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Abstract	

Noise-masking experiments are widely used to investigate visual functions. To be useful, 

noise generally needs to be strong enough to noticeably impair performance, but under some 

conditions, noise does not impair performance even when its contrast approaches the maximal 

displayable limit of 100%. To extend the usefulness of noise-masking paradigms over a wider 

range of conditions, the present study developed a noise with great masking strength. There 

are two typical ways of increasing masking strength without exceeding the limited contrast 

range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant 

to the task (i.e., which can be removed without affecting performance). The present study 

combined these two approaches to further increase masking strength. We show that binarizing 

the noise after the filtering process substantially increases the energy at frequencies within the 

pass-band of the filter given equated total contrast ranges. A validation experiment showed 

that similar performances were obtained using binarized-filtered noise and filtered noise 

(given equated noise energy at the frequencies within the pass-band) suggesting that the 

binarization operation, which substantially reduced the contrast range, had no significant 

impact on performance. We conclude that binarized-filtered noise (and more generally, 

truncated-filtered noise) can substantially increase the energy of the noise at frequencies 

within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display 

higher energy levels than Gaussian noise and thereby widen the range of conditions over 

which noise-masking paradigms can be useful. 
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Introduction	

Noise-masking experiments are widely used to investigate visual functions (Allard, Faubert, 

& Pelli, 2015; Lu & Dosher, 2008; Pelli & Farell, 1999; Pelli, 1981). Masking occurs when 

the noise noticeably impairs the observer’s performance, but under some conditions, 

performance remains unaffected even when the noise approaches 100% contrast. For instance, 

consider using a noise-masking paradigm to investigate the internal factors limiting contrast 

sensitivity (e.g., Pelli & Farell, 1999). The noise energy required to noticeably impair the 

detection threshold is minimal at middle spatial frequencies and gradually increases at low 

and high spatial frequencies. At low spatial frequencies, the impact of noise is attenuated by 

sparser and larger receptive fields integrating (~averaging) the noise over large areas and 

thereby weakening its masking strength (Raghavan, 1995). At high spatial frequencies, the 

impact of the noise is attenuated by the modulation transfer function of the eye reducing the 

effective contrast of the stimulus (Campbell & Gubisch, 1966) and therefore requiring high 

noise energy to noticeably impair performance. As a result, the frequency range over which 

noise can effectively impair performance is limited by the maximal external noise energy that 

can be displayed, that is, without exceeding 100% contrast. Furthermore, the noise energy 

required to impair detection also increases when reducing luminance intensities, especially at 

high spatial frequencies (Raghavan, 1995). Displaying more noise energy would widen the 

frequency and luminance range over which noise-masking paradigms could be implemented. 

To extend the usefulness of noise-masking paradigms, the present study developed a new 

noise maximizing the displayable energy. 

Many noise-masking paradigms assume, usually implicitly, that the same underlying 

processing strategy operates in absence and presence of noise. But recent studies by Allard 

and colleagues (Allard & Cavanagh, 2011; Allard & Faubert, 2013, 2014a, 2014b; Allard, 

Renaud, Molinatti, & Faubert, 2013) suggested that this noise-invariant processing 
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assumption can be violated when using some types of noise. For instance, contrast detection is 

known to be immune to crowding, but adding noise that is spatiotemporally localized to the 

target (i.e., at the potential target locations and turn on and off with target) made a detection 

task vulnerable to crowding, whereas noise that is spatiotemporally extended (i.e., full-screen, 

continuously displayed dynamic noise) did not (Allard & Cavanagh, 2011). These results 

suggest that the processing strategy in localized noise involved processes vulnerable to 

crowding, whereas the processing strategy in absence of noise and in extended noise did not. 

The aim of the present study was to increase the noise-masking strength without triggering a 

change in processing strategy. 

To avoid triggering a change in processing strategy, Allard and colleagues (Allard & 

Cavanagh, 2011; Allard & Faubert, 2013, 2014a, 2014b; Allard et al., 2013) recommended to 

use full-screen, continuously displayed, dynamic noise. Unfortunately, using dynamic noise 

resampled at a high temporal rate instead of static noise tends to reduce the masking strength 

of noise due to temporal integration (i.e., averaging) occurring early in the visual system. The 

use of dynamic noise can therefore reduce the range of conditions over which noise-masking 

paradigms can be usefully implemented (i.e., noticeably impair performance). The constraint 

of using dynamic noise further emphasizes the need to maximize the displayable noise 

energy. 

The standard way of adding visual noise to a stimulus is to introduce luminance variance to 

each pixel of the display, that is, to add a random luminance value drawn from a Gaussian 

distribution centered on 0 (left image of the top row of Figure 1) (Pelli, 1981). Given that the 

samples are not correlated between each other, such noise is white (flat energy spectrum, 

black curve in the left graph of the third row of Figure 1). This standard noise is typically 

referred to as “Gaussian noise”. For pixel white noise, the expected energy at all frequencies 

(e) can be defined as (Pelli, 1981): 
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𝑒 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑁 ∙ 𝑤 ∙ ℎ ∙ 𝑑 (1) 

where Variance(N) represents the luminance variance across the samples within the noise 

matrix N (for samples drawn from a Gaussian distribution with standard deviation σ, the 

variance is equal to σ2), and w, h and d represent the width, height and duration of each noise 

pixel, respectively. Thus, the noise energy is proportional to the variance of the noise (i.e., 

squared contrast). 

