds to the classical
EM recurrence:

λk+1 =
1
n

n

∑
i=1

hi(0|φk), µk+1
1 =

∑n
i=1 yihi(0|φk)

∑n
i=1 hi(0|φk)

µk+1
1 =

∑n
i=1 yihi(1|φk)

∑n
i=1 hi(1|φk)

.

Tseng [2] has shown that we can prove directly that φk+1− φk converges to 0.

5. Simulation Study

We summarize the results of 100 experiments on 100 samples by giving the average of the
estimates and the error committed, and the corresponding standard deviation. The criterion error
is the total variation distance (TVD), which is calculated using the L1 distance. Indeed, the Scheffé
Lemma (see [20] (Page 129)) states that:

sup
A∈Bn(R)

∣∣∣Pφ(A)− PφT(A)
∣∣∣ = 1

2

∫
R

∣∣∣pφ(y)− pφT(y)
∣∣∣ dy.

The TVD gives a measure of the maximum error we may commit when we use the estimated
model in lieu of the true distribution. We consider the Hellinger divergence for estimators based on
ϕ−divergences, which corresponds to ϕ(t) = 1

2(
√

t− 1)2. Our preference of the Hellinger divergence
is that we hope to obtain robust estimators without loss of efficiency (see [21]). Dψ is calculated with
ψ(t) = 1

2(
√

t− 1)2. The kernel-based MDϕDE is calculated using the Gaussian kernel, and the window
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is calculated using Silverman’s rule. We included in the comparison the minimum density power
divergence (MDPD) of [14]. The estimator is defined by:

φ̂n = arg inf
φ∈Φ

∫
p1+a

φ (z)dz− a + 1
a

1
n

n

∑
i

pa
φ(yi)

= arg inf
φ∈Φ

EPφ

[
pa

φ

]
− a + 1

a
EPn

[
pa

φ

]
, (22)

where a ∈ (0, 1]. This is a Bregman divergence and is known to have good efficiency and robustness for
a good choice of the tradeoff parameter. According to the simulation results in [11], the value of a = 0.5
seems to give a good tradeoff between robustness against outliers and a good performance under
the model. Notice that the MDPD coincides with MLE when a tends to zero. Thus, our methodology
presented here in this article, is applicable on this estimator and the proximal point algorithm can be
used to calculate the MDPD. The proximal term will be kept the same, i.e., ψ(t) = 1

2(
√

t− 1)2.

Remark 3 (Note on the robustness of the used estimators). In Section 3, we have proved under mild
conditions that the proximal point algorithm (11) ensures the decrease of the estimated divergence. This
means that when we use the dual Formulas (2) and (3), then the proximal point algorithm (11) returns at
convergence the estimators defined by (4) and (5), respectively. Similarly, if we use the density power divergence
of Basu et al. [14], then the proximal-point algorithm returns at convergence the MDPD defined by (22). The
robustness properties of the dual estimators (4) and (5) are studied in [12] and [11] respectively using the
influence function (IF) approach. On the other hand, the robustness properties of the MDPD are studied using
the IF approach in [14]. The MDϕDE (4) has generally an unbounded IF (see [12] Section 3.1), whereas the
kernel-based MDϕDE’s IF may be bounded for example in a Gaussian model and for any ϕ−divergence with
ϕ = ϕγ with γ ∈ (0, 1), see [11] Example 2. On the other hand, the MDPD has generally a bounded IF if the
tradeoff parameter a is positive, and, in particular, in the Gaussian model. The MDPD becomes more robust as
the tradeoff parameter a increases (see Section 3.3 in [14]). Therefore, we should expect that the proximal point
algorithm produces robust estimators in the case of the kernel-based MDϕDE and the MDPD, and thus obtain
better results than the MLE calculated using the EM algorithm.

Simulations from two mixture models are given below—a Gaussian mixture and a Weibull
mixture. The MLE for both mixtures was calculated using the EM algorithm.

Optimizations were carried out using the Nelder–Mead algorithm [22] under the statistical tool
R [23]. Numerical integrations in the Gaussian mixture were calculated using the distrExIntegrate
function of package distrEx. It is a slight modification of the standard function integrate. It performs
a Gauss–Legendre quadrature when function integrate returns an error. In the Weibull mixture,
we used the integral function from package pracma. Function integral includes a variety of
adaptive numerical integration methods such as Kronrod–Gauss quadrature, Romberg’s method,
Gauss–Richardson quadrature, Clenshaw–Curtis (not adaptive) and (adaptive) Simpson’s method.
Although function integral is slow, it performs better than other functions even if the integrand has a
relatively bad behavior.

5.1. The Two-Component Gaussian Mixture Revisited

We consider the Gaussian mixture (17) presented earlier with true parameters λ = 0.35,
µ1 = −2, µ2 = 1.5 and known variances equal to 1. Contamination was done by adding in the
original sample to the five lowest values random observations from the uniform distribution U [−5,−2].
We also added to the five largest values random observations from the uniform distribution U [2, 5].
Results are summarized in Table 1. The EM algorithm was initialized according to condition (20).
This condition gave good results when we are under the model, whereas it did not always result in
good estimates (the proportion converged towards 0 or 1) when outliers were added, and thus the EM
algorithm was reinitialized manually.
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Table 1. The mean and the standard deviation of the estimates and the errors committed in a 100 run
experiment of a two-component Gaussian mixture. The true set of parameters is λ = 0.35, µ1 = −2,
µ2 = 1.5.

