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Abstract 
Forty-two mosaic coloured/opaque “glass” tesserae from three sites (Milan, Italy; Durrës, Albania; 
Hierapolis, Turkey) situated in the Western and Eastern parts of the Roman/Byzantine Empire, dated 
between the 5th and the 9th centuries, were studied by optical microscopy, SEM-EDX and Raman 
microspectroscopy in order to investigate the nature of their pigments and opacifiers as well as the 
microstructure of glass ceramic materials. The Raman signatures of glass matrix and  phases dispersed in 
the soda-lime glassy matrix showed the presence of six opacifiers/pigments. The use of soda ash glass in 
the tesserae from Durrës (post 8th c.) allows refining the mosaic debated chronology. The use of soda ash 
matrix glass together with the presence of calcium antimonates (Ca2Sb2O7 and CaSb2O6), pyrochlore solid 
solution/Naples’ yellow (PbSb2-x-ySnxMyO7-δ) and cuprite (Cu2O) or metallic copper (Cu°) in many 
samples show the technological continuity in a Roman tradition. However, the presence of cassiterite 
(SnO2) and quartz (SiO2) in one sample from the beginning of the 5th century, diverging from Roman 
technology, offers a chronological marker to identify newly (not re-used) produced tesserae.  
 
Graphical abstract 
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Highlights 
Opaque/coloured glass mosaic tesserae exhibit a glass ceramics microstructure. 
 
The innovative use of cassiterite (SnO2) and quartz (SiO2) in 5th century tesserae is 
evidenced. 
 
The technological innovations went alongside the continual use of Roman recipes 
(calcium antimonate and yellow pigments).  
 
Novelty 
 
The first use of cassiterite and quartz in the beginning of the 5th c. as well as the use of 
calcium antimonates after Roman times in the tesserae produced ex novo with mixed 
glasses were demonstrated.  
 
 
 



  2

 
1. Introduction 

 
Glass mosaics are considered among the most outstanding and elaborate forms 

of mural and floor decoration in Antiquity. From the Late Antique and Byzantine 
periods onwards, coloured glass and gold leaf tesserae covered large surfaces and were 
the prevalent material of wall mosaics [1]. Despite important interest for mosaic 
tesserae [2-7], the workshops where glass tesserae were made are still unknown. 
Moreover,  analytical data available for Late Roman and Early Byzantine (4th-8th c.) 
tesserae, especially opaque tesserae,  have not allowed accurate dating. 

The large number of studies and chemical analyses performed on ancient 
(transparent) glass pieces over the last decades suggests that glass manufacturing was a 
two-stage process: first the production of glass ingots and then the manufacture of glass 
objects [8]. Abundant literature is also available on  raw materials and their provenance, 
on the compositional classification of raw glass, and on the chronology of the glass 
objects (e.g. [9-11]). In these studies, a glass is considered as a homogeneous material 
and no attention was paid to the glass ceramic character of coloured/opacified samples. 
Glass tesserae from the 1st to the 8th c. were made from soda-lime glass characterized by 
low potassium, magnesium and phosphorus contents (so-called natron-type glass) [6, 
12]. After the 8th c. a new type of soda-lime-silica glass containing higher potassium, 
magnesium and phosphorus contents, produced with plant ashes rich in soda and lime, 
serving as flux, was introduced. However, both natron and ash glass continued to to be 
used side-by-side until the 12th c.,  Note, some mixed-types, i.e.natron glass mixed with 
ash glass or ash, due to glass recycling have been also identified [4]. 

Some scholars suggested that mosaic tesserae produced from the 4th-5th c. 
onwards could originate either from the dismantling of older mosaics or the melting of 
cullet [13-19]. Surely, tesserae re-using was a widespread practice, attested by many 
sources from the 1st to the 12th c. [2,8,20], but it is nowadays impossible to define the 
ratio between re-use and new production. 

The split of production between primary workshops, which melt glass ingots, 
and secondary workshops, which fabricated artefacts, has important impact on  the 
interpretation of the analytical data. Consequently, the chemical composition of the 
tesserae based glass is not specific to the workshop producing the artefact, but rather to 
the primary infrastructure producing the raw material. Since the addition of colouring 
and opacifying agents to prepare a glass mosaic cake is a complex process (first a glass 
cake is made, and then the mosaic master cuts it in tesserae pieces),  their identification 
make difficult the location of the secondary workshop where the glassy cakes were 
made.  

It was reported that the glass coloration technology did not evolve significantly 
between the 1st and the 9th c. [21]. Actually, optically clear glass colour was mainly due 
to transition metal ions dissolved in the glass network, usually iron (Fe2+/Fe3+), cobalt 
(Co2+), copper (Cu2+) and manganese (Mn2+, Mn3+). Other colouring effects were 
produced by forming a glass-metal composite by the dispersion of metal nanoparticles, 
namely copper [22-24], silver [22,25] and gold [22,26]. The high absorption of the 
metal particle plasmon requires however special manufacturing techniques in order to 
keep a low concentration of metal particles (limited diffusion from the surface, 
alternation of colourless and coloured thin layers, atmosphere control, etc. [22]). Lastly, 
colour can be obtained by forming a glass ceramic: a pigment is dispersed in a glass or 
precipitation on cooling is favoured through the saturation of molten glass.  