  

Figure 1. Different types of noise (first two top rows) and their corresponding spectral energy 

distributions (third row) and luminance distributions (bottom row). The first row presents samples of 

Gaussian noise (left), low-resolution Gaussian noise (center) and filtered noise (right). The second row 

presents the binarized noises of the first row, namely, binary noise, low-resolution binary noise and 

binarized-filtered noise, respectively. The energy levels at the relevant frequency were equated across all 6 

noises by scaling the noise contrast. See Movie 1 in supplementary material for dynamic noise. The third 

row represents spectral energy density of the different types of noise. The black solid lines represent 

Gaussian noise (corresponding images in first row), the grey dashed lines represent the binarized noise 

(corresponding images in second row) and the arrow represents the relevant (e.g., signal) frequency. The 
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bottom row represents the luminance distribution of the samples of Gaussian noise (black line) and the 

two arrows show the two luminance intensities of the binarized noise. L0 represents the mean background 

luminance intensity.  

A typical way to modify Gaussian noise to increase its effective masking power is to 

concentrate its energy to frequencies relevant to the processing of the stimulus (Pelli, 1981; 

Solomon & Pelli, 1994; Stromeyer & Julesz, 1972). Another method simply consists in 

sampling the noise from a binary distribution instead of Gaussian distribution (e.g., Allard et 

al., 2013). The present study combined these two approaches to further increase masking 

power. 

Binary noise 

The distribution that maximizes the noise energy given a limited contrast range is a binary 

distribution in which one of two values is randomly selected independently for each sample 

(left image in the second row of Figure 1). Given no correlation across samples, binary noise 

is white (flat energy spectrum) and its energy can also be defined by Equation (1). Thus, 

binary noise has the same expected energy level at all frequencies as Gaussian noise given the 

same variance (left graph in third row of Figure 1). The variance of binary noise is equal to 

the variance of Gaussian noise (σ2) when the two values from which the samples are drawn 

are ±σ (left graph in bottom row of Figure 1). 

An advantage of a binary distribution over a Gaussian distribution is that the contrast range is 

finite and well defined. Theoretically, a Gaussian distribution extends over an infinite range 

(left graph in bottom row of Figure 1). Under experimental conditions, however, Gaussian 

noise is often truncated at 2 or 3 standard deviations (sd). Truncating at ±3 sd has little impact 

on the noise energy (0.5% reduction) as few samples fall outside this range. Truncating at ±2 

sd still roughly preserves the shape of the Gaussian distribution, but substantially reduces the 
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distribution range while reducing the noise energy by only 8%. Given that truncated Gaussian 

noise has a finite and well-defined contrast range, its energy can be compared with the energy 

of binary noise given the same total contrast range (i.e., the two binary values set to the 

positive and negative truncation thresholds). As shown in Figure 2, the energy of binary noise 

is greater by a factor of 4.3 and 9.0 relative to the energy of Gaussian noise truncated to ±2 

and ±3 sd, respectively. 

 

Figure 2. Energy gain of using binary noise instead of truncated Gaussian noise as a function of the 

truncation threshold given equated total contrast ranges. 

Non-white noise 

For many experiments, the ideal noise would have a flat energy spectrum over all frequencies. 

However, to have the same energy level across an infinite range of frequencies, such an ideal 

noise would require infinitely small samples (e.g., w, h and d infinitely small) and its energy 

would therefore also be infinitely small for any finite sample variance (Pelli, 1981). In 

practice, a noise can have a flat energy spectrum over a finite range of frequencies and the 

maximal displayable noise energy can be increased by concentrating the noise energy over a 

narrower range of frequencies.  

The simplest way of increasing the energy level is to decrease the spatial and/or temporal 

resolution of the display (e.g., center image in the top row of Figure 1 in which each noise 
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check size is set to 4x4 pixels rather than 1x1 pixels). For the same variance, reducing the 

resolution of the display increases the noise energy (Equation 1) and reduces the upper 

frequency limit of the noise (black curve in top center graph in Figure 1) so it can be used 

when the noise at these frequencies is not relevant to the task. Nevertheless, a drawback of 

low-resolution noise is that it introduces apparent edges between noise checks forming a grid 

as it can be seen in the center image in the top row of Figure 1. Because these apparent edges 

may have undesirable effects (e.g., Harmon & Julesz, 1973), it is safer to avoid them as their 

presence could potentially interfere with the processing of the target. 

An alternative method that does not introduce artificial edges consists in filtering the noise to 

remove frequencies that are not relevant to the task (right image in the top row and black 

curve in the right graph in third row of Figure 1). Indeed, some frequencies can be removed to 

reduce the contrast range without affecting performance. For instance, removing the 

frequencies outside ±1 octave from the spatial frequency of a sine-wave target does not affect 

detection threshold (Pelli, 1981; Stromeyer & Julesz, 1972). Filtering out information 

irrelevant to the task (i.e., does not affect performance) is an efficient way of reducing the 

noise contrast (e.g., Gaussian distribution narrower for filtered noise compared to Gaussian 

noise, black curves in right and left graphs in bottom row of Figure 1, respectively). As a 

result, at equal contrast ranges, filtered noise would have higher energy at the frequencies 

within the pass-band. 

