
HAL Id: hal-01376569
https://hal.sorbonne-universite.fr/hal-01376569

Submitted on 5 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A weighted bootstrap procedure for divergence
minimization problems

Michel Broniatowski

To cite this version:
Michel Broniatowski. A weighted bootstrap procedure for divergence minimization problems. AMI-
STAT : Analytical Methods in Statistics Workshop 2015, Nov 2015, Prague, Czech Republic. �hal-
01376569�

https://hal.sorbonne-universite.fr/hal-01376569
https://hal.archives-ouvertes.fr


A weighted bootstrap procedure for divergence
minimization problems

Michel Broniatowski

Abstract Sanov type results hold for some weighted versions of empirical mea-
sures, and the rates for those Large Deviation principles can be identified as diver-
gences between measures, which in turn characterize the form of the weights. This
correspondence is considered within the range of the Cressie-Read family of statis-
tical divergences, which covers most of the usual statistical criterions. We propose
a weighted bootstrap procedure in order to estimate these rates. To any such rate
we produce an explicit procedure which defines the weights, therefore replacing
a variational problem in the space of measures by a simple Monte Carlo procedure.

1 The scope of this paper

Recall that a sequence of random elements Xn with values in a measurable space
(T,T ) satisfies a Large Deviation Principle with rate Φ whenever, for all measur-
able set Ω ⊂ T it holds

Φ (int (Ω))≤− lim inf
n→∞

1
n

logP(Xn ∈Ω)

≤− lim sup
n→∞

1
n

logP(Xn ∈Ω)≤Φ (cl (Ω))

where int (Ω) (resp. cl (Ω)) denotes the interior (resp. the closure) of Ω in T and
Φ(Ω) := inf{Φ(t); t ∈Ω} . The σ -field T is the Borel one defined by a given basis
on T. For subsets Ω in T such that

Φ (int (Ω)) = Φ (cl (Ω)) (1)
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2 Michel Broniatowski

it follows by inclusion that

− lim
n→∞

1
n

logP(Xn ∈Ω) = Φ (int (Ω)) (2)

= Φ (cl (Ω)) = inf
t∈Ω

Φ(t) = Φ(Ω).

Assume that we are given such a family of random elements X1,X2, . . . together
with a set Ω ⊂ T which satisfies (1). Suppose that we are interested in estimating
Φ (Ω). Then, whenever we are able to simulate a family of replicates Xn,1, . . . ,Xn,K
such that P(Xn ∈Ω) can be approximated by the frequency of those Xn,i’s in Ω , say

fn,K (Ω) :=
1
K

card (i : Xn,i ∈Ω) (3)

a natural estimator of Φ (Ω) writes

Φn,K (Ω) :=−1
n

log fn,K (Ω) . (4)

The rationale for this proposal is that visits of Ω by the random elements Xn, j’s tend
to concentrate on the most favorable domain in Ω , namely where Φ assumes its min-
imal value in Ω , since (exp−nΦ(x))dx is a good first order approximation for the
probability that Xn belongs to a neighborhood of x with volume dx. We have substi-
tuted the approximation of the variational problem Φ (Ω) := inf(Φ (ω) ,ω ∈Ω) by
a much simpler one, namely a Monte Carlo one, defined by (3). Notice further that
we do not need to identify the set of points ω in Ω which minimize Φ ; indeed there
may be no such points even. Condition (1) provides an easy way to get statement
(2), which yields to our estimates (4). Sometimes we may obtain (2) bypassing (1).

This program can be realized whenever we can identify the sequence of random
elements Xi’s for which, given the criterion Φ and the set Ω , the limit statement
(2) holds. The present paper explores this approach in the case when the Xi’s are
empirical measures of some kind, and Φ(Ω) writes φ (Ω ,P) which is the infimum
of a divergence between some reference probability measure P and a class of prob-
ability measures Ω . This technique may lead to inferential procedures: for example
assuming that Ω = {Qθ ∈M1,θ ∈Θ} is a statistical model such that d(Qθ ,P)≥ ε

for some given distance d and some ε > 0 and all θ in Θ , then minimizing a proxy
of φ (Ωθ ,P) as obtained in this paper over θ provides minimum distance estimators
of P within Ω .