Opacification arises from the difference in optical index between the glass matrix 
and second phase(s). Opacity is obtained by the incorporating a phase with a higher 
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optical index than the matrix one into the transparent matrix, generally a crystalline 
phase. Alternatively, intentionally generating (sub)micron gas bubbles [27] cause light 
scattering. Antimony-based opacifiers, namely white calcium antimonate, were used 
from the beginning of glass production in the Near East and Egypt, around 1500 BC, 
until the Roman period [28-30], but were subsequently replaced by tin oxide [28, 31-
33]. These opacifiers remained in the use until the Renaissance and even modern times. 
Calcium phosphate was also used as opacifier from the 5th c. onwards, especially in the 
Eastern Mediterranean [34-40]. From the 10th c. onwards, Byzantine glassmakers 
produced mosaic tesserae employing quartz (ground silica sand), a less efficient but 
extremely cheap opacifier [41-43]. So the hue is a combination of the contribution of 
the transition element ions (colorants) and the quantity of the opacifiers.  
The chronological evolution of the opacifiers can be used: 

1. To distinguish new production from re-used one: 

- re-use, if the techniques used in Roman times have been attested in 
later mosaics; 

- new production, if technological discontinuities have been observed 
with respect to Roman technology;  

2. to determine secondary glassmaking workshops and supply routes, if the 
different opacification techniques could be linked to the specific areas of 
production. 

This study presents the identification of glass tesserae opacifier agents within 
forty-two tesserae, sampled from three sites situated in the Western and Eastern areas of 
the Roman/Byzantine Empire, and dated between the 5th and the 9th centuries, analysed 
by SEM-EDX and Raman spectroscopy. The earliest samples correspond 
chronologically to the first evidence of technological changes in opacification (5th c.), 
which delimited the start of a period ending with the introduction of a new raw glass 
ceramic production technology during the 9th century. 

 
Each site has a disputed chronology as follows: 
Italy, Milan: loose tesserae found during the excavations conducted in the 

church of St. Lawrence from 1913 to 1920 (Supporting information, Fig. S1a) 
document the vault decoration of this celebrated building, likely dated to the 5th c. [44]. 
In particular loose tesserae from St. Aquilino, the octagonal chapel of St. Lawrence, 
have been sampled: the use of stylistic criteria provided us a wide chronological 
milestone (late 4th or 5th c.) and allowed to identify  the work of craftsmen of different 
origins (local or Levantine). 

Albania, Durrës: the in situ Byzantine mosaic in the Christian chapel inside the 
amphitheatre has been  controversially dated between the 6th and the 8th c. [45,46] 
(Supporting information, Fig. S1b). 

Turkey, Hierapolis: loose tesserae were found during archaeological excavations 
inside the Theatre, in the demolition layers (before 9th c.), and in the St. Philip church 
(6th - 9th c). The Theatre tesserae were assigned to the 6th c. wall decoration of an 
unknown church whereas the St. Philip  one, to the demolition layers dated from the 
Seldjuk period (1037-1194). Then Tesserae and mosaic fragments were assigned to the 
6th c. wall decoration of the St. Philip church and its restoration performed in the 9th c. 
[47] (Supporting information, Fig. S1c). 

To identify the opacification techniques and to document the technological 
changes between Roman and Byzantine eras, tesserae were analysed not only by optical 
microscopy and SEM-EDX, but also by Raman spectroscopy. Note, this technique is a 
powerful tool for the non-invasive analysis of materials [48,49] that characterizes both 
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the silicate network (nanostructure and microstructure heterogeneity) [50-55] and the 
crystalline secondary phases [2,3,7,50,56-58]. Despite the interest for the identification 
of crystalline phases, very few Raman analyses of ancient mosaic tesserae have been 
published [2,3,7,57,58].  
 
2. Materials and Experimental Methods 

 
Forty-two tesserae from three sites are selected (described in Fig. 1 and 

Supporting information, Fig. S1; several details are given in Table S1). Typical 
dimensions are comprised between 5x5x7 and 9x9x12 mm3. The samples were carefully 
observed in order to define colours and optical characteristics of the glass. Because of 
the surface deterioration of most of the tesserae,  appearing as a yellowish and whitish 
weathered surface layer, a soft mechanical abrasion was performed with ‘1200’ grade 
SiC paper under the optical microscope to identify chromatic hues and to facilitate the 
microstructure examination. As far as possible, all the macro-coloured areas were 
analysed in all the different hues. Some tesserae were polished using SiC paper and 
diamond paste felts before the SEM-EDS analysis and by Raman spectroscopy (Fig. 
1a). Ten representative tesserae were selected for EDS analysis.  

Optical Microscopy: the polished sections were observed under a Wild-Heerberg 
stereomicroscope coupled to multiple magnifications (5x and 10x objectives) and a 
Olympus BX51 Olympus + Th4-200 microscope (100x objective) for finer observations 
(Fig. 2). 

SEM-EDS: chemical analysis and images were obtained under a JEOL 5410LV 
SEM-EDX using an acceleration voltage of 20 kV. Quantitative elemental analysis was 
performed (oxide) with Iridium Ultra software based on  the ZAF calculation method. 
The validity of the measurements was monitored by applying the same procedure to 
certified glass-reference samples "Corning Museum B, C and D" and American 
"National Bureau of Standard (NBS 620)", as usual [59-61]. The error is below 1% for 
SiO2, Na2O and CaO, and below 5% for the other oxides.  

Raman microspectroscopy: the analysis was carried out by Raman spectroscopy 
using two different instruments excited with blue and green laser, respectively (blue 
excitation is well adapted to record the spectrum of poor coloured silicate glasses and 
the green excitation offers a good compromise whatever the colour of the analyzed 
material):  
- a LabRam HR 800 spectrometer (HORIBA Scientific, Longjumeau, France) coupled 
to an Olympus BX microscope (10x, 50x, and 100x standard and long working distance 
objectives), equipped with a Coherent Ar+ ion laser. Here the 458 nm, blue line, is used. 
The scanned areas range between ~104 and 5 μm2 as a function of the objective 
magnification.  
- a LabRam Infinity spectrometer (Dilor, Lille, France) coupled to a BX microscope, 
equipped with a Nd:YAG green laser (532 nm).  

In order to select the different spots to be analysed by Raman scattering, the 
crystalline phases and the glass matrix have been examined first under the optical 
microscope to. Spectra were processed by LabSpec software. A linear segment baseline 
was applied to remove the fluorescence background making the comparison of the 
spectra recorded with different instruments more reliable [62]: the spectral 
components/background including the Boson peak were removed to keep the bending 
and stretching components of SiO4 vibrational unit only. 

 
3. Results and discussion 
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The tesserae have heterogeneous structure: crystalline phases are dispersed in 
the glass matrix (Fig. 2) leading to a glass ceramic material. In the most abundant 
yellow, green-yellow and green tesserae, yellow crystals are dispersed in colourless or 
green glass with bubbles, as a few tens of micrometres in size individuals or aggregates. 
In some points the individual and aggregates are arranged in layers (Fig. 2b and 2d), 
which indicates that two mixtures were added to the molten matter and roughly mixed. 
In the case of blue and turquoise tesserae, white crystallised grains up to 150 µm in size 
were observed, more abundant in the light blue tesserae, because they were used to 
whiten the colours and obtain many hues. Their large dimensions indicate that they 
were added to the glass precursor. The bubbles (Fig. S2a) and rare aggregates of white 
crystals give rise to the translucent to opaque aspect of many tesserae. The red and 
orange tesserae show ‘dark’ layers on optical micrographs (Fig. 2c). These layers are 
actually transparent green zones free of pigments, interspersed with coloured opaque red 
zones that are commonly observed in a glass coloured by metal copper nanoparticles 
[24].  

The compositional data obtained for 10 tesserae glass are given in Table 1. 
Representative Raman signatures of the glass matrix are shown in Fig. 3, and crystalline 
phases in Fig. 5. Composition biplots are presented in Fig. 4. 
 
3.1 Glass matrix 

The different compositions of the glass matrix are identified in Table 1. These 
compositional groups were obtained by subtracting the contribution of the colorants, de-
colorants and opacifiers (Table 2) from the composition of the “coloured glass” matrix 
and then normalizing of the subtracted cr corrected data to 100 wt% In the case of  
tesserae DU_A_1, DU_A_3 their heterogeneous structure allows a specific analysis of 
glass matrix (without pigments).  As shown in Table 1 and Fig. 4a, the MgO and K2O 
contents are in agreement with the glass type prevailing in the Roman times until the 
8th-9th c., a soda-lime-silica glass containing potassium and magnesium oxides below 
1.5 wt% each and phosphorus oxide below 0.2 wt% [9]. Natron, a sodium carbonate 
mineral from Egypt associated with low amounts of chlorides and sulphates, was the 
flux used to produce this glass [11].  
It is admitted that the natron was mixed and fused together with a silica-lime sand in 
which quartz and calcium carbonate were present in suitable ratios. The higher 
magnesium, potassium and phosphorus contents of two tesserae from Durrës (DU_A_2, 
DU_A_3) indicate a soda-lime-silica glass made from soda plant ashes [63]. This 
allowed dating the above-mentioned tesserae after the 8th c. In the case of the two 
tesserae from Hierapolis, one exhibits a high magnesium content (HA_C_16) correlated 
to a high phosphorus content (0.92 wt% P2O5, Table 1), and the second (HA_C_10) a 
higher potassium content (1.95 wt% K2O, Table 1). According to the published 
interpretations of the 6th c. mosaics from Sagalassos [4], HA_C_10 glass could result 
from the contamination of soda ashes to natron-based glass, during the cooking in 
reducing atmosphere.  