Binarized-filtered noise 

The rationale of the present study was to combine the two approaches described above (i.e., 

binary noise and non-white noise) to further increase the energy of the noise at the 

frequencies relevant to the task. For low-resolution noise, the method simply consists in 

sampling noise elements from a binary distribution instead of a Gaussian distribution (center 
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images in top and second rows of Figure 1). Low-resolution binary noise is not novel as it has 

been used before (e.g., Allard et al., 2013). However, the drawback of using low-resolution 

noise remains: it artificially introduces apparent edges between noise checks. Alternatively, 

the present study combined binary noise with filtered noise (right image in second row of 

Figure 1). Binarizing the noise after the filtering operation substantially increases the energy 

level for equal contrast range. In other words, the binarized-filtered noise requires much less 

contrast than (unbinarized-)filtered noise to reach the same energy level at the frequencies 

within the pass-band (right graphs in third and bottom rows of Figure 1). 

Binarizing filtered noise changes the profile of the spectral density function as it introduces 

energy at frequencies that were filtered out (e.g., right graph in third row of Figure 1). 

However, given that the energy at those frequencies is irrelevant (completely removing them 

should not affect performance), this small gain in energy should also be negligible for 

masking experiments. More importantly, the binarizing operation does not affect the expected 

constant spectral density across the frequencies within the pass-band (right graph in third row 

of Figure 1).  

Binarized-filtered noise requires less contrast than filtered noise to display the same expected 

energy at frequencies within the pass-band (right graph in bottom row of Figure 1). Thus, by 

equating the total contrast range, the binarized-filtered noise would display more energy at the 

frequencies within the pass-band than the filtered noise. To illustrate this energy gain, the 

energy level at frequencies within the pass-band of binarized-filtered noise was compared 

with the one of filtered noise (filtered 1 octave below and above a given spatial frequency) 

given equated total contrast range. As for Gaussian noise, the distribution of the samples of 

filtered noise also follows a Gaussian distribution theoretically extending over a wide contrast 

range (curves of left and right graphs in bottom row of Figure 1). Filtered noise was therefore 

truncated so that it had a finite and well-defined contrast range. Figure 3 compares the energy 
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at the frequencies within the pass-band of binarized-filtered noise with the truncated-filtered 

noise as a function of the truncation threshold given equated contrast range (i.e., the two 

binary values set to the positive and negative truncation thresholds). In this particular case, 

binarizing the noise and equating noise contrast was found to increase the noise energy by a 

factor of 3.3 and 6.7 when the filtered noise was truncated at ±2 and ±3 sd of its filtered 

distribution, respectively. This illustrates that binarizing filtered noise substantially increases 

the energy at the frequencies within the pass-band of filtered noise given equated contrast 

range. 

 

Figure 3. Energy gain at frequencies within the pass-band when using binarized-filtered noise instead of 

truncated-filtered noise as a function of the truncation threshold given equated total contrast ranges. The 

filter was 2-octave wide in the spatial frequency domain. 

Experiment:	Binarized-filtered	noise	vs	Gaussian	noise	

Binarized-filtered noise requires less contrast than Gaussian noise to display the same 

expected energy at the frequencies relevant to the task so both noises are expected to have the 

same masking strength. The main aim of this experiment was to empirically verify this 

prediction. If the performance in binarized-filtered noise differs from the one in Gaussian 

noise (given equated energy levels at frequencies within the pass-band), then the binarized-

filtered noise cannot be considered equivalent to the Gaussian noise. On the other hand, if 
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binarized-filtered noise has the same expected noise energy at the frequencies relevant to the 

task as Gaussian noise and has the same masking strength, then binarized-filtered noise can be 

considered as equivalent to Gaussian noise. 

Method 

Observers 

Four naïve observers and one of the authors participated in this study. They had normal or 

corrected-to-normal vision. 

Apparatus 

Stimuli were presented on a 22.5-inch LCD monitor designed for psychophysics (VIEWPixx) 

with a refresh rate of 120 Hz. At the viewing distance of 1 m, the spatial resolution of the 

display was 64 pixels/degree of visual angle. The monitor was the only source of light in the 

room. The output intensity of each color gun was linearized psychophysically using a 

homemade program. 

Stimuli and procedure 

The detection task was implemented using a two-interval forced-choice procedure with an 

interstimulus interval of 500 msec. The noise was continuously displayed, refreshed at every 

frame and covered the entire screen. The signal was a 4 cycles-per-degree vertical grating 

presented in only one of the two 500-msec intervals. The spatial window of the signal had a 

diameter of 1 degrees plus a half-cosine soft edge of 0.25 degrees. A 500-msec sound was 

audible during each of the two intervals and the task consisted in determining if the target was 

present at the during the first or second sound by pressing one of two keys. 

Two types of noise were used: filtered noise and binarized-filtered noise. For each noise type, 

the width of the ideal filter was 0.25, 0.5, 1, 2 or ∞ (i.e., unfiltered) octaves above and below 
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the signal spatial frequency of 4 cycles-per-degree, resulting in 10 conditions (2 noise types X 

5 filter widths, Figure 4). In all the conditions, the expected energy levels at the unfiltered 

frequency were equated to 0.22 µ degree2 second. 

 

Figure 4. The top left represents Gaussian white noise. The 2nd to the last column of the top row represents 

the same noise sample after applying a filter with a width of 4, 2, 1 and 0.5 octaves, respectively, centered 

on a given spatial frequency (here 16 cycles per image). Each noise at the bottom row represents the same 

noise sample as its corresponding top row, except that it was binarized and its energy at the frequencies 

within the pass-band was equated. See Movie 2 in supplementary material to for dynamic noise. 

Contrast thresholds were measured using a 3down1up staircase procedure (Levitt, 1971) with 

step size of 0.1 log and was interrupted after 12 inversions. Threshold estimation of a 

staircase was set as the geometric mean of the last 8 inversions. The 10 conditions were 

blocked and performed in a pseudo-random order. Each staircase was performed 5 times so 

that each threshold was set as the geometric mean of the 5 staircases. 

Results and discussion 

The results shown in Figure 5 illustrate the two main outcomes. Most importantly, similar 

contrast thresholds were obtained for filtered noise and binarized-filtered noise suggesting 

that binarization had no significant impact on the masking strength (given equated noise 

energy at frequencies with the pass-band as illustrated in right graph in third row of Figure 1). 

This was supported statistically with a two-way ANOVA (2 noise types X 5 filter 
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bandwidths) that showed no simple main effect of noise type (F(1,16)=1.22, p=.332). Thus, 

binarizing the noise had no significant impact on performance even though it substantially 

reduced the noise contrast. This suggests that binarizing the noise can be used to reduce the 

contrast range of the noise without affecting performance. 

 

Figure 5. Contrast detection threshold as a function of filter bandwidth centered on the spatial frequency 

of the signal obtained in filtered (circles) and binarized-filtered (squares) noises. Error bars represent 

standard error of the mean. 

The second important outcome was that the filtering operation had no impact when the filter 

bandwidth was at least 2 octaves (Figure 5), that is, 1 octave above and below the signal 

spatial frequency, which is consistent with previous findings (Pelli, 1981; Stromeyer & 

Julesz, 1972). Note that statistically, the two-way ANOVA showed a simple main effect of 

filter bandwidth (F(4,16)=46.4, p<.001), which can be explained by the lower contrast 

thresholds when many frequencies were filtering out (e.g., <2 octaves bandwidth filters). 

Nevertheless, when measuring contrast detection threshold in noise, the same performance 

was observed whether the noise was white or had energy only 1 octave above and below the 

spatial frequency of the target. This suggests that, for a contrast detection task, removing the 

noise outside this frequency range reduces the contrast range of the noise without affecting 

performance. 
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Taken together, these two outcomes suggest that binarized-filtered noise at ±1 octave around 

the signal frequency was equivalent to Gaussian noise. Given that the filtering and binarizing 

operations substantially reduced the noise contrast range without affecting performance 

(given equated noise energy at frequencies within the pass-band), increasing the contrast of 

binarized-filtered would display higher noise energy at the relevant frequencies. 

Truncated-filtered	noise	

The advantage of binarized-filtered noise is that it uses a narrower contrast range than 

Gaussian noise for a given masking strength, which enables to display higher noise energy 

(by increasing noise contrast). A potential issue with this noise is that the use of only two 

luminance intensities introduces sharp edges (e.g., Figure 1, bottom right). Because the 

position of these edges randomly varies over time, they are less salient than the edges for the 

low-resolution noises presented above (e.g., see Movie 1 in supplementary material). 

Although these edges could potentially have an undesirable effect, the experiment above 

rather suggests that these edges had a negligible impact for this contrast detection task. 

Nevertheless, apparent edges could potentially cause binarized-filtered noise not to be 

equivalent to Gaussian noise. The present section shows that the visibility of these apparent 

edges can be substantially attenuated with the small cost of slightly decreasing noise energy 

(given equated noise contrast). Thus, even though the potential drawback of the binarization 

operation (i.e., introducing sharp edges) was empirically found to be negligible, the present 

section nevertheless shows that it can be substantially attenuated. 

Above, to compare the energy of binary noise and Gaussian noise (Figure 2), the Gaussian 

noise was truncated at various truncation thresholds. Figure 2 shows that, for equated contrast 

ranges, the energy of truncated Gaussian noise approaches the one of binary noise as the 

truncation threshold approaches 0. This is because at an infinitely small truncation threshold, 
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truncated Gaussian noise is equivalent to binary noise. Thus, by varying the truncation value 

and equating the noise energy at frequencies within the pass-band, truncated Gaussian noise 

gradually varies from binary noise (truncation threshold = 0) to Gaussian noise (truncation 

threshold = ∞). 

The same rationale applies to truncated-filtered noise (Figure 3), which gradually varies from 

binarized-filtered noise (truncation threshold = 0) to filtered noise (truncation threshold = ∞). 

Figure 6 shows truncated-filtered noise for different truncation thresholds (±0, 0.5, 1, 2 and ∞ 

sd). Note that the noise was truncated relative to the standard deviation of the noise after the 

filtering operation and not relative to the noise standard deviation of the initial Gaussian 

distribution used to generate the pre-filtered noise. Recall that the experiment above found the 

same performance whether binarized-filtered noise and filtered noise (i.e., truncated-filtered 

noises with a truncation threshold set to 0 and ∞, respectively). Given no performance 

difference between these two extremes, there is no reason to expect a different performance at 

any intermediate truncation threshold when the expected energy at frequencies within the 

pass-band is equated. Thus, using truncated-filtered noise could be a good compromise 

between binarized-filtered noise, which introduces undesired edges, and filtered noise, which 

extends over a large contrast range. 