The present paper presents estimators of φ (Ω ,P), focusing on their construction.
We denote (P) the problem of finding an estimator for

φ (Ω ,P) (5)

where Ω is defined according to the context. But for simple convergence result of
the proposed estimators, we do not provide finite sample or asymptotic properties
of the estimators, which is postponed to future work; as seen later the method which
we propose holds for rather general sets Ω ; henceforth specific limit results of the
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estimator depend on the peculiar nature of the problem. Also the definition of the
estimator through (4) may be changed using a better estimator of P(Xn ∈Ω) than
fn (Ω) ,the naive one, which may have poor statistical performances and which may
require a long runtime for calculation, since (Xn ∈Ω) is a rare event; Importance
Sampling procedures should be used. This is also out of the scope of this paper.

1.1 Existing solutions for similar problems

Minimizing a divergence between an empirical measure pertaining to a data set and
a class of distributions is somehow synonymous as estimating the parent distribu-
tion of the data (although other methods exist); for example the maximum likelihood
method amounts to minimize the likelihood (or modified Kullback-Leibler) diver-
gence between Pn and a parametrized model. Inspired by the celebrated Empirical
Likelihood approach, empirical divergence methods aim at finding solutions of the
minimization of the divergence between Pn and all distributions in Ω which are sup-
ported by the data points; see [4]. Those may exist or not, yielding (or not yielding)
to the estimation of the minimum value of the divergence. Besides the fact that Ω

may consists in distributions which cannot have the data as supporting points, the
resulting equations for the solution of the problem may be intractable. Also there
may be an infinity of solutions for this problem. The case when Ω is defined by
conditions on moments of some L−statistics is illuminating in this respect; indeed
the direct approach fails, and leads to a new problem, defining divergences between
quantile measures (see [6]). Instead, looking first for some estimator of the infimum
value of the divergence leads to a well posed problem of finding the set of minimiz-
ers, an algorithmic problem for which a solution can be obtained along the lines of
the present paper. Once obtained the minimal value of the divergence, minimizers
may sometimes be obtained by dichotomous search; this depends on the context.

2 Divergences

Let (X ,B) be a measurable space and P be a given reference probability measure
(p.m.) on (X ,B). The set X is assumed to be a Polish space. Denote M the real
vector space of all signed finite measures on (X ,B) and M (P) the vector subspace
of all signed finite measures absolutely continuous (a.c) with respect to (w.r.t.) P.
Denote also M1 the set of all p.m.’s on (X ,B) and M1(P) the subset of all p.m.’s
a.c w.r.t. P. Let ϕ be a proper1 closed2 convex function from ]−∞,+∞[ to [0,+∞]
with ϕ(1) = 0 and such that its domain domϕ := {x ∈ R such that ϕ(x)< ∞} is an
interval with endpoints aϕ < 1 < bϕ (which may be finite or infinite).

1 We say a function is proper if its domain is non void.
2 The closedness of ϕ means that if aϕ or bϕ are finite numbers then ϕ(x) tends to ϕ(aϕ ) or ϕ(bϕ )
when x ↓ aϕ or x ↑ bϕ , respectively.
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For any signed finite measure Q in M (P), a classical definition for the φ -
divergence between Q and P is defined by

φ(Q,P) :=
∫

X
ϕ

(
dQ
dP

(x)
)

dP(x). (6)

When Q is not a.c. w.r.t. P, we set φ(Q,P) = +∞; see [34]. The first definition of φ -
divergences between p.m.’s were introduced by I.Csiszar in [7] as “ f -divergences”.
Csiszar’s definition of φ -divergences between p.m.’s requires a common dominating
σ -finite measure λ for Q and P. Note that the two definitions of φ−divergences
coincide on the set of all p.m.’s a.c w.r.t. P and dominated by λ . The φ -divergences
between any signed finite measure Q and a p.m. P were introduced by [20] which
proposes the following definition

φ(Q,P) :=
∫

ϕ(q) dP+bϕ∗σ
+
Q (X )−aϕ∗σ

−
Q (X ), (7)

where

aϕ∗ = lim
y→−∞

ϕ(y)
y

, bϕ∗ = lim
y→+∞

ϕ(y)
y

. (8)

and
Q = qP+σQ, σQ = σ

+
Q −σ

−
Q

is the Lebesgue decomposition of Q, and the Jordan decomposition of the singular
part σQ, respectively. Definitions (6) and (7) coincide when Q is a.c. w.r.t. P or when
aϕ =−∞ or bϕ =+∞. Since we will consider optimization of Q 7→ φ(Q,P) on sets
of signed finite measures a.c. w.r.t. P, it is more adequate for our sake to use the
definition (7).