The Al2O3 and CaO contents (Table 1) depending on the sand employed in raw 
glass production, form three different groups. The first (N1 in Table 1) corresponds to 
the typical calcium/alumina content of Roman glass (CaO between 4 to 7%) [9] 
(samples HA_C_12, HA_C_13, SA_5_20, SA_6_18), the second (N2, in Table 1) 
corresponds to high calcium contents (sample DU_A_2,) (CaO between 9-11%) 
whereas the third (N3 in Table 1) can be assigned to high alumina and low calcium 
contents (samples HA_C_15, HA_C_16), typical of eastern Byzantine production 
(Al2O3 between 6-7%) [4,9,64]. Despite the small number of analysed tesserae, 
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different groups can  be clearly identified in each of  three sites, indicating different 
supplies: N1 for Milan, N2 for Durrës, and N1 and N3 for Hierapolis.  

The glass is a more or less polymerized SiO4 network, each tetrahedron sharing 
or not its oxygen ion. The Si4+ substitution by Na+, K+, Pb2+ and Ca2+ ions lowers the 
number of strong covalent Si-O bonds and hence the melting point. The colouring 3d 
transition ions are hosted in the sites of the SiO4 polymeric network. Non-invasive 
micro-Raman spectrometry of amorphous silicate phases in glass and enamelled objects 
has already demonstrated its potential to characterize the glass network 
[49,50,55,56,62,65,66]. The Raman spectrum of an amorphous silicate is composed of 
two broad bands, the signature of the SiO4 tetrahedra forming the covalent glassy 
network : the (multicomponent) band centred around 500 cm-1 mainly corresponding to 
the symmetrical deformation vibrational modes (δs SiO4); the second band around 1000 
cm-1 corresponds to the symmetric stretching vibrations of the tetrahedron (νs SiO4). 
Actually, the contribution of asymmetric stretching and bending modes can be 
neglected [51,53]. The number of characteristic components can be reduced to five, 
each of them corresponds to a different type of SiO4 tetrahedrons forming the silicate 
polymeric network: isolated tetrahedron or tetrahedral linked by  common 1, 2, 3 or 4 
oxygen atoms.   

According to the above mentioned compositions, the Raman signatures (Fig. 3) 
can be classified as those typical of soda-lime-silicate glass, corresponding to “Glass 
family 3” in the Raman signature guide [66]. Only the purple-brown DU_A_6 sample 
from Durrës shows a slightly different chemical pattern, with better defined ca. 945 cm-

1 peak, generally due to higher potassium content (Fig. 4b). According to literature [55, 
66], the graphical representation of νs SiO4 vs. δs SiO4 maximum wavenumber allows to 
distinguish the types of glass. Fig. 4b confirms that the tesserae studied in this work are 
mostly lime-soda glass, only two from Milan are closer to soda glass [55,66]. However, 
their calcium content is lower (Table 1). Two samples (HA_C_15, HA_C_16) from 
Hierapolis also have low calcium contents, but because of  a rather high fluorescence 
signal covering the Raman's spectra, the Raman signature of the matrix cannot be  
unambiguously determined .  
 
3.2. Crystalline dispersed phases 

Apart from the typical spectra of the glass matrix, the most characteristic peaks 
of various crystalline phases, which serve as pigments and opacifiers, have been 
detected. The phases identified by Raman are listed in Table 2, and representative 
spectra are shown in Fig. 5. 

The observation under the SEM reveals that some crystals display euhedral 
shapes that indicate a growth in the molten glassy matrix: According to their sizes they 
have been classified in two categories:: 1) microcrystals (>1 µm), 2) submicronic 
crystals (Fig. 2e). The first type is also observed in crystalline aggregates (20-50 µm). 
In many needle-like or geometrically tesserae, the shaped crystals are present in various 
amounts, particularly in red (Fig. S2b) and yellow pieces. Only sample SA_5_20 (blue 
glass tesserae) shows dendritic crystals, usually observed as growth in low viscosity 
liquid phase (Fig. 2f). These crystals are made of calcium and silicium, two of the major 
glass components. These devitrification crystals, produced when the molten glass is 
poured into the glass cakes or slabs (at about ~900 °C), are not related to colour feature. 
Wollastonite CaSiO3 Raman fingerprint, with its characteristic stretching peak at 971 
cm-1 is identified (Fig. 5d) in the blue tesserae (SA_4_15). 
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The opacification of yellow, green, turquoise and blue glass is obtained by the 
addition of tiny crystallites, dispersed in the glassy matrix identified as follows (Fig. 5 
and Table 3). 

Calcium antimonate: seven red, blue and grey samples from Milan and Durrës 
(SA_3_12, SA_3_13, SA_5_20, SA_6_23, HA_C_8, HA_C_11 and HA_C_12; see Fig. 
1) show a major peak at ca. 672 cm-1 and less intense ones at ~239, 324, 340, 524 cm-1 
(Fig. 5c). This series of peaks was recently identified as the Raman signature of calcium 
antimonate (Ca2Sb2O7) orthorhombic phase [3,7,58]. On the other hand, the Raman 
signature of one green tessera from Milan (SA_3_10) corresponds to cubic calcium 
antimonate (CaSb2O6, Fig. 5b) phase with characteristic peaks at ~481 and 632 cm-1. 
The spectrum presented in Fig. 5f ,characteristic because of the enhanced intensity of 
518 cm-1 peak  and  the presence of 1350-1604 cm-1 carbon doublet, could be  explained 
by a polarisation effect (oriented single crystal spectrum) and/or by the modification of 
the calcium antimonate signature in relation with some oxygen deficiency. Previous 
studies on Roman glass (1st - 4th c.) suggested that the presence of calcium antimonate 
was related to an in situ crystallization [30,67]. It is unknown whether calcium 
antimonate precursor is added as a natural mineral (Sb2S3 or pyrochlore) or a previously 
prepared (synthetic) compound (Sb2O3).  

Lead antimonate pyrochlore: eight green, yellow and green-blue tesserae from 
Hierapolis and Milan (HA_C_ 1, HA_C_2, HA_C_3, HA_C_4, HA_C_5, HA_C_9, 
SA_4_17, SA_3_9 and SA_5_20) consistently show three wide peaks at about 335, 452 
and 509 cm-1 and a very strong peak at 142 cm-1 (Fig. 5g) associated to bindhemite 
(PbSb2O7) [3,50,68-70], common in Roman mosaic glass. The submicronic crystals of 
orthorhombic antimonate and cubic antimonate are often associated to lead antimonate. 
This phenomenon may be generated by the high temperature (>850°C), that gives rise to 
the lead tin yellow [33] decomposition  and also produces the devitrification crystal 
(Fig. 6). 

Pyrochlore solid solution (Naples yellow-type pigments): five yellow or yellow-
green tesserae from Durrës (DU_A_1, DU_A_2, DU_A_3, DU_A_4 and DU_A_5) 
show a strong band at ~130 cm-1 and smalls peak at 320 and 440 cm-1 (Fig. 5h), the 
Raman signature of pyrochlore bindhemite solid solution (PbSb2-x-ySnxMyO7-δ) [71-73]. 

Cassiterite: four blue and red tesserae from Milan (SA_3_9, SA_3_12, 
SA_3_13, SA_4_16) show a major peak at ~635 cm-1 and a smaller peak at 775 cm-1, 
identified as cassiterite, SnO2 (Fig. 5a, Fig. 2d). Only the second minor band allows 
clearly distinguishing this compound from orthorhombic calcium antimonate (Fig. 5b) 
[58]. 

Quartz: it is added in the glass matrix to obtain a raw opacification in blue and in 
green tesserae (SA_2_4, SA_3_9, SA_4_15, DU_A_5). The presence of quartz (for 
example in DU_A_5, Fig. 1c) may enhance the precipitation and the stability of lead 
antimonates [74]. The stability of the mixture varies according to processing conditions, 
temperature and time.  

Copper-base phases: the Raman spectrum of the orange tessera from Milan (SA 
1 1) shows a strong peak at ~220 cm-1 (Fig. 5e) recognized as cuprite (Cu2O [73, 75]). 
Colour and opacity in the red and orange glass (SA_1_1, SA_3_12, HA_C_12) may 
result from the presence of cuprite crystals and/or metallic copper particles (Cu°). It is a 
well-known fact that the control of the copper oxidation state and the production of 
cuprite crystals require strong technical skills. It is difficult to assess the dominant 
colouring agent by Raman spectroscopy [23], but copper metal being the most efficient 
colouring agent and it has furthermore been observed in glass of similar composition 
and colour [76]. 
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3.3 Technology of opacification 
As referred, three possibilities are available for the opacification process [21, 50, 

67, 77]:  
1. in situ crystallization during the elaboration process, 

2. addition of an opacifier-rich glass called corpo and a yellow pigment called 
anima to base glass, as reported in ancient recipes [78,79] or 

3. addition of previously synthesized opacifying crystals (pigment [7,29]). 
The crystalline aggregates of cubic calcium antimonate (CaSb2O6), 

orthorhombic antimonate (Ca2Sb2O7) and pyrochlore are probably added to the glass 
matrix because a zoned phase around the crystal is visible, corresponding to the partial 
dissolution of crystals in the glass matrix (Fig. 6). However, we remark that in the case 
of small white crystals (< 1 µm) the question of technology remains open, because of 
the dispersion phase absence. Nucleation during complex cooling/heating cycle is 
likely. 

In the tesserae opacified with cassiterite (SA_3_12, SA_4_16, SA_3_13, 
SA_3_9), larger opacifying crystals (20-40 µm) (Fig. 2d and S2b) are observed, 
without the dispersion phase. The presence of secondary small micron crystals as shown 
in Fig. 2d is consistent with the precipitation of the dissolved tin during cooling. 
Pyrochlore, once mixed/dispersed in a blue matrix, usually is used to produce the shades 
of yellow and green  

For our tesserae the yellow, yellow-green, red and orange colours are obtained 
by addition of pyrochlore and cuprite or metallic copper, respectively. We have to 
however denote that in our tesserae the presence of calcium antimonate, cassiterite and 
quartz is not directly connected to a particular colour (Table 3), as shown in Table 2, 
but to particular recipes, which can potentially be linked to the specific areas of 
production (or workshops).  

 
3.4 Chronology: opacification and mosaic preparation 

The combination Raman and SEM/EDS analyses allow to recognize many types of raw 
glass and opacification recipes (Table 2). 

Calcium antimonates are usually considered as typical Roman opacifying agents. 
The only known medieval examples of the use of calcium antimonates (excluding re-
used glass) seem to be the 9th-c. enamels (plant-ash sodic glass opacified with calcium 
carbonate) from St. Ambrose church in Milan [39]. However, in our samples they are 
also used to produce the mixed glass tesserae (natron/ash, HA_C_10). The coloration 
and opacification by addition of lead antimonate, allegedly typical of Roman times, is 
also attested in many Byzantine tesserae, some of them (e.g. those from Durrës, in our 
case) made with ash plant glass proving a technological continuity at least up to the 8th-
9th c. This pigment is also used in Byzantine pottery [80]. We could however 
demonstrate for some of our tesserae that the opacification technique diverges from 
Roman technology. The use of cassiterite in the beginning of the 5th c. is proved by the 
data obtained for the tesserae from St. Aquilino in Milan: these tesserae appear as the 
most ancient evidence of the use of this mineral, superseding the testimony from the 
Baptistery of Milan (late 5th c. - beginning of the 6th c.) [6].  

Quartz white shades the tesserae. Quartz opacification is used in the Milan and 
Durrës tesserae, in association with other opacification processes, for example the 
addition of Naples yellow. Based on the data obtained, the Milan and Durrës tesserae 
can be considered as the earliest attestation of this technique, previously identified only 
from the 10th c. onwards [42,43]. These new recipes (opacification with cassiterite and 
quartz), not attested in Roman times, offer an indicator to refine our chronology and to 
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identify newly produced tesserae, distinguishing between medieval production and 
Roman glass recycling. 

Our data also allow refining the chronology of the Durrës and Hierapolis mosaics. 
In Durrës, the use of soda ash glass suggests a post-8th c. chronology; in Hierapolis the 
use of mixed glass (ash and natron) hints towards a 6th-7th c. chronology [4]. 

 
4. Conclusion 
 

The study of the glass ceramic microstructure of coloured/opaque tesserae 
requires new approaches.  

Their very heterogeneous microstructure does prohibits an efficient 
characterization of the material using LA-ICP methods based on the description of these 
materials as “homogeneous” glass, as proposed by some authors.  Non-destructive 
Raman microspectroscopy appears as a very efficient technique to compare and classify 
glass ceramic tesserae. Additional SEM/EDS analysis of representative pieces allowed 
refining the most debated chronology of the Durrës mosaic (post 8th c.) and the 
opacification recipes’ chronology used in the production of tesserae. The chronological 
and geographical origins of the technological breakthrough could be identified. In fact, 
the first use of cassiterite and quartz in the beginning of the 5th c. as well as the use of 
calcium antimonates after Roman times in the tesserae produced ex novo with mixed 
glasses were demonstrated. A new production of tesserae (alongside re-using) has been 
highlighted, based on the analytical identification of clearly distinct recipes from those 
expected for Roman technology. Analytical data revealed the presence of cassiterite and 
quartz in natron glass, and of yellow pigments and calcium antimonate in both ash glass 
(after 8th c.) and mixed glass matrix (after 6th c.). These technological innovations went 
alongside the continual use of time-honoured Roman recipes (calcium antimonate and 
yellow pigments).  

The above mentioned diverging technological paths, if attested in different 
regions, could be used as criteria to differentiate supply routes or workshops. For 
instance, the use of cassiterite recipes in Milan not only diverges from Roman 
technology, but also from recipes employing in other sites in Italy. In fact, tesserae from 
churches in Rome (from the 4th to the 12th c. [26,81-84]) and from Southern Italy 
(Piazza Armerina, 4th c. [84]; Foggia and Faragola, 6th c. [86,87] show the persistence of 
a Roman technology (natron base glass with calcium antimonate as opacifier). Tesserae 
from Ravenna [38,61,88], Vicenza and Padova [40] reveal two different supplies during 
the 5th century that could be linked to two workshops. The first one produced tesserae 
with one technique attested in Rome and in southern Italy (natron glass with calcium 
antimonate); the second producing tesserae with another technique (natron glass with 
calcium phosphate), as documented in Eastern Mediterranean workshops [15,34-37].  

The recipe based on the addition of cassiterite has been recognized in mosaics 
from Rome only from the 13th c. onwards as well as in some objects manufactured, it 
was also attested in objects manufactured in the Germanic Kingdom between the 5th and 
the 7th c. and above all in Celtic enamels [32]. The opacification recipes with cassiterite 
prove that another route of supply, diverging from those supplying Rome and Ravenna, 
existed. The previous studies have demonstrated the use of cassiterite for enamel and 
beads production in India and in Northern Europe [32,89]: the recipe could originate 
from both areas. Then it must not be excluded that the presence of cassiterite is a marker 
of a local production in Milan, because it could be identified in 6th c. mosaics of St. 
John’s Baptistery [6, 20] and in the later mosaics of St. Ambrose [90]. 

No reasonable explanation is yet available for the use in the same mosaic of 
tesserae similar in aspect, but opacified by using different recipes (Table 3). Several 
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hypotheses can be proposed. The cakes brought by the mosaicists from another centre 
have been insufficient to complete the decoration, requiring the use of Italian supply 
sources (dismantling or new production?). It is also possible to imagine that the tesserae 
available in Italy were insufficient, requiring the import of glass cakes from another 
workshops. When in the same site tesserae produced by different techniques are 
observed, this may suggest a non-local production: if a workshop was in activity close to 
the site, only one technique should be detected.  

By improving the analytical data available for the opacification’s recipes used in 
the production of glass in the Mediterranean area, specific opacification recipes could 
be geolocalized and the supply routes of mosaicists (from secondary workshops to 
buildings) could be traced.   
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Table 1: Chemical composition of the tesserae glass (expressed in wt% of the oxides) 
and type of glass (C: sodic plant ash; N: natron type, NC: mixed natron-sodic plant ash 
type; N1: CaO between 4 and 7%, N2: CaO between 9 and 11%, N3: Al2O3 between 6 
and7%). *Only the glass matrix is analyzed. 

Sample Glass  Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O K2O CaO TiO2 MnO2 Fe2O3 Co3O4 Cu2O ZnO SnO2 Sb2O5 PbO2

DU_A1* C 12.26 2.91 1.55 69.32 0.23 0.25 0.84 2.37 9.28 0.10 0.34 0.40 n.i 0.09 n.i. n.i. n.i. n.i. 
DU_A2 N2 15.25 0.80 2.79 66.58 0.23 0.20 0.70 1.10 9.37 0.30 0.80 1.79 n.i. 0.10 n.i.  n.i.  n.i.  n.i. 
DU_A3* C 12.85 2.99 1.69 65.36 0.23 0.20 0.60 2.79 10.96 0.10 1.69 0.40 n.i.  n.i. 0.13  n.i.  n.i.  n.i. 
HA_C_10 NC 18.12 0.97 2.61 62.84 0.09 0.55 1.55 1.95 5.59 0.12 0.09 0.47 0.06 0.77 0.21 0.63 1.90 1.48 
HA_C_12  N1 14.10 0.57 2.96 66.41 0.26 0.18 1.56 0.75 7.37 0.10 0.39 0.54 0.11 0.26 0.29 0.50 2.11 1.53 
HA_C_13 N1 16.61 0.59 2.86 63.00 0.29 0.25 1.59 0.68 7.59 0.10 0.35 0.67 0.17 0.18 0.16 0.94 2.61 1.35 
HA_C_15 N3 18.96 0.47 6.45 60.31 0.30 0.41 1.28 0.70 4.88 0.10 0.08 0.61 0.13 0.44 0.17 0.72 1.63 2.37 
HA_C_16 N3 16.03 2.50 6.33 63.18 0.92 0.99 0.49 0.59 5.02 0.07 0.08 1.07 0.05 0.19 0.14 0.57 1.33 0.46 
SA-5-20 N1 23.73 0.51 3.13 61.55 0.19 0.29 1.18 0.44 4.52 0.13 0.36 0.48 0.06 0.12 0.11 0.39 0.98 1.83 
SA-6-18 N1 18.77 0.55 3.92 62.92 0.26 0.31 1.44 0.51 3.52 0.10 0.37 0.44 0.09 1.40 0.26 0.40 2.98 1.76 

 
 

Table 2: Results synthesis: the raw glass group (see Table 1 and text) and the 
opacification recipes presented by site, chronology and color. 

 Milan, St. Aquilino Hierapolis Durres,  
Amphitheatre chapel 

Date 5th c. 6 th c. 8 th c. 

Raw glass group Natron1 Natron1, Natron3,  
Mixed (soda ash and natron) 

Natron2, Soda Ash 

blue  Calcium antimonate 
(CaSb2O6,Ca2Sb2O7) 
 Cassiterite (SnO2), Quartz 
 

Calcium antimonate 
(CaSb2O6,Ca2Sb2O7) 
 

Bubbles 

green and 
yellow 

Yellow pigments 
(PbSb2O7) 

Yellow pigments 
(PbSb2O7, PbO-Pb3O4-PbO2) 

 
 

Yellow pigments, Quartz 
(PbSb2-) 

Recipes  
of opacification 

red Cuprite(Cu2O)/ 
Cu0 nanoparticles 
 

Cuprite(Cu2O)/ 
Cu0 nanoparticles 
 

Cuprite(Cu2O)/ 
Cu0 nanoparticles 
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Table 3: Color, provenance (SA: Milan, St. Aquilino (beginning 5th c.); DU: Durrës, 
amphitheatre chapel (6th c.-9th c.); HA: Hierapolis, fragment from St. Philip (6th c.-9th 
c.), main Raman peaks and phase assignment of coloring /opacifying agents identified 
in the glass mosaic tesserae. 

Color Hue sample position of peaks cm-1 phase assignment 

dark blue HA_C_8 237-325-338-522-671 CaSb2O6 
 HA_C_9 142-335-514 PbSb2O7 

Blue 

blue SA_4_15 203-265-355-464 SiO2 
   326-414-639-971-1043 CaSiO3 
  SA_2_4 203-262-353-463 SiO2 
 light blue SA_4_16 634-777 SnO2 
   234-324-337-520-669 CaSb2O6 
  SA_5_20 140-335-456-507 PbSb2O7 
  SA_6_23 234-324-618-669 CaSb2O6 
  SA_3_9 203-265-356-465 SiO2 
   636-775 SnO2 
   140-335-456-507 PbSb2O7 
  HA_C_11 234-324-618-669 CaSb2O6 
 light blue gray HA_C_11 236-322-337-522-669 CaSb2O6 
  SA_4_18 458-615-639-995-1074 alkali sulphate 

light turquoise DU-A9 139-339-453 PbSb2-xFezSiuO7-δ Yellow and 
green turquoise-green HA_C_4 140-340-454-511 PbSb2O7 
  HA_C_5 142-337-511 PbSb2O7 
 green-turquoise DU-A8 456-615-636-997-1078 alkali sulphate 
 green SA_4_17 142-335-452-509 PbSb2O7 
  DU-A5 129-316-437 PbSb2-xFezSiuO7-δ 
   203-260-350-465 SiO2 
  SA_3_10 324-372-481-632-788-828 Ca2Sb2O7 
  HA_C_13 113-274-507-740 PbO-Pb3O4-PbO2 
 green yellow HA_C_3 140-337-454-511 PbSb2O7 
 yellow green HA_C_2 142-337-456-511 PbSb2O7 
 dark yellow HA_C_1 142-337-454-511 PbSb2O7 
  DU_A1 126-318-438 PbSb2-xFezSiuO7-δ 
 yellow DU_A2 129-316-437 PbSb2-xFezSiuO7-δ 
   135-263-713-1085 CaCO3 
  DU_A3 129-318-438 PbSb2-xFezSiuO7-δ 
  DU-A4 133-324-441 PbSb2-xFezSiuO7-δ 

orange SA_1_1 217-410-636 Cu2O 
Red SA_3_12 236-324-337-520-669 CaSb2O6 

Orange and 
Red 

  634-775 SnO2 
   467-617-639-995-1076 alkali sulphate 
   634-775 SnO2 
   217-410-636 Cu2O/Cu° 
  HA_C_20 217-410-636 Cu2O/Cu° 
White Gray HA_C_12 239-327-337-522-672 CaSb2O6 
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Fig. 1: Tesserae from (a) Milan (SA), (b) Hierapolis (HA_C), (c) Durrës (DU_A); see 
Supporting information, Table S1 for details. 
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Fig. 2 Typical tesserae microstructures. Optical micrographs: a) green tessera DU_A_5 
from Durrës (long side of micrograph 2.4 mm), b) green tessera HA_C_2 from 
Hierapolis (long side of micrograph 3.4 mm), c) red tessera HA_C_16 (long side of 
micrograph 2.3 mm), d) blue tessera SA_3_9 from Milan (long side of micrograph 
65µm). SEM/EDS micrographs: e) faceted crystal and f) dendritic crystals. 
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Fig. 3: Typical Raman signature of soda-lime-silica glass matrices (see Fig. 1 and 
Supporting information, Table S1 for label details). 
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Fig. 4: a) MgO vs. K2O  content expressed in wt% of oxide of tesserae from Durrës 
(triangle), Hierapolis (square) and Milan (circle); b) Stretching (νs) vs. bending (δs) 
band maxima wavenumber of glass matrix for tesserae from Durrës (amphitheatre 
chapel, triangle), Hierapolis (St Philip, square) and Milan (St Aquilino, circle). The 
delimited area corresponds to soda-lime glass [55, 66]. Arrows indicate the effect of 
composition variation (Na2O and K2O increase). 
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Fig. 5: Representative Raman spectra of the different crystalline phases observed (see 
text and Table 3 for phase assignments). 
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Fig. 6: Crystals observed in sample SA_5_20. 

 
 