 

Figure 6. Truncated-filtered noise with truncation threshold set to ±0, 0.5, 1, 2 and ∞ standard deviations 

(left to right). The expected noise energies at the relevant frequencies were equated. See Movie 3 in 

supplementary material for dynamic noise. 
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General	discussion	

By combining two methods of increasing noise energy given a limited contrast range (namely, 

filtered noise and binary noise), the present study developed a noise, namely truncated-filtered 

noise, equivalent to Gaussian noise with respect to a given task, but requiring less contrast to 

be displayed (see Appendix for detailed algorithm and Matlab code). Truncated-filtered noise 

was found to have the same masking strength as Gaussian noise when having the same 

expected energy at frequencies relevant to the task, which required less contrast. Thus, this 

new noise enables to display higher noise energy and thereby widen the range of conditions 

under which noise-masking paradigms can be effectively used. For instance, the amount of 

noise required to affect performance is known to gradually increase as luminance intensity is 

reduced (Pelli, 1981). To illustrate the usefulness of this method, we evaluated, for the same 

stimulus as in the experiment above, the lowest luminance intensity at which the maximal 

displayable noise could noticeably affect performance (i.e., increase detection threshold by a 

factor of at least 2). The lowest luminance intensities at which Gaussian, binary, filtered (±1 

octave) and truncated-filtered (±1 octave, truncation=1 sd) noises could noticeably affect 

performance were found to be about 350, 39, 16 and 4 td, respectively. This simple example 

shows that truncated-filtered noise can be a useful tool to widen the range of conditions under 

which noise can be effectively be used. Note that maximizing noise energy could also be 

useful for other types of paradigms requiring strong masking, such as continuous flash 

suppression (Tsuchiya & Koch, 2005). 

Truncated-filtered noise varies, depending on the truncation threshold, along a continuum 

between binarized-filtered noise (truncation threshold = 0) and filtered noise (truncation 

threshold = ∞, i.e., no truncation). Empirically, results showed that when equating energy at 

the frequencies relevant to the task, the same performance was observed for the two extreme 

truncation thresholds (i.e., binarized-filtered noise and filtered noise). This suggests that 
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truncating the noise at any truncation threshold (while equating noise energy at frequencies 

within the pass-band) is a useful way of reducing the contrast range of the noise without 

affecting its masking strength. 

The advantage of a low truncation threshold is that it reduces the contrast range required to 

display a given energy level. An apparent drawback is that it artificially introduces edges as 

for binarized-filtered noise (i.e., truncation threshold = 0, Figure 1). Truncating the noise at 

±1 sd, was found, in the example above (center image of Figure 6), to substantially reduce the 

appearance of the edges and reduce the energy (given equated total contrast range) by a factor 

of only 1.4 relative to binarized-filtered noise. We can also note that using a truncation 

threshold of ±2 sd compared to untruncated-filtered noise (fourth vs last image of Figure 6) 

has little impact on the noise appearance and provides the advantage of having a noise that 

covers a smaller and well-defined contrast range. However, a truncation threshold at ±2 sd 

reduced energy (given equated total contrast range) by about 2.8 times relative to binarized-

filtered noise. Ultimately, choosing the truncation threshold depends on the experimental 

paradigm and its constraint (e.g., contrast available and potential issue of apparent edges), but 

the truncated-filtered noise at ±1 sd appears to be a good compromise, as it requires little 

additional contrast and substantially reduces the appearance of edges. 

For truncated-filtered noise to be equivalent to Gaussian noise, they should have the same 

masking strength. The current study suggests that truncating (or even binarizing) filtered 

noise has no impact on performance given equated noise energy at frequencies within the 

pass-band (see Appendix for equating noise energy). Thus, truncated-filtered noise is 

equivalent to Gaussian noise, if the filtering operation has no impact on performance. In the 

current study, the noise was filtered according to the spatial frequency, but it could also be 

filtered along any other dimension such as temporal frequency or orientation. A priori, 

however, it is not possible to know what information can be filtered out without causing a 
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noticeable change in performance as it depends on which information is relevant to the visual 

system for the given task. The processing involved in a typical contrast detection task, for 

instance, is known to be narrowly tuned in the spatial frequency domain, which explains why 

a narrow filter (e.g., ±1 octave of the signal spatial frequency) has no effect on performance 

as observed here and elsewhere (Pelli, 1981; Stromeyer & Julesz, 1972). But for filtering 

along other dimensions, the filter that can be used without affecting performance depends on 

the tuning of the processing for the given task and cannot be known a priori. In sum, the filter 

that can be used to avoid reducing masking strength cannot be known a priori as it depends on 

the processing properties relevant to the given task. Obviously, truncated-filtered noise suffers 

from the same limitations as filtered noise. Nevertheless, once a filter is chosen (and assumed 

or shown not to have any impact on performance when applied to Gaussian noise), the current 

study suggests that the noise can be truncated in order to further increase energy and thereby 

extend the range of conditions over which noise-masking paradigms can be useful. See the 

Appendix for Matlab code to generate truncated-filtered noise filtered along the spatial 

frequency, orientation or/and temporal frequency dimensions. 