Estimation Method λ sd (λ) µ1 sd (µ1) µ2 sd (µ2) TVD sd (TVD)

Without Outliers

Classical MDϕDE 0.349 0.049 –1.989 0.207 1.511 0.151 0.061 0.029
New MDϕDE–Silverman 0.349 0.049 –1.987 0.208 1.520 0.155 0.062 0.029

MDPD a = 0.5 0.360 0.053 –1.997 0.226 1.489 0.135 0.065 0.025
EM (MLE) 0.360 0.054 –1.989 0.204 1.493 0.136 0.064 0.025

With 10% Outliers

Classical MDϕDE 0.357 0.022 –2.629 0.094 1.734 0.111 0.146 0.034
New MDϕDE–Silverman 0.352 0.057 –1.756 0.224 1.358 0.132 0.087 0.033

MDPD a = 0.5 0.364 0.056 –1.819 0.218 1.404 0.132 0.078 0.030
EM (MLE) 0.342 0.064 –2.617 0.288 1.713 0.172 0.150 0.034

Figure 1 shows the values of the estimated divergence for both Formulas (2) and (3) on a
logarithmic scale at each iteration of the algorithm.

Figure 1. Decrease of the (estimated) Hellinger divergence between the true density and the estimated
model at each iteration in the Gaussian mixture. The figure to the left is the curve of the values of
the kernel-based dual Formula (3). The figure to the right is the curve of values of the classical dual
Formula (2). Values are taken at a logarithmic scale log(1 + x).

Concerning our simulation results, the total variation of all four estimation methods is very
close when we are under the model. When we added outliers, the classical MDϕDE was as sensitive
as the maximum likelihood estimator. The error was doubled. Both the kernel-based MDϕDE and
the MDPD are clearly robust since the total variation of these estimators under contamination has
slightly increased.

5.2. The Two-Component Weibull Mixture Model

We consider a two-component Weibull mixture with unknown shapes ν1 = 1.2, ν2 = 2 and a
proportion λ = 0.35. The scales are known an equal to σ1 = 0.5, σ2 = 2. The desity function is given by:

pφ(x) = 2λα1(2x)α1−1e−(2x)α1 + (1− λ)
α2

2

( x
2

)α2−1
e−(

x
2 )

α2
. (23)
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Contamination was done by replacing 10 observations of each sample chosen randomly by 10
i.i.d. observations drawn from a Weibull distribution with shape ν = 0.9 and scale σ = 3. Results are
summarized in Table 2. Notice that it would have been better to use asymmetric kernels in order to
build the kernel-based MDϕDE since their use in the context of positive-supported distributions is
advised in order to reduce the bias at zero, see [11] for a detailed comparison with symmetric kernels.
This is not, however, the goal of this paper. In addition, the use of symmetric kernels in this mixture
model gave satisfactory results.

Simulations results in Table 2 confirm once more the validity of our proximal point algorithm and
the clear robustness of both the kernel-based MDϕDE and the MDPD.

Table 2. The mean and the standard deviation of the estimates and the errors committed in a 100-run
experiment of a two-component Weibull mixture. The true set of parameter is λ = 0.35, ν1 = 1.2, ν2 = 2.

Estimation Method λ sd (λ) µ1 sd (µ1) µ2 sd (µ2) TVD sd (TVD)

Without Outliers

Classical MDϕDE 0.356 0.066 1.245 0.228 2.055 0.237 0.052 0.025
New MDϕDE–Silverman 0.387 0.067 1.229 0.241 2.145 0.289 0.058 0.029

MDPD a = 0.5 0.354 0.068 1.238 0.230 2.071 0.345 0.056 0.029
EM (MLE) 0.355 0.066 1.245 0.228 2.054 0.237 0.052 0.025

With 10% Outliers

Classical MDϕDE 0.250 0.085 1.089 0.300 1.470 0.335 0.092 0.037
New MDϕDE–Silverman 0.349 0.076 1.122 0.252 1.824 0.324 0.067 0.034

MDPD a = 0.5 0.322 0.077 1.158 0.236 1.858 0.344 0.060 0.029
EM (MLE) 0.259 0.095 0.941 0.368 1.565 0.325 0.095 0.035

6. Conclusions

We introduced in this paper a proximal-point algorithm that permits calculation of
divergence-based estimators. We studied the theoretical convergence of the algorithm and verified
it in a two-component Gaussian mixture. We performed several simulations which confirmed that
the algorithm works and is a way to calculate divergence-based estimators. We also applied our
proximal algorithm on a Bregman divergence estimator (the MDPD), and the algorithm succeeded to
produce the MDPD. Further investigations about the role of the proximal term and a comparison with
direct optimization methods in order to show the practical use of the algorithm may be considered in
a future work.
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