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Abstract 13 

A wide variety of remote sensing and ground-based (proximal sensing) methods have 14 

been developed to describe soil’s physical properties and their lateral variations. Remote 15 

sensing enables the estimation of soil properties over large areas, but the information is often 16 

limited to the soil surface. Ground-based methods enable the derivation of soil properties for 17 

the whole soil thickness, although these methods cannot be conducted over large areas. The 18 

aim of the present study is to contribute to the assessment of the efficacy of airborne thermal 19 

prospection over bare soils in soil mapping. This study focuses on a comparison between this 20 

technique, which can investigate over the whole soil thickness after a sufficiently long 21 

transient heat exchange period, and pedological and electrical resistivity data that were 22 

recorded for three different depths of investigation. 23 

The study area is located in the Beauce region, where the soils (haplic Calcisol or 24 

calcaric Cambisol) consist of a loamy-clay layer that is 0.3 to 1.4 m thick and overlies 25 

Tertiary Beauce limestone. Thermal measurements were recorded by ARIES radiometer in 26 



December after 6 days of heat loss from the ground. The investigation depth could thus be 27 

considered to be larger than the thickness of the ploughed layer. Comparisons using statistical 28 

analyses between the thermal measurements, electrical resistivity and pedological data 29 

demonstrated that i) the spatial organization of the thermal inertia map is similar to the spatial 30 

organization of the 0-1.7 m resistivity map and ii) the thermal apparent inertia values were 31 

significantly different between the haplic Calcisols and the calcaric Cambisols and can thus be 32 

mapped with a high spatial resolution over large areas. 33 

The applicability of thermal prospecting in soil mapping opens large perspectives 34 

considering the present advances in light infrared radiometers. Beside agronomical concerns 35 

this methodology will also facilitate important progresses in engineering applications among 36 

which the cross estimation of electrical and thermal properties. 37 
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 43 

Introduction 44 

Knowledge of the spatial variability of soils is of major importance for a wide variety 45 

of agronomic, industrial and environmental applications. The classification of soils is based 46 

on soil properties materials, which are defined in terms of diagnostic horizons (FAO, 2006). 47 

The properties that characterize soil classes play a significant role in the agronomic 48 

potentiality of cultivated fields and in most geotechnical engineering projects, such as the 49 

installation of buried pipes or high power electrical cables or the delineation of polluted areas. 50 

In all these cases, the soil classes and matched properties must be spatially described at a high 51 



resolution, metric or decametric. For this purpose, the use of non-destructive geophysical 52 

methods is of major interest. Indeed, geophysical methods enable the measurement of soil 53 

physical properties rapidly and with a quasi-exhaustive covering. A wide variety of airborne 54 

and ground based geophysical methods have been developed.  55 

Airborne techniques enable the estimation of soil properties over large areas, but most 56 

of them, for example, visible near-infrared (VNIR) reflectance data or radar backscattering, 57 

are often limited to the soil surface; in particular, the latter is limited to several centimeters 58 

(Nichols et al. 2011). In contrast, ground-based methods enable the derivation of soil 59 

properties over the whole soil thickness of pedological/agronomical interest (Viscarra Rossel 60 

et al. 2010) and to characterize the parent rock, but these methods cannot be conducted for 61 

large areas. Despite this limitation, the electrical resistivity of soils has been measured for 62 

twenty years (e.g. Samouelian et al. 2005), notably in the context of precision agriculture. The 63 

electrical resistivity of the soil is related to several soil properties, mainly porosity, clay 64 

content and water content: a wet soil is more electrically conductive than a drier soil 65 

(Samouëlian et al. 2005, Cousin et al. 2009). Because of the wide range of values exhibited by 66 

this property, which is associated with the easiness and reliability of its measurement, the DC 67 

resistivity technique is considered as a reference for testing the efficacy of other methods 68 

(Gebbers et al. 2009). Among airborne techniques, thermal prospection can be used to 69 

investigate the whole soil thickness (Scollar et al. 1990) and over large areas. This method is 70 

ancient (Kappelmeyer 1957, Krcmar and Masin 1970), but its ground-level applications have 71 

been rather limited by the necessity to correct diurnal soil temperature variations during the 72 

implementation of the survey. Fortunately, this limitation is overcome by remote infrared 73 

radiometric measurements, where the duration for measuring the whole area remains small 74 

against the soil surface temperature time variations. Satellite-borne scanner radiometers 75 

currently do not offer sufficient ground resolution, but airborne archaeological prospection 76 



was initiated forty years ago (Périsset and Tabbagh 1981), taking advantage of favorable heat 77 

exchange conditions at the ground surface that correspond to transient, several-day-long 78 

weather changes. The experience that is acquired in archaeological prospection can be 79 

transferred to agronomy-driven soil management studies. Additionally, the development of 80 

new light thermal cameras that can be borne either by small planes or even by unmanned 81 

aerial vehicles has revived interest in thermal prospection (Schlerf et al. 2012). 82 

 The physical parameter that is measured by radiometers, the brightness temperature, 83 

depends on the soil emissivity and the thermometric temperature (see definitions in 84 

Appendix). Both can be of interest for geophysical exploration in the thermal infrared 85 

atmospheric window, which corresponds to the 8-14 µm wavelength range. The soil 86 

emissivity provides information about the soil surface mineralogy. The lateral changes in the 87 

heat exchange balance and/or in the soil thermal properties modify the thermometric 88 

temperature. Soil emissivity can be directly used to map rocks or regoliths in arid climatic 89 

zones where pedogenesis is not active (Kahle and Rowan 1980, Salisbury et al. 1994, Watson 90 

et al. 1996, Kato et al. 2014), but it has no direct application in temperate humid climates, 91 

where soil moisture and organic matter make this parameter uniform. In the presence of 92 

vegetation, the plant temperature is governed by its evapotranspiration, and this predominant 93 

term of the heat exchange balance can consequently be assessed (Choudury et al. 1986, Hilker 94 

et al. 2013, Mallick et al. 2014). For bare soils, the lateral variations in the soil surface 95 

temperature depend either on modification to the heat balance terms because of the surface 96 

slope (Fourteau and Tabbagh 1979) or on changes in underground thermal properties 97 

(Gauthier and Tabbagh 1994) reflecting the ease with which heat (positive or negative) can be 98 

moved downward into the ground. For a homogeneous solid and unsteady heat inputs/outputs, 99 

the temperature changes are inversely proportional to the thermal inertia, which is expressed 100 

by vKCP  , where K is the thermal conductivity and Cv is the volumetric heat capacity 101 



(see appendix for de definition of thermal properties). Thus, the results of a thermal 102 

prospection can be expressed in terms of variations in the soil’s apparent thermal inertia 103 

(Price 1977): the thermal inertia of a homogeneous ground having the same surface 104 

temperature in the same flux conditions. However, in presence of a tilled layer it is more 105 

relevant to consider a two layer model with topsoil (i.e. the surface soil or the tilled layer) 106 

above homogeneous subsoil beneath. The reason for this is because the topsoil’s properties 107 

(namely the bulk density) are homogenized by tillage and fauna activity at the plot scale 108 

(Tabbagh 1976). The inversion used hereafter will transform the brightness temperature 109 

variations in subsoil’s thermal inertia variations. 110 

The key point of thermal prospection is the evaluation of the weather conditions under 111 

which the investigation depth would be larger than the ploughed layer. Contrary to other 112 

prospection techniques, this depth does not depend on the choice of a frequency or other 113 

instrument parameters but on the history of the heat exchange at the ground surface before the 114 

measurement time. The daily heat flux variation is too rapid to significantly influence subsoil 115 

temperature, and longer transient variations must be considered: if the duration of a transient 116 

input (or output) of heat lasts one or two days, the investigation depth would be limited to 117 

approximately 25 cm, while the depth would reach 1 m if the transient input (or output) lasts 118 

one week or more (Périsset and Tabbagh 1981). 119 

The present study focuses on the ability of thermal airborne remote sensing techniques 120 

- thermal prospection for exploration geophysicists - to discriminate soil classes. The 121 

experiment was conducted on a cultivated field in the Beauce region, France. The soil classes 122 

and their spatial variability in this field were widely known because a soil map had been 123 

drawn before the experiment (Nicoullaud et al., 2004). The study zone consists of haplic 124 

Calcisols and calcaric Cambisols (IUSS Working Group WRB, 2006). The surface 125 

temperature variations were recorded by using an airborne radiometer, and then the thermal 126 



inertia of the subsoil layer was calculated by using the transient heat flux values, which were 127 

determined at the nearby Bricy meteorological station. A geoelectrical prospection was 128 

conducted on the same field to compare the two types of geophysical methods and their 129 

investigation depths. First, the thermal inertia and electrical resistivity are compared to the 130 

soil properties, which were locally measured by auger drilling, and then to the soil classes, 131 

which were described on the soil map. Finally, a statistical methodology is proposed to 132 

transform the thermal inertia map into a map of soil types. 133 

 134 

Materials and methods 135 

Study site and soil description 136 

 The study area consists of one 39 ha plot (plot A) in the Beauce region (Villamblain, 137 

Loiret, France), where the soil thickness varies from 0.3 to 1.4 m over Tertiary Beauce 138 

limestone (Fig. 1). Figure 1 presents the soil map - realized in 2000 before and independently 139 

of the airborne prospection described here - that was made from the description of 110 auger 140 

soil samples. Soil auger hole sampling was conducted on transects that were spaced every 100 141 

m. Soil scientists selected samples from the transects based on previous surveys, surface 142 

observations and topography. Sometimes, a soil sample was added between transects when 143 

observations were different between two nearby auger holes. 144 

 The two soil types that were found (haplic Calcisol and Calcaric Cambisol) consist 145 

of a loamy-clay layer that developed on a lacustrine limestone deposit. The difference 146 

between these two soil types is the calcareous content in the topsoil: haplic Calcisols are soils 147 

with a significant accumulation of secondary calcium carbonates but are non-calcareous (less 148 

than 10% CaCO3), while calcaric Cambisol topsoil is calcareous. The soil units were 149 

determined by simple observation, without soil analysis. Three sub-units were described for 150 

the haplic Calcisols and eight sub-units for the calcaric Cambisols, which depended on the 151 



thickness of the loamy-clay layer, the carbonate content, the stone content, the type of 152 

calcareous content (cryoturbated or not) and the depth of the bedrock (Nicoullaud et al. 2004). 153 

These two soil types may differ in terms of agronomy: an abundance of calcium can block 154 

elemental nutrients, and high limestone content in soils is unfavorable for rooting. Most 155 

Calcisols have a medium or fine soil texture and good water-holding properties. 156 

 157 

DC electrical prospection 158 

A multi-depth resistivity map was created by an ARP© device in August 2012 over a 159 

9 ha study area (zone B), a part of plot A. This ARP© system (Figure 2) is a mobile, multi-160 

depth soil electrical resistivity mapping system that comprises one injection dipole (AB) and 161 

three V-shaped measuring dipoles (M1 N1, M2 N2 and M3 N3) (Panissod et al. 1997, Dabas, 162 

2009). The distance between the injection dipole and the measuring dipoles is 0.5 m for the 163 

V1 array (A B- M1 N1), 1 m for the V2 array (A B-M2 N2) and 1.7 m for the V3 array (A B- 164 

M3 N3). The investigation depths roughly correspond to the distance between the AB dipoles 165 

and MN dipoles (Figure 3: 0.5 m, 1.0 m and 1.7 m for V1, V2 and V3, respectively). 166 

Resistivity measurements were recorded every 20 cm along profiles spaced 6 m apart. After 167 

filtering the measurements, the resistivity data were interpolated on regular grids by the 168 

inverse distance weighted method. 169 

To compare with the subsoil’s thermal inertia variations, the three apparent electrical 170 

resistivity values were interpreted by using a 1D two layer model (Meheni et al. 1996) to 171 

estimate the resistivity of the subsoil layer (depth > 0.25 m). The following parameters were 172 

used to process the inversion: the ploughed surface had a thickness equal to 0.25 m according 173 

to the 21 auger hole prospection, and its resistivity was estimated to be equal to 40 Ω.m. This 174 

resistivity value was estimated from the established relationship between the interpreted 175 

electrical resistivity and the volumetric water content of the topsoil, which was recorded by 176 



TDR probes at the same study site, according to the formula for this pedological context 177 

(Cousin et al. 2009), ρ = -129 Ln(θ) + 456, where ρ is the resistivity value and θ is the 178 

volumetric water content. Indeed, calibrated TDR probes were installed at North-East from 179 

plot A. The interpreted electrical resistivity and water content were recorded at two depths of 180 

the topsoil layer (12 and 20 cm depth, respectively) at 23 dates during a year at 2 181 

measurements positions. Thus, the relationship mentioned above was established on 92 182 

measurements. θ in the relationship by Cousin et al., 2009 was inferred on the base of the 183 

volumetric water content measured during the acquisition period of the electrical resistivity 184 

data. θ was equal to 0.355 m
3
 m

-3
 (mass water content x bulk density: 0.25 g g

-1
 x 1.42 g cm

-
185 

3
).The resolution of the grid map was 1.7 m (Figure 3). 186 

 187 

Auger soil sample information 188 

 A total of 21 auger holes were regularly dug during the electrical prospection 189 

(Figure 3) to describe and sample the successive horizons. The auger hole depths range from 190 

30 to 120 cm. The soil horizons were classified into the A horizon (topsoil, LA, tilled layer, 191 

usually 0.25 m thick), B horizon (subsoil, Sci or Sca, horizons under the tilled layer) and C 192 

horizon (corresponding to the bedrock). Depending on the location, the soil profiles were 193 

characterized by an A/B sequence, an A/C sequence, or an A/B/C sequence. All of the soil 194 

samples were analyzed at the INRA Arras Laboratory (Arras, Pas de Calais, France) to 195 

determine (1) the soil texture by using ISO 10693 method (5 particle size fractions with no 196 

decarbonization) and (2) the soil CaCO3 content by using the NF ISO 10693 volumetric 197 

method. Each of the 21 auger holes was affiliated to a soil type according to the soil map of 198 

the study area.  199 

  200 

Thermal prospection 201 



The thermal prospection was conducted with the ARIES radiometer, which included 202 

two numerical channels: one in the visible and near infrared ranges (0.5-1 µm), and the other 203 

in the thermal infrared range (10.5-12.5 µm) (Monge and Sirou 1975, Beaufrère et al. 1999) 204 

with an Hg-Cd-Te photoconduction detector. Two internal blackbodies allowed the translation 205 

of the recorded video signal into the brightness temperature. The data were acquired on 206 

December 11, 2002 at 10 h 40 U.T. at a flight altitude of 1006 m and an IFOV (Instantaneous 207 

Field Of View) of 6.25 m
2
 at nadir, while the sampling step along the line was 1.75 m. The 208 

mirror rotated at 36.4 Hz, and the speed of the plane was 56.6 ms
-1

. In the temperature signal, 209 

the least significant bit (LSB) corresponded to 0.044 K resolution. The data were corrected for 210 

pitch and roll (with data from the gyroscope) and anamorphic distortion before a last 211 

geometric rectification in the GIS. Finally, the measurements were represented on a 1.6 m by 212 

1.6 m grid.  213 

The heat flux variations at the soil surface were calculated from soil temperature data 214 

that were recorded at the nearby (20 km east) Bricy meteorological station at 10, 20, 50 and 215 

100 cm depths by using the algorithm that is described in Scollar et al. (1990), which is 216 

recalled in Appendix III. These values are presented in Figure 6 from the 15th of November to 217 

the 15
th

 of December. The soil cooling was significant, especially during the six days that 218 

preceded the flight. The investigation depth can thus be considered to be greater than the 219 

thickness of the ploughed layer (Scollar et al. 1990) and qualitatively the thermal inertia of 220 

the subsoil is higher where the measured ground surface temperature is higher and lower 221 

where the temperature is lower. Under the hypothesis that the observed temperature lateral 222 

variations originate in variations of the subsoil thermal inertia it is possible to establish a 223 

quantitative correspondence between the brightness temperature and this thermal inertia using 224 

a two layer forward model. In this calculation, the heat flux variations are considered as series 225 



of successive 


Q
 variations, so that the resultant ground surface temperature T(t) on time t 226 

can be expressed by: 227 
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where P1 is the thermal inertia of the first layer (topsoil), ,h its thickness, Γ1 its thermal 231 

diffusivity, ierfc is the integral of the complementary error function and 
12

12

PP

PP
C




  is the 232 

contrast coefficient between the thermal inertia of the first layer ( 1P ) and second layer ( 2P ). 233 

When P2=P1, the step response reduces to: 234 
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For this correspondence calculation we the assumed the uniform topsoil layer has a 236 

thickness h=25 cm, a thermal diffusivity of Γ1=0.48 m
2
s

-1
 and a P1=1732 S.I. thermal inertia 237 

and we fixed the 128 signal value at 5.63 °C (using both in-flight radiometer calibration and 238 

ground control points). The resulting apparent thermal inertia of the subsoil map is shown in 239 

Figures 3 and 7. 240 

 241 

Data analysis 242 

 The approach that was developed to assess the information from the thermal survey is 243 

summarized in Figure 8. The approach involves 4 steps. 244 

First, Principal Component Analysis (PCA) was used to analyze the overall variation 245 

in the data (soil properties, thermal inertia and electrical resistivity, step 1). The effect of soil 246 

http://en.wikipedia.org/wiki/Principal_component_analysis


type on the thermal inertia response and electrical resistivity response was assessed by using 247 

analysis of variance (ANOVA) (step 2). ANOVA tests the null hypothesis that samples in two 248 

or more groups are drawn from populations with the same mean values. ANOVA produces an 249 

F-statistic, which is the ratio of the variance that is calculated among the means to the 250 

variance within the samples. If the group means are drawn from populations with the same 251 

mean values, the variance between the group means should be lower than the variance of the 252 

samples. A higher ratio therefore implies that the samples were drawn from populations with 253 

different mean values. 254 

Factorial discriminant analysis (FDA, step 3) was used to establish a classification 255 

model of the soil types in the study area according to the thermal inertia and electrical 256 

resistivity, respectively. For a detailed presentation, the reader can refer to books or papers on 257 

the subject, such as Tomassone et al. (1988), Tabachnick and Fidell (1996), and Bourennane 258 

et al. (2014). FDA is a statistical method for describing and forecasting. Its purpose is to study 259 

the relationship between a qualitative variable and a set of quantitative variables. The FDA 260 

can be considered as an extension of the regression problem, where the dependent variable is 261 

qualitative. The data consist of n observations that are divided into k classes or categories and 262 

described by p variables. Traditionally, one can distinguish two aspects in discriminant 263 

analysis: 264 

1. A descriptive aspect, which consists of finding linear combinations of variables that 265 

separate the k categories and provide a graphic representation that adequately reflects this 266 

separation; 267 

2. A decisional aspect, where a new individual arises for which we know the values of 268 

the predictors; this aspect decides which category it should be allocated to. In such cases, this 269 

is a classification problem. 270 



Two FDA models are possible based on a fundamental assumption: if we assume that 271 

the covariance matrices are identical, one can be used for linear factorial discriminant 272 

analysis. If we assume that the covariance matrices are different for at least two categories, we 273 

have a quadratic model. The box test allows testing of this hypothesis (Bartlett's 274 

approximation allows the use of a chi-square law for the test). 275 

Finally, the discriminant function from step 3 was applied to map the soil types over 276 

the whole study area (step 4). 277 

 278 

Results and discussion 279 

Soil data: descriptive statistics 280 

The soil textures (Figure 4) are represented in the CEC85 triangle (Commission of the 281 

European Communities 1985). A particle size analysis of the samples shows that the Calcisols 282 

have mainly medium/fine texture, whereas the Cambisols have more variable textures (“fine”, 283 

“medium/fine” or “medium”). The Cambisols appear to have some sandy particles, from 5 to 284 

30%, while the sandy content in the Calcisols does not exceed 4% in the A horizon. The 285 

sandy soil texture is probably explained by the amount of coarse limestone particles. The 286 

boxplot (Figure 5) analysis that was performed on the 21 soil samples shows that the Calcisols 287 

have low CaCO3 content, specifically, less than 10 g.kg
-1

, conversely to the Cambisols. The 288 

soil types can be differentiated according to their texture and CaCO3 content. 289 

 290 

Thermal inertia and electrical resistivity maps 291 

The apparent thermal inertia of the subsoil in the study area varied between 916 and 292 

2082 S.I. This value was lower in the western part of the studied plot and higher in the south-293 

eastern part (Figure 7). The apparent electrical resistivity over the 9 ha B plot varied between 294 

11 and 68 Ω.m for the V1 array, between 17 and 90 Ω.m for the V2 array and between 14 and 295 

127 Ω.m for the V3 array (Figure 3). For all the arrays, the spatial organization of the 296 



electrical resistivity was the same, with lower resistivity values to the northwest and higher 297 

resistivity values to the southeast. A low resistivity value band (oriented from northeast to 298 

southwest) crossed over the south-eastern part, which corresponds to a calcaric Cambisol that 299 

developed over a grey limestone soil unit. The inverted subsoil (using the same two-layer 300 

model geometry as for the thermal data) resistivity values were between 17 and 167 Ω.m and 301 

exhibited a similar spatial pattern to the apparent resistivity values. 302 

 On the 9 ha B plot, the spatial pattern of the thermal inertia map was also very 303 

similar to the spatial pattern of the resistivity maps: areas with low resistivity corresponded to 304 

low thermal inertia areas and vice versa, except for the Cambisol that developed over the grey 305 

limestone soil unit to the south. In this soil unit, the inversed subsoil resistivity approximately 306 

was 35 Ω.m, the thermal inertia was high., the soil depth was approximately 40 cm. This soil 307 

unit likely was wet during the electrical prospecting (due to heavy rain). 308 

 In addition, Figure 7 shows that the airborne technique depends on any obstacles 309 

that are located between the soil and the sensor, unlike the ARP method. Indeed, we can spot 310 

ground cover, sprinkler lines, hedges and buildings.  311 

 312 

Principal Component Analysis between geophysical measurements and soil properties at 313 

auger holes 314 

 The first principal component (Fig. 9 a and b) accounts for more than 80% of the 315 

total variation. Except for the clay content in the subsoil, this component is strongly correlated 316 

with all the original variables and is inversely correlated with the silt content, thermal inertia, 317 

electrical resistivity and CaCO3 contents. The CaCO3 and sand contents are strongly 318 

positively correlated in both layers (Figure 9 a and b). Previous results have shown that no 319 

difference in clay content exists between Calcisols and Cambisols, thus, we can conclude that 320 

these soil properties (sand content and CaCO3) are well correlated and explain the higher 321 



electrical resistivity and thermal inertia in accordance with the general knowledge about these 322 

properties. 323 

 324 

Effect of soil type on the thermal inertia response and electrical resistivity at the auger 325 

holes 326 

We studied the effect of soil type, a more inclusive variable than soil texture or CaCO3 327 

content, on the geophysical measurements. An ANOVA analysis (performed on auger sample 328 

measurements N = 21), which used the Tukey pairwise means comparison method on the 329 

thermal inertia signal, showed a highly significant influence from the soil type (Table 1). An 330 

ANOVA test on the resistivity data provided similar results (Table 2), which means that both 331 

thermal and resistivity methods are efficient tools to differentiate soil types. 332 

Thus, a quadratic factorial discriminant analysis (FDA) was performed to obtain a 333 

model that can map soil types by using exhaustive geophysical information. Confusion 334 

matrices (Table 3a) showed that the thermal inertia values enabled the accurate classification 335 

of 85% of the 21 soil samples in the correct soil class, while the resistivity values, particularly 336 

the inverted subsoil resistivity, enabled the accurate classification of 81% of the samples. 337 

According to the data that were used to elaborate the FDA in Table 3a, two soil samples that 338 

were not adequately assigned by the FDA were classified by the soil scientist in the Calcisol 339 

map unit, while they should be classified as calcaric Cambisols according to the chemical 340 

analyses. Thus, only one sample was incorrectly classified by the FDA with the thermal 341 

inertia values.  342 

The study also showed that the V2 array can better discriminate the soil type than the 343 

other arrays. Indeed, the V1 array’s measurements were influenced by the topsoil horizon, in 344 

which structural heterogeneity from plant growth, tillage and the climate can affect electrical 345 

measurements (e.g., Seger et al., 2009; Besson et al., 2013). The electrical resistivity 346 



measurements from the V3 array were more affected by the substrate. Indeed, the soil depth 347 

investigation of the V3 array was approximately 0-170 cm, which includes a larger part of the 348 

resistant limestone layer than the V2 array. For these two reasons, the V2 array seems to 349 

provide the best support for soil mapping in this pedological context, as demonstrated by 350 

Moeys et al. 2006. 351 

 352 

Extrapolation to the study area and validation 353 

 We used the coefficients of the FDA ranking function (Table 4) to predict the soil 354 

type at the plot’s extent (Figure 10). The coefficients of the two ranking functions were 355 

applied to the thermal inertia grid to obtain two grids values. Then, each pixel was assigned to 356 

the category for which the ranking function is highest. We obtained the spatial distribution of 357 

the two soil types through the study area. The classification results show an overall percentage 358 

of correct classification of 91% for the 9 ha subplot (Table 5a) and 83.5% for the whole study 359 

area (Table 5b). The decrease in the classification rate with the extension of the area can be 360 

explained by the underlying extrapolation of the auger hole soil observations, from which soil 361 

scientists usually interpolate the observed characteristics. 362 

 363 

Conclusion 364 

This paper focuses on the assessment of the ability of thermal prospection to 365 

discriminate between soil classes. Our findings indicate that thermal inertia data allow the 366 

discrimination between two bare soil types in the Beauce region. In addition, the thermal 367 

inertia and statistical methodology that was proposed, specifically factorial discriminant 368 

analysis, allows an efficient extrapolation of the mapping model beyond the area where it was 369 

established. This study provides insights for the spatial mapping of soil types by focusing on 370 

thermal airborne remote sensing as an ancillary variable for mapping over large areas. Indeed, 371 



thermal airborne remote sensing presents the advantages of both airborne and ground methods 372 

and should be considered and developed in soil studies: in terms of the extent of the 373 

investigated surface, this approach fills the gap between ground-based (proximal soil sensing) 374 

and satellite techniques. 375 

The results of this paper are, to our knowledge, the first direct field-scale comparison 376 

between electrical resistivity and thermal inertia data to be published. This paper 377 

complements and facilitates the laboratory results in this domain (Singh et al. 2001). These 378 

new perspectives in thermal prospecting with new light infrared radiometers will facilitate the 379 

cross estimation of electrical and thermal properties, which is very important for engineering 380 

applications. 381 

382 
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 480 

Figure captions 481 

 482 

Figure 1: Soil map of plot A with the location of the zone B 483 

 484 

Figure 2: View of the ARP© system, with the geometrical scheme of the location of the 8 485 

electrodes. 486 

 487 

Figure 3: Zone B: apparent resistivity maps for the three ARP© channels, with the location of 488 

the auger-drilled holes, the data of which are used in the statistical analyses. The resistivity of 489 

the subsoil layer is calculated assuming the topsoil has a 40 Ωm resistivity and a 0.25 m 490 

thickness, the apparent thermal inertia of the subsoil layer is calculated assuming the same 491 

thickness, a 0.48 10
-6

 m
2
s

-1
 diffusivity and a 1732 S.I. thermal inertia. 492 

 493 

Figure 4: Localization of the auger holes’ soil textures in CEC85 triangle. 494 

 495 

Figure 5: Variation in the auger holes CaCO3 content. 496 

  497 

Figure 6: Heat flux in the ground at the Bricy meteorological station from November 15, 2002 498 

to December 15, 2002. The arrow corresponds to the measurement time. 499 

 500 

Figure 7: Apparent thermal inertia of the subsoil layer as deduced from the brightness 501 

temperature in the 10.5 – 12.5 µm channel (left), and the limits of plot A and zone B. 502 

 503 

Figure 8: Flowchart of the developed approach. 504 



 505 

Figure 9a: PCA on topsoil data. 506 

 507 

Figure 9b: PCA on subsoil data. 508 

 509 

Figure 10: Soil types that were inferred from the ranking functions of the FDA. 510 

511 



 512 

Table captions 513 

 514 

Table 1: ANOVA results of thermal inertia and soil type (haplic Calcisol and calcaric 515 

Cambisol) punctual data (21 soil auger holes). 516 

 517 

Table 2: ANOVA results of subsoil resistivity and soil type (haplic Calcisol and calcaric 518 

Cambisol) punctual data (21 soil auger holes). 519 

 520 

Table 3: Confusion matrix from factorial discriminant analysis between the two soil types and 521 

the subsoil thermal inertia values (a), subsoil inverted resistivity values (b) and apparent 522 

resistivity (c to e).  523 

 524 

Table 4: Factorial discriminant analysis: coefficients of the ranking functions. 525 

 526 

Table 5: Discrepancy between soil types from discriminant functions and the reference soil 527 

map: (a) zone B, (b) plot A. 528 

529 



 530 

Appendix I: Glossary 531 

Statistical methods 532 

ANOVA: Analysis of variance, a test that verifies whether several samples belong to the same 533 

population. 534 

DF: The degrees of freedom for the model, equal to one less than the number of categories 535 

F ratio, Pr > F:  The test statistic that is used to decide whether the sample means are within 536 

the sampling variability. 537 

Sum of Squares: Sum of the squared differences between each observation and the overall 538 

mean. 539 

Mean Squares: Sums of Squares divided by the corresponding degrees of freedom. 540 

FDA: Factorial discriminant analysis, assigns to pre-defined classes by using discriminant 541 

variables. 542 

PCA: Principal Component Analysis, uses an orthogonal transformation to convert a set of 543 

observations of correlated variables into a set of values of linearly uncorrelated variables 544 

called principal components. 545 

Thermal instrument and parameters 546 

Radiometer: An instrument that measures the radiant flux of electromagnetic waves - in this 547 

case, the infrared band - from the photo-conductive effect. 548 

Brightness temperature: temperature of the black body emitting the same radiation intensity. 549 

Thermometric temperature: temperature which would be measured by a thermometer in 550 

close contact with the soil surface (in other words the brightness temperature if the emissivity 551 

is 1.) 552 

Emissivity: ratio between the radiance emitted by a given surface to the radiation that would 553 

be emitted by the black body surface at the same thermometric temperature. In the present 554 

case the emissivity is considered for the thermal infrared spectrum band 10.5 – 12.5 µm. 555 



Thermal conductivity, K: This property is defined by the Fourier law as the opposite of the 556 

ratio of the heat flux to the temperature gradient. Its SI unit is Wm
-1

K
-1

. 557 

Volumetric capacity, Cv: This property expresses the ability of heat storage. It is defined as 558 

the ratio of the variation in the stored heat to the corresponding temperature variation. Its SI 559 

unit is Jm
-3

K
-1

. 560 

Thermal diffusivity, Γ: This property is defined by Γ=K/Cv and governs the temperature 561 

behavior in unsteady regimes. Its SI unit is m
2
s

-1
. 562 

Thermal inertia, P: vKCP  . The unsteady temperature changes at the surface of a body 563 

are inversely proportional to P. Its SI unit is Jm
-2

K
-1

s
-0.5

. 564 

 565 

Appendix II: Variable descriptions 566 

clay: Percentage of clay in the soil sample, parameter of soil texture, particle diameter below 567 

0.002 mm 568 

silt: Percentage of silt in the soil sample, parameter of soil texture, particle diameter from 569 

0.002 to 0.05 mm 570 

sand: Percentage of sand in the soil sample, parameter of soil texture, particle diameter from 571 

0.05 to 2 mm 572 

CaCO3: Percentage of calcium carbonate in the soil sample 573 

V1: Apparent resistivity in Ω.m, measured by the first channel (A B-M1 N1) 574 

V2: Apparent resistivity in Ω.m, measured by the second channel (A B-M2 N2) 575 

V3: Apparent resistivity in Ω.m, measured by the third channel (A B-M3 N3) 576 

ISR: Inverted subsoil resistivity, calculated from the two layer 1D model with a 40 Ω.m 577 

resistivity and 0.25 m-thick first layer 578 

 579 

Appendix III 580 



To determine the flux Q(t) at the ground surface, it is split into a series of step functions 581 

beginning at a regular interval δt so that at time ti =iδt the temperature of a homogeneous soil 582 

T(z,t) is written as follows: 583 
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 P is the thermal inertia and Γ the thermal diffusivity and Ql the successive values of Q(t) and 585 

ierfc the integral of the complementary error function: 



x

duuerfcxierfc )()( , and 586 





x

u duexerfc
22
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

. These monotonous functions are calculated by their series 587 

development. 588 

The successive values of the flux are then calculated step by step from the temperature 589 

differences. The calculation can be applied with only one depth: 590 
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Using J different depths one must apply the least squares method and one has: 593 
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Figure 2 604 
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Figure 3 607 
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Figure 4 609 
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Figure 6 614 
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Figure 7 617 
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Figure 8 623 
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Figure 9a 628 
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 630 

Figure 9b 631 
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Figure 10 635 
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 637 
 638 
ANOVA analysis  

     
Source of variation DF 

Sum of 
squares 

Mean 
square 

F-ratio Pr > F 

Model 1 58188.011 58188.011 20.744 0.000 

Error 20 56101.097 2805.055 

  Total  21 114289109.000       

   

Modality Estimated mean Groups 

calcaric Cambisol 1211.977 A 
 

haplic Calcisol 1108.692   B 

 639 

 640 

Table 1 641 

 642 

ANOVA analysis 

     
Source of variation DF 

Sum of 
squares 

Mean 
square 

F-ratio Pr > F 

Model 1 1743.219 1743.219 15.143 0.001 

Error 20 2302.408 115.120 

  Total  21 4045.627       

   

Modality Estimated mean Groups 

calcaric Cambisol 48.776 A 
 

haplic Calcisol 30.899   B 

Table 2 643 

644 



 645 
 646 

Category h. Calcisol c. Cambisol total 
% of correct 
classification 

(a) thermal inertia (P) 
    

haplic Calcisol 11 1 12 91.7 

calcaric Cambisol 2 7 9 77.8 

total 13 8 21 85.7 

     
(b) subsoil interpreted  
resistivity 

   haplic Calcisol 12 0 12 100 

calcaric Cambisol 4 5 9 55.6 

total 16 5 21 80.9 

  
(c) apparent resistivity, V1 

   haplic Calcisol 10 2 12 83.33 

calcaric Cambisol 4 5 9 55.56 

total 14 7 21 71.43 

     (d) apparent resistivity, V2 

   haplic Calcisol 10 2 12 83.33 

calcaric Cambisol 2 7 9 77.78 

Total 12 9 21 80.95 

     
(e) apparent resistivity, V3 

   haplic Calcisol 12 0 12 100 

calcaric Cambisol 4 5 9 55.56 

total 16 5 21 80.95 

Table 3 647 

 648 

  
haplic 

Calcisol 
calcaric 

Cambisol 

Constant -219.099 -259.660 

P 0.394 0.429 
Table 4 649 

 650 

651 



 652 

Category haplic Calcisol calcaric Cambisol total 
% of correct 
classification 

(a) zone B 
    

haplic Calcisol 46256 5058 51314 90.1 

calcaric Cambisol 2828 32893 35721 92.1 

total 49084 37951 174070 90.9 

     (b) plot A 
    

haplic Calcisol 116246 53789 170035 68.4 

calcaric Cambisol 11126 212627 223753 95.0 

total 127372 266416 787576 83.5 
 653 

Table 5 654 

 655 

 656 