A common use of external noise is to quantify the performance of human observers relative to 

the performance of an ideal observer (Gold, Abbey, Tjan, & Kersten, 2009; Kersten & 

Mamassian, 2010). An ideal observer often has a perfect performance in noiseless condition 

(e.g., an infinitely small contrast detection threshold), but under noisy conditions, the optimal 

performance is limited even when using optimally all the available information. If the human 

performance is close to the ideal performance (e.g., Allard & Cavanagh, 2012; Allard & 

Faubert, 2013; Baldwin, Baker, & Hess, 2016), then this means that the observer efficiently 

integrates all the necessary information to perform the task. Otherwise, some information 

must be lost, deteriorated or not optimally integrated. Although truncated-filtered noise may 

be equivalent to Gaussian noise for a human observer, they may not be equivalent for an ideal 
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observer, which may use additional information only available in truncated-filtered noise 

(e.g., detect a signal when the luminance of any pixel exceed, even by an infinitely small 

amount, the contrast range of the truncated noise). Thus, at first sight, using truncated-filtered 

noise seems to compromise the comparison with the ideal observer even if truncated-filtered 

noise is equivalent to Gaussian noise for the human observer. However, a simple way to 

prevent the ideal observer from using additional information only available in truncated-

filtered noise is to compare the human performance in truncated-filtered noise with the ideal 

performance in Gaussian noise. Indeed, given that the human performance in truncated-

filtered noise is equivalent to the one in Gaussian noise, the human performance in Gaussian 

noise can be estimated and compared with the ideal performance. Thus, the use of truncated-

filtered noise instead of Gaussian noise does not compromise the comparison with the ideal 

performance given that both noises are equivalent for human observers. Such a comparison 

can be performed by quantifying the noise energy of Gaussian and truncated-filtered noise at 

the unfiltered frequencies (see Appendix for a detailed algorithm and Matlab code).  

The current method should not be confused with methods improving the contrast resolution of 

digital displays, such as the Noisy-bit (Allard & Faubert, 2008) or bit-stealing (Tyler, 1997) 

methods. These methods aim at overcoming practical limitations of the digital display 

(smallest contrast displayable), whereas the current study rather deals with the theoretical 

limit of 100% contrast displayable. Thus, these two kinds of method address distinct 

displayable contrast limitations (smallest and highest displayable contrast) and can be used 

conjointly if needed. 

In sum, the current study developed truncated-filtered noise by combining two methods to 

increase noise energy at frequencies relevant to the task without increasing noise contrast. 

This novel noise enables to extend the use of noise-masking experiments over a wider range 

of conditions. 
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Appendix:	Generating	truncated-filtered	noise	

To facilitate the use of truncated-filtered noise, this appendix provides a detailed algorithm 

and Matlab code for generating the noise and calculate its energy level. 

Algorithm 

Truncated-filtered noise is the result of applying two successive operations on Gaussian noise: 

filtering and then truncating. The filtering operation can be represented as: 

 (2) 

where the filtered noise NFG results from the application of the ideal band-pass filter M in the 

Fourier domain to the Gaussian white noise NG (i.e., samples drawn from a Gaussian 

distribution centered on 0). The filtering operation leaves intact the energy of a range of 

frequencies and sets to 0 the others (first to second graph in Figure 7). The truncated-filtered 

noise (NTFG) results from a truncation implemented independently on each sample i of the 

filtered noise NFG: 

 (3) 

where t represents the truncation threshold in absolute units. Note that the truncation threshold 

can be converted from standard deviation units (i.e., relative to the standard deviation of the 

filtered noise NFG, as expressed in the current study) to absolute units by multiplying the 

relative truncation threshold in standard deviation units (tSD) by the root-mean-square of the 

filtered noise: 

𝑡 = 𝑡!" ∙ 𝑅𝑀𝑆 𝑁!" . (4) 

NFG = filter NG,M( )

NTFG i =
t
−t
NFG i

if NFG i > t

if NFG i < −t

otherwise

"

#
$$

%
$
$
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Figure 7. Evolution of spectral energy distribution of Gaussian noise through various operations: original 

Gaussian noise (first graph), after applying an ideal filter (second graph), after truncating (third graph) 

and after re-applying the same ideal filter (right graph). 

Calculating noise energy 

The truncation is a nonlinear operation having a frequency-dependent impact on the noise 

energy: it uniformly reduces the noise energy of frequencies within the pass-band and 

introduces energy at frequencies that were filtered out (second to third graph in Figure 7). A 

simple and efficient way of quantifying the energy reduction at the frequencies within the 

pass-band is to compare the overall energy of truncated-filtered noise with filtered noise after 

removing the energy introduced by the truncation operation at the filtered frequencies. This 

can be obtained by re-filtering the truncated-filtered noise with the same ideal filter M (third 

to fourth graph in Figure 7) resulting in filtered-truncated-filtered noise (NFTFG): 

. (5) 

Given the same expected energy distribution across frequencies for NFG and NFTFG besides a 

scaling factor (second and fourth graphs in Figure 7), the expected energy ratio at the 

frequencies within the pass-band between these two noises (eFG and eFTFG, respectively) are 

proportional to their variance ratio: 

!!"!#
!!"

= !"#$"%&' !!"!#
!"#$"%&' !!"

. (6) 
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Since the filtering operation has no impact on the energy at the frequencies within the pass-

band, the expected energy at the frequencies within the pass-band of filtered noise (eFG, 

second graph in Figure 7) is equal to the expected energy at the same frequencies of Gaussian 

noise (eG, first graph): 

, (7) 

and the expected energy at the frequencies within the pass-band of filtered-truncated-filtered 

noise (eFTFG, fourth graph) is equal to the expected energy at the same frequencies of the 

truncated-filtered noise (eTFG, third graph): 

. (8)
 

Thus,  

!!"#
!!

= !"#$"%&' !!"!#
!"#$"%&' !!"

,  (9) 

and the energy at the frequencies within the pass-band of the truncated-filtered noise is equal 

to: 

𝑒!"# = 𝑒! ∙
!"#$"%&' !!"!#
!"#$"%&' !!"

.  (10) 

Given Equation 1 defining the energy of Gaussian noise (eG), the energy at the frequencies 

within the pass-band of the truncated-filtered noise is equal to: 

𝑒!"# = 𝜎! ∙ 𝑤 ∙ ℎ ∙ 𝑑 ∙ !"#$"%&' !!"!#
!"#$"%&' !!"

,  (11) 

where σ represents the standard deviation of the Gaussian distribution. Note that since energy 

is proportional to the noise variance (i.e., mean-squared contrast), it is trivial to equate the 

energy level of truncated-filtered noise at frequencies within the pass-band with the energy 

level of Gaussian noise (eG=eTFG’, as was done in the experiment above) by scaling its 

eFG = eG

eFTFG = eTFG
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contrast by the root-mean-squared contrast ratio between filtered noise and filtered-truncated-

filtered noise: 

. (12) 

Matlab code implementation 

To facilitate the creation of truncated-filtered noise, this section provides programing code 

implementing the algorithm above. This code is also available in a Matlab file in 

supplementary material. The novelty of the method consists in combining two successive 

steps: filtering and then truncating. These two simple steps are combined in function 

computeTruncatedFilteredNoise, which takes two input parameters: an ideal filtering mask to 

apply in the Fourier domain (Mask) and a truncation threshold (trunc). Since the filtering 

mask should be the same size as the noise it filters, the size of the mask matrix (including its 

number of dimensions) determines the size of the noise to generate. After the filtering 

process, the noise is truncated based on the input parameter trunc, which represents the 

truncation value in standard deviation of the filtered noise (as in Figure 6). For binarized-

filtered noise, trunc can be set to 0. This function outputs the truncated-filtered noise 

(NoiseTFG) normalized between -1 and 1 and its energy at unfiltered frequencies (energyTFG 

in pixels2 frames). Note that energyTFG is in energy units so scaling the output noise 

NoiseTFG by a contrast gain (g) would affect its energy by the square of this gain (g2).  

function  [NoiseTFG, energyTFG] = computeTruncatedFilteredNoise( Mask, trunc ) 
% Generates turncated-fitlered noise from an ideal mask 
%  
% INPUTS: 
% Mask: ideal matrix filter (0s and 1s) to apply in the Fourier domain 
% trunc: truncation threshold in SD 
%  
% OUTPUTS: 
% NoiseTFG: truncated-filtered noise matrix the same size as Mask 
%           normalized between -1 and 1 
% energyTFG: energy of truncated-filtered noise in pixels^2 frames 
  
  
%%%%%%%% Gaussian noise (energy=1 pixel^2 x frame) 
NoiseG = randn(size(Mask)); 
  

NTFG ' =
RMS NFG( )
RMS NFTFG( )

⋅NTFG
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%%%%%%%% Filtered noise 
NoiseFG = ifftn(fftn(NoiseG).*ifftshift(Mask),'symmetric'); 
  
%%%%%%%% Truncated-Filtered noise (and normalize between -1 and 1) 
NoiseTFG = min(max(NoiseFG/(trunc*rms(NoiseFG(:))),-1),1); 
  
%%%%%%%% Calculate noise energy (if necessary) 
if nargout > 1 
    %%%%%%% Filtered-Truncated-Filtered noise 
    NoiseFTFG = ifftn(fftn(NoiseTFG).*ifftshift(Mask),'symmetric'); 
    energyTFG = var(NoiseFTFG(:))/var(NoiseFG(:)); 
end 

 

This function has the advantage of generating truncated-filtered noise for any arbitrary ideal 

filter (Mask). The specific choice of the ideal filter depends on the experimental paradigm. In 

the experiment above, the filtering was along the spatial frequency dimension, but it is also 

common to filter noise along the temporal frequency and orientation dimensions. The 

following function (computeMask) creates an ideal mask (Mask) filtering information along 

all or any of these dimensions. This ideal mask of nbPixels X nbPixels X nbFrames elements 

keeps only the information within pass-band ranges of spatial frequency, orientation and 

temporal frequency that are specified by the input parameters cutSpatFreq (in cycles per 

nbPixels), cutOrien (in degrees) and cutTempFreq (in cycles per nbFrames), which are 

vectors containing two values representing the lower and upper filtering cutoffs.  

function Mask = computeMask( nbPixels, nbFrames, cutSpatFreq, cutOrien, cutTempFreq ) 
% Generates ideal mask filter to apply in Fourier domain 
% 
% INPUTS: 
% nbPixels: width and height of image in pixels 
% nbFrames: number of noise frames to generate 
% cutSpatFreq: [low, high] cutoff spatial frequencies in cycles/nbPixels ([]=no filter) 
% cutOrien: [low, high] cutoff orientations in degrees ([]=no filter) 
% cutTempFreq: [low, high] cutoff temporal frequencies in cycles/nbFrames ([]=no filter) 
% 
% OUTPUT: 
% Mask: 3D Fourier ideal filter (0s and 1s) 
%       size = nbPixels X nbPixels X nbFrames 
  
  
%%%%%%% Spatial mask 
Mask = ones(nbPixels); 
[X, Y] = meshgrid(-floor(nbPixels/2):ceil(nbPixels/2)-1); 
  
% Spatial frequency mask 
if nargin>=3 && ~isempty(cutSpatFreq) 
    cyclesPerImage = sqrt(X.^2 + Y.^2); 
    Mask(cyclesPerImage<cutSpatFreq(1)|cyclesPerImage>cutSpatFreq(2)) = 0; 
end 
  
% Orientation frequency mask 
if nargin>=4 && ~isempty(cutOrien) && cutOrien(2)<cutOrien(1)+180 
    ratio = Y./X; 
    cutRatio = tan(cutOrien*pi/180); 
    if cutRatio(1) <= cutRatio(2) 
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        Mask(ratio<cutRatio(1)|ratio>cutRatio(2)) = 0; 
    else 
        Mask(ratio<cutRatio(1)&ratio>cutRatio(2)) = 0; 
    end 
end 
 
%%%%%%% Temporal mask 
if nbFrames>1  
    Mask = repmat(Mask,[1 1 nbFrames]); 
    if nargin==5 && ~isempty(cutTempFreq) 
        tempFreq = abs(-floor(nbFrames/2):ceil(nbFrames/2)-1); 
        Mask(:,:,tempFreq<cutTempFreq(1)|tempFreq>cutTempFreq(2)) = 0; 
    end 
end  

 

The ideal mask (Mask) generated by the function computeMask can be used as an input 

parameter of the function computeTruncatedFilteredNoise to generate truncated-filtered 

noise. The following function (truncatedFilteredNoise) combines these two functions and 

adds input parameters (pixelsPerSpatUnit and framesPerTempUnit) enabling to convert the 

units of the cutoff frequency parameters (cutSpatFreq and cutTempFreq). pixelsPerSpatUnit 

specifies how many noise pixels are to be displayed within a given arbitrary spatial unit (e.g., 

degrees of visual angle) and cutSpatFreq represents the cutoff spatial frequencies in cycles 

per spatial units (e.g., cycles per degree of visual angle). Equivalently, framesPerTempUnit 

specifies how many noise frames are to be displayed within a given arbitrary temporal unit 

(e.g., seconds) and cutTempFreq represents the cutoff temporal frequencies in cycles per 

temporal units (e.g., cycles per second). The unit conversion parameters also define the units 

of the noise energy given by the output parameter energyTFG (e.g., in degrees2 seconds, when 

pixelsPerSpatUnit represents the number of pixels per degree of visual angle and 

framesPerTempUnit represents the number of frames per second). For static noise, 

framesPerTempUnit can be omitted or set to 1, in which case the units of the energy only 

represent the two spatial dimensions (e.g., degree2). 

function  [NoiseTFG, energyTFG] = truncatedFilteredNoise(nbPixels, nbFrames, trunc, ... 
    pixelsPerSpatUnit, cutSpatFreq, cutOrien, framesPerTempUnit, cutTempFreq ) 
% Generates turncated-fitlered noise 
%  
% INPUTS: 
% nbPixels: width and height of image in pixels 
% nbFrames: total number of noise frames 
% trunc: truncation threshold in SD 
% pixelsPerSpatUnit: nb pixels per spatial unit (for units conversion) 
% cutSpatFreq: [low, high] cutoff spatial frequencies in cycles/spatial unit ([]=no filter) 
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% cutOrien: [low, high] cutoff orientations in degrees ([]=no filter) 
% framesPerTempUnit: noise frames displayed per temporal unit (for units conversion) 
% cutTempFreq: [low, high] cutoff temporal frequencies in cycles/temporal unit ([]=no filter) 
%  
% OUTPUTS: 
% NoiseTFG: truncated-filtered noise matrix 
%           size = nbPixels X nbPixels X nbFrames 
%           normalized between -1 and 1 
% energyTFG: energy of truncated-filtered noise in spatial units^2 x temporal units 
  
  
%%%%%%% Default parameters 
if nargin<6;    cutOrien=[];            end 
if nargin<7;    framesPerTempUnit=1;    end 
if nargin<8;    cutTempFreq=[];         end 
  
% convert units of cutoff parameters 
cutSpatFreq = cutSpatFreq * nbPixels / pixelsPerSpatUnit; % convert in cycles/nbPixels 
cutTempFreq = cutTempFreq * nbFrames / framesPerTempUnit; % convert in cycles/nbFrames 
  
% generate ideal mask 
Mask = computeMask( nbPixels, nbFrames, cutSpatFreq, cutOrien, cutTempFreq); 
  
% generate noise 
if nargout<2 % (no need to calculate noise energy) 
    NoiseTFG = computeTruncatedFilteredNoise( Mask, trunc ); 
else 
    [NoiseTFG, energyTFG] = computeTruncatedFilteredNoise( Mask, trunc ); 
    % convert units of noise energy from pixel^2 x frames to dva^2 x seconds 
    energyTFG = energyTFG / (pixelsPerSpatUnit^2 * framesPerTempUnit); 
end 

 

This truncatedFilteredNoise function provides a simple way of generating truncated-filtered 

noise. For instance, to generate 240 noise frames of 1080x1080 pixels that are to be refreshed 

at 120 Hz with 64 pixels per degree of visual angle, calling the following function: 

[N, e] = truncatedFilteredNoise(1080, 240, 1, 64, [2 8], [], 120, []); 

 

would created noise (N) filtered only along the spatial frequency dimension (2 to 8 cycles per 

degree of visual angle), truncated at 1 sd, normalized between -1 and 1, and of energy e 

degrees2 seconds. 