For all p.m. P, the mappings Q ∈M 7→ φ(Q,P) are convex and take nonnegative
values. When Q = P then φ(Q,P) = 0. Furthermore, if the function x 7→ ϕ(x) is
strictly convex on a neighborhood of x = 1, then the following basic property holds

φ(Q,P) = 0 if and only if Q = P. (9)

All these properties are presented in [7], [21], [22] and [24] Chapter 1, for φ -
divergences defined on the set of all p.m.’s M1. When the φ -divergences are defined
on M , then the same properties hold making use of definition (7); see also [2].

When defined on M1, the Kullback-Leibler (KL), modified Kullback-Leibler (KLm),
χ2, modified χ2 (χ2

m), Hellinger (H), and L1 divergences are respectively as-
sociated to the convex functions ϕ(x) = x logx− x + 1, ϕ(x) = − logx + x− 1,
ϕ(x) = 1

2 (x−1)2, ϕ(x) = 1
2 (x−1)2/x, ϕ(x) = 2(

√
x−1)2 and ϕ(x) = |x−1|. All

those divergences except the L1 one, belong to the class of power divergences intro-
duced in [19] (see also [24] chapter 2). They are defined through the class of convex
functions
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x ∈]0,+∞[7→ ϕγ(x) :=
xγ − γx+ γ−1

γ(γ−1)
(10)

if γ ∈R\{0,1}, ϕ0(x) :=− logx+x−1 and ϕ1(x) := x logx−x+1. (For all γ ∈R,
we define ϕγ(0) := limx↓0 ϕγ(x)). So, the KL−divergence is associated to ϕ1, the
KLm to ϕ0, the χ2 to ϕ2, the χ2

m to ϕ−1 and the Hellinger distance to ϕ1/2.
Those divergence functions defined in (10) are the Cressie-Read divergence func-
tions; see [19].
The Kullback-Leibler divergence (KL-divergence) is sometimes called Boltzmann
Shannon relative entropy. It appears in the domain of large deviations and it is fre-
quently used for reconstruction of laws, and in particular in the classical moment
problem (see e.g. [20] and the references therein). The modified Kullback-Leibler
divergence (KLm-divergence) is sometimes called Burg relative entropy. It is fre-
quently used in Statistics and it leads to efficient methods in statistical estimation
and tests problems; in fact, the celebrate “maximum likelihood” method can be seen
as an optimization problem of the KLm-divergence between the discrete or continu-
ous parametric model and the empirical measure associated to the data; see [26] and
[3]. On the other hand, the recent “empirical likelihood” method can also be seen as
an optimization problem of the KLm-divergence between some set of measures sat-
isfying some linear constraints and the empirical measure associated to the data; see
[30] and the references therein, [18] and [4]. The Hellinger divergence is also used
in Statistics, it leads to robust statistical methods in parametric and semi-parametric
models; see [17], [29], [9] and [4].

The power divergences functions Q ∈M1 7→ φγ(Q,P) can be defined on the whole
vector space of signed finite measures M via the extension of the definition of the
convex functions ϕγ : For all γ ∈ R such that the function x 7→ ϕγ(x) is not defined
on ]−∞,0[ or defined but not convex on whole R, we extend its definition as follows

x ∈]−∞,+∞[7→
{

ϕγ(x) if x ∈ [0,+∞[,
+∞ if x ∈]−∞,0[. (11)

Note that for the χ2-divergence for instance, ϕ2(x) := 1
2 (x−1)2 is defined and con-

vex on whole R. This extension of the domain of the divergence functions ϕγ to
]−∞,+∞[ implies that (8) is well defined, with aϕ∗ =+∞.

The conjugate (or Fenchel-Legendre transform) of ϕ will be denoted ϕ∗,

t ∈ R 7→ ϕ
∗(t) := sup

x∈R
{tx−ϕ(x)} ,

and the endpoints of domϕ∗ (the domain of ϕ∗) are aϕ∗ and bϕ∗ with aϕ∗ ≤ bϕ∗ .
Note that ϕ∗ is a proper closed convex function. In particular, aϕ∗ < 0 < bϕ∗ ,
ϕ∗(0) = 0. By the closedness of ϕ , the conjugate ϕ∗∗ of ϕ∗ coincides with ϕ , i.e.,

ϕ
∗∗(t) := sup

x∈R
{tx−ϕ

∗(x)}= ϕ(t), for all t ∈ R.
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For proper convex functions defined on R (endowed with the usual topology), the
lower semi-continuity3 and the closedness properties are equivalent.

We say that ϕ (resp. ϕ∗) is differentiable if it is differentiable on ]aϕ ,bϕ [ (resp.
]aϕ∗ ,bϕ∗ [), the interior of its domain. We say also that ϕ (resp. ϕ∗) is strictly convex
if it is strictly convex on ]aϕ ,bϕ [ (resp. ]aϕ∗ ,bϕ∗ [).

The strict convexity of ϕ is equivalent to the condition that its conjugate ϕ∗ is es-
sentially smooth, i.e., differentiable with

limt↓aϕ∗ ϕ∗′(t) = −∞ if aϕ∗ >−∞,

limt↑bϕ∗ ϕ∗′(t) = +∞ if bϕ∗ <+∞.

Conversely, ϕ is essentially smooth if and only if ϕ∗ is strictly convex; see e.g. [33]
section 26 for the proofs of these properties.

If ϕ is differentiable, we denote ϕ ′ the derivative function of ϕ , and we define
ϕ ′(aϕ) and ϕ ′(bϕ) to be the limits (which may be finite or infinite) limx↓aϕ

ϕ ′(x)
and limx↑bϕ

ϕ ′(x), respectively. We denote Imϕ ′ the set of all values of the func-
tion ϕ ′, i.e., Imϕ ′ :=

{
ϕ ′(x) such that x ∈ [aϕ ,bϕ ]

}
. If additionally the function ϕ

is strictly convex, then ϕ ′ is increasing on [aϕ ,bϕ ]. Hence, it is a one-to-one func-
tion from [aϕ ,bϕ ] onto Imϕ ′; we denote in this case ϕ ′−1 the inverse function of ϕ ′

which is defined from Imϕ ′ onto [aϕ ,bϕ ].
Note that if ϕ is differentiable, then for all x ∈]aϕ ,bϕ [,

ϕ
∗ (

ϕ
′(x)
)
= xϕ

′(x)−ϕ (x) . (12)

If additionally ϕ is strictly convex, then for all t ∈ Imϕ ′ we have

ϕ
∗(t) = tϕ ′−1

(t)−ϕ

(
ϕ
′−1

(t)
)

and ϕ
∗′(t) = ϕ

′−1
(t).

On the other hand, if ϕ is essentially smooth, then the interior of the domain of ϕ∗

coincides with that of Imϕ ′, i.e.,
(
aϕ∗ ,bϕ∗

)
=
(
ϕ ′(aϕ),ϕ

′(bϕ)
)
.

The domain of the φ -divergence will be denoted domφ , i.e.,

domφ := {Q ∈M such that φ(Q,P)< ∞} .

In the present paper we will deal with essentially smooth divergence functions,
so that all the above properties are fulfilled.

3 We say a function ϕ is lower semi-continuous if the level sets {x such that ϕ(x)≤ α}, α ∈R are
closed.
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3 Large deviations for the bootstrapped empirical measure

The present Section aims at providing a solution to Problem (P) when Ω is a sub-
set of M1, the class of all probability measures on (X ,B) . Such a goal will be
achieved in two cases of interest, namely the Kullback-Leibler and the Likelihood
divergence.

We first push forwards some definition.
Let Y,Y1,Y2, . . . denote a sequence of non negative independent real valued ran-

dom variables with expectation 1. We assume that Y satisfies the so-called Cramer
condition, namely that the set

N :=
{

t ∈ R such that Λ(t) := logEetY < ∞
}

contains a neighborhood of 0 with non void interior. By its very definition, N
is an interval, say N := (a,b) which we assume to be open. We also assume
that the strictly convex function Λ is a steep function, namely that limt→a Λ(t) =
limt→b Λ(t) = +∞. It will also be assumed that t → Λ ′(t) parametrizes the convex
hull of the support of the distribution of Y . We refer to [16] for those notions and
conditions.

Consider now the weights W n
i ,1≤ i≤ n defined through

W n
i :=

Yi

(1/n)∑
n
i=1 Yi

which define a vector of exchangeable variables (W n
1 , . . . ,W

n
n ) for all n≥ 1.

Define further the Legendre transform of Λ , say Λ ∗ which is a strictly convex
function defined on ImΛ ′ by

Λ
∗(x) := sup

t
tx−Λ(t).

We assume that we are given an array of observations (xn
i )i=1,...,n,n≥1 in X which

we assume to be ”fair”, meaning that there exists a probability measure P defined
on (X ,B) such that

lim
n→∞

1
n

n

∑
i=1

δxn
i
= P. (13)

When the observations are sampled under P we assume that the above condition (13)
holds almost surely. We define the bootstrapped empirical measure of (xn

1, . . . ,x
n
n) by

PW
n :=

1
n

n

∑
i=1

W n
i δxn

i
.

Note that PW
n is random due to the weights W n

1 , . . . ,W
n
n and that the data set xn

1, . . . ,x
n
n

is considered as non random. The following result provides a Sanov type LDP state-
ment conditionally upon the array (xn

i ) 1 ≤ i ≤ n,n ≥ 1. Assuming that Y has no
atom at 0 and that t→ΛY (t) is steep at point
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t+ := sup{t : ΛY (t)<+∞}

with t+ > 0, it holds

Theorem 1. Under the above hypotheses and notation the sequence PW
n obeys a

LDP on the space of all probability measures on X equipped with the weak conver-
gence topology with good rate function

φ (Q,P) := infm>0
∫

Λ ∗
(

m dQ
dP (x)

)
dP(x) if Q << P

+∞ otherwise
(14)

Remark 1. This Theorem is a variation on Corollary 3.3 in [35]. Indeed it holds

lim
x→−∞

Λ
′
Y (t) = lim

x→−∞

(
(Λ ∗)′

)−1
(x) = 0

and
lim

x→+∞
Λ
′
Y (t) = lim

x→+∞

(
(Λ ∗)′

)−1
(x) = +∞

The above Theorem does not meet our requirement that the rate should be a
divergence between probability measures. Two cases of upmost interest however
fulfill our quest.

We make use of independent copies of PW
n , obtained as follows: consider

(Y1,1, . . . ,Y1,n) , . . . ,(Y,1, . . . ,YK,n)

where all the Yi, j are i.i.d. copies of Y , and

W k
i :=

Yk,i

∑
k
i=1 Yk,i

,

PW
k,n :=

n

∑
i=1

W k
i δxn

i
.

and for any set Ω in M1 define

Pn,K(Ω) :=
1
K

card
(
k ∈ {1, . . . ,K} : PW

k,n ∈Ω
)

(15)

and denote
Ln,K (Ω) :=−1

n
logPn,K (Ω) . (16)

3.1 Minimizing the Kullback-Leibler divergence

Assume that the random variable Y is Poisson distributed with mean 1. Then
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Λ
∗(x) = x logx− x+1

which is the Kullback-Leibler divergence function. For any couple of probability
measures (Q,P) it readily follows that the infimum upon m in (14) is reached at
m = exp−KL(Q,P), which yields

in fm>0

∫
Λ
∗
(

m
dQ
dP

(x)
)

dP(x) = 1− exp−KL(Q,P). (17)

It follows that the rate (14) takes the form

φ (Q,P) = 1− exp−KL(Q,P)

and that
φ (Ω ,P) = 1− exp−KL(Ω ,P)

Proposition 1. Consider any set Ω of probability measures which satisfies

KL(intΩ ,P) = KL(clΩ ,P) ,

where M1 is endowed with the weak topology. Consider Y a r.v. with Poisson distri-
bution with mean 1. Then the following expression

K̂L(Ω ,P) :=− log [1−Ln,K (Ω)]

estimates KL(Ω ,P).

3.2 Minimizing the Likelihood divergence

Let the r.v. Y have an exponential distribution with mean 1. Then

Λ
∗(x) =− logx+ x−1

which is the divergence function which defines the modified Kullback-Leibler diver-
gence, also named as Likelihood divergence, since its minimization in statistically
relevant contexts yields the celebrated maximum likelihood divergence estimators.

For all P and Q in M1 such that KLm(Q,P) is finite, the function (0,1) 3 m→∫
ϕ

(
m dQ

dP (x)
)

dP(x) is decreasing. Therefore the (14) takes the form

φ (Q,P) = KLm(Q,P)

and
φ (Ω ,P) = KLm(Ω ,P)

This yields an analogue of Proposition 1, namely
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Proposition 2. With the same notation and hypotheses as in Proposition 1 , with Y
a random variable with Exponential(1) distribution, the following expression

K̂Lm (Ω ,P) := Ln,K (Ω)

estimates KLm (Ω ,P) .

Remark 2. When Y is exponentially distributed with expectation 1 then by Pyke’s
Theorem, the vector (W n

1 , . . . ,W
n
n ) coincides in distribution with

(U1,n,U2,n−U1,n, . . . ,Un,n−Un−1,n) ,

the spacings of the ordered statistics (U1,n,U2,n, . . . ,Un,n) of n i.i.d. uniformly
distributed r.v’s on (0,1), with uniform distribution. This is indeed the simplest
weighted bootstrap variation of Pn based on exchangeable weights.

4 Wild bootstrap

We now consider other random elements whose visits in Ω will define estimators of
minimum divergence between P and Ω for other useful divergence function, as the
Chi-square, the Hellinger, etc.

We may consider some wild bootstrap versions, defining the wild empirical mea-
sure by

PWild
n :=

1
n

n

∑
i=1

Yiδxi,n

where the r.v’s Y1,Y2, . . . are i.i.d. with common expectation 1. The use of the word
“wild” is relevant: PWild

n is not merely a probability measure; it can even put negative
masses on some points of its support, since the r.’s Yi may assume negative values.
We will be able to solve Problem (P) when Ω is a subset of M , the class of all signed
finite measures on (X ,B) . Thus the estimator of φ (Ω ,P) is typically smaller than
the estimator of φ (Ω ∩M1,P), which cannot be estimated using the results of this
Section, in contrast with just obtained in the previous Section. Also we will need X
to be a compact set.

We assume that the Cramer condition holds for Y and define, as above,

ΛY (t) := logE exp tY.

4.1 A conditional LDP for the wild bootstrapped empirical measure

In this case we make use of the following result (see [23]) which holds when X is
compact.



A weighted bootstrap procedure for divergence minimization problems 11

Theorem 2. The wild empirical measure PWild
n obeys a LDP in the class of all signed

finite measures endowed by the weak topology with good rate function φ (Q,P) de-
fined in (7), where the function ϕ is defined by

ϕ(x) := Λ
∗(x) = sup

t
tx−ΛY (t).

Remark 3. Making use of the results in [23],we may consider the constant aϕ∗ and
bϕ∗ in (7); by convexity, ϕ∗(x) := ΛY (x) . The LDP rate (7) writes

φ (Q,P) :=
∫

X
Λ
∗
(

dQa

dP

)
dP+

∫
X

ρ

(
dQs

dθ

)
dθ

where
ρ(z) := sup{λ z : λ ∈ DomΛY}

and θ is any real valued non negative measure with respect to which Qs is absolutely
continuous. Choosing

θ =
∣∣Q+

s −Q−s
∣∣

yields

φ (Q,P) :=
∫

X
Λ
∗
(

dQa

dP

)
dP+ρ(−1)Q−s (X )+ρ(+1)Q+

s (X )

so that aϕ∗ = inf{t : ΛY (t)< ∞} and bϕ∗ = sup{t : ΛY (t)< ∞} .

Remark 4. Theorem 2 has been proved by numerous authors, under various regular-
ity conditions; see e.g. [15], [23], [5]. A strong result is as follows:

When Ω is a subset in M such that φ (cl (Ω) ,P) = φ (int (Ω) ,P) holds in the
τ−topology, then

lim
n→∞
−1

n
logP

(
PWild

n ∈Ω

)
= φ (Ω ,P) . (18)

However that τ−open (resp. τ−closed sets) are not necessarily weakly open (resp
weakly closed); thus this latest result (18) is merely useful when Ω is defined as the
pre-image of some open (closed) set by some τ−continuous mapping from (X ,B)
onto some topological space; see Section 6.

4.2 Cressie-Read divergences and exponential families

In this Section we consider a reciprocal statement to Theorem 2. We first prove that
any Cressie-Read divergence function as defined in (11) is the Fenchel-Legendre
transform of some cumulant generating function ΛY for some r.v. Y . Henceforth we
state a one to one correspondence between the class of Cressie-Read divergence
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functions and the distribution of some Y which can be used in order to build a
bootstrap empirical measure of the form PWild

n .

4.3 Natural Exponential families and their variance functions

We turn to some results due to Letac and Mora; see [12].
For µ a positive σ−finite measure on R define φµ(t) :=

∫
etxdµ(x) and its do-

main Dµ , the set of all values of t such that φµ(t) is finite, which is a convex (pos-
sibly void) subset of R. Denote kµ(t) := logφµ(t) and let mµ(t) := (d/dt)kµ(t)
and s2

µ(t) :=
(
d2/dt2

)
kµ(t). Associated with µ is the Natural Exponential Family

NEF(µ) of distributions

dPµ

t (x) :=
etxdµ(x)

φµ(t)

which is indexed by t. It is a known fact that, denoting Xt a r.v. with distribution
Pµ

t it holds EXt = mµ(t) and VarXt = s2
µ(t).The mapping t → mµ(t) := EXt is a

strictly increasing homeomorphism from R+ onto R+, with inverse m←µ .
The NEF(µ) is said to be generated by µ . The NEF(ν) generated by ν defined

through
dν(x) = exp(ax+b)dµ(x) (19)

coincides with NEF(µ), which yields to the definition of the NEF generated by the
class of positive measures ν satisfying (19) for some constants a and b.Following
[12] for the notation and main results the class of such measures will be denoted B
and be called a base for NEF(µ), hence denoted NEF(B). Also it can be checked
that the range of mν does not depend on the very choice of ν in B, although its
domain depends on ν . The range ImmB of mν , which is the same for all ν in B, is
called the mean range of B since it depends only on the class of generating measures
B.

Defined on ImmB , the function

x→V (x) := s2
µ om←µ (x)

is independent of the peculiar choice of µ in B (see [12]) and is therefore called
the variance function of the NEF(B). It can be proved that the variance function
characterizes the NEF. From the statistician point of view the functional form of the
function V is of relevant interest: it corresponds to models for which regression of
the variance on the mean is considered, which is a common feature in heteroscedas-
tic models; see the seminal paper [14] which is at the origin of models characterized
by V, and [10].

Starting with [11], a wide effort has been developed in order to characterize the
basis of a NEF with given variance function.
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4.4 Power variance functions and the corresponding natural
exponential families

Power variance functions have been explored by various authors; see e.g. [1], [12],
etc. Summarizing it holds (see [1]) the NEF with variance function V (x) = Cxα ;
for sake of brevity with respect to the sequel we denote α = 2− γ. NEF with vari-
ance function V are obtained through integration and identification of the resulting
moment generating function. They are generated as follows.

• For γ < 0 by stable distributions on R+ with characteristic exponent in (0,1) . The
resulting distributions define the Tweedie scale family which we briefly describe
in the next paragraph.

• For γ = 0 by the exponential distribution
• For 0 < γ < 1 by Compound Gamma-Poisson distributions
• For γ = 1 by the Poisson distribution
• For γ = 2 by the normal distribution

Other values of γ do not yield NEF’s.

4.4.1 The Tweedie scale

Let Z be a r.v. with stable distribution on R+ with exponent τ , 0 < τ < 1. Denote p
its density and f (t) = E exp itZ its characteristic function, which satisfies

f (t) = exp
{

iat− c |t|τ (1+ iβ sign(t)ω (t,τ))
}

where a ∈ R, c > 0 and ω (t,τ) = tan
(

πτ

2

)
.

We consider the case when β = 1. It then holds:
For Z1, . . . ,Zn n i.i.d. copies of Z ,

Z1 + . . .+Zn

n1/τ
=d Z

where the equality holds in distribution. The Laplace transform of p satisfies

ϕ(t) :=
∫

∞

0
e−tx p(x)dx = e−tτ

for all non negative value of t; see [27].
Associated with p is the Natural Exponential family (NEF) with basis p namely

the densities defined for non negative t through

pt(x) := e−tx p(x)/e−tτ

with support R+. For positive t , a r.v. Xt with density pt has a moment generating
function E expλXt which is finite in a non void neighborhood of 0 and therefore has
moments of any order.
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Consider the density p1(x)= e−x+1 p(x) with finite m.g.f. in (−∞,1) , expectation
µ = τ and variance σ2 = τ(1− τ). Finally set for all non negative x

q(x) :=
√

τ(1− τ)p1

(
x
√

τ(1− τ)+ τ−1
)

which for all 0 < τ < 1 is the density of some r.v. Y with expectation 1 and variance
1. The m.g.f. of Y is

E expλY = eexp

[
1− τ√

τ(1− τ)

]
exp−

[
1− λ√

τ(1− τ)

]τ

.

For τ = 1/2 ,Y has the Inverse Gaussian distribution with parameters (1,1) and
m.g.f

E expλY = e
(

exp− [1−2λ ]1/2
)
.

The variance function of the NEF generated by a stable distribution with index τ

in (0,1) writes
V (x) =Cτ x

2−τ
1−τ

with

Cτ :=
(

1− τ

τ

) 2−τ

2(1−τ)

.

4.4.2 Compound Gamma Poisson distributions

We briefly characterize this compound distribution and the resulting weight Y. Let
µ denote the distribution of SN := ∑

N
i=0 Γi where S0 := 0 , N is a Poisson (p) r.v.

independent of the independent family (Γi)i≥1 where the Γi’s are distributed with
Gamma distribution with scale parameter 1/λ and shape parameter −ρ. Here

ρ :=
γ−1

γ

λ := ρ

p := (γ−1)−1/γ

where we used the results in [1] p1516. Consider the family of distributions NEF(µ)
generated by µ , which has power variance function V (x) = xγ+1 defined on R+. The
r.v. Y has distribution in NEF(µ) with expectation and variance 1. Its density is of
the form

fW (x) := exp(ax+b) f (x)

where f (x) := (dµ(x)/dx) is the density of SN . The values of the parameters a and
b are

a :=−1
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b :=−(γ−1)−1/γ

[(
1− γ

γ−1

)ρ

−1
]
.

4.5 Cressie Read divergences, weights and variance functions

For

ϕγ (x) :=C
xγ − γx+ γ−1

γ (γ−1)
(20)

with γ 6= 0,1, the convex function ϕγ satisfies ϕγ (1) = ϕ ′γ (1) = 0 and ϕ”
γ (1) = C,

being therefore a divergence function; it is customary to assume that the positive
constant C satisfies C = 1, a condition which we will not consider, still denoting
this class of functions the Cressie-Read family of divergence functions. Set ϕ0(x) =
− logx+x−1 and ϕ1 (x) = x logx−x+1, the likelihood divergence function and the
Kullback-Leibler one, noting that limγ→0 ϕα (x)= ϕ0(x) and limγ→1 ϕγ (x)=ϕ1 (x) .
The Cressie-Read family defined through (20) is the simplest system of non negative
convex functions satisfying the requirements for a divergence function.

We prove that any Cressie-Read divergence function is the Fenchel Legendre
transform of a moment generating function of a random variable with expectation
1 and variance 1/C in a specific NEF, depending upon the divergence. Indeed we
identify such a r.v. Y as follows: let Y be a r.v. with a cumulant generating function.
Λ (t) := logE exp tY such that

ϕγ (x) = Λ
∗ (x) = sup

t
tx−ψ (t) ; (21)

then
1

d2

dx2 ϕγ (x)
=

1
C

xα =V (x) (22)

with α = 2− γ for x→ V (x) the variance function of the NEF generated by the
distribution of Y . Since the differential equation d2

dx2 ϕγ (x) = Cx−α defines ϕγ (x)
through (20) in a unique way we have proved the one to one correspondence be-
tween Cressie-Read divergences and NEF’s with power Variance functions.

Remark 5. Reproductible NEF’s with power variance functions and power normal-
izing factors are infinitely divisible (see [1]); reciprocally all reproductible NEF’s
with power normalizing factors are infinitely divisible. The Cressie Read family
of divergences possesses therefore a quite peculiar property : they are the only ones
which are the Legendre transform of cumulant generating functions of reproductible
infinitely divisible distributions with power normalizing constants. Reciprocally any
wild empirical measure with reproductible infinitely divisible weights with power
normalizing factors and with expectation 1 has LDP rate in the Cressie Read family.
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4.6 Examples

For example the Tweedie scale of distributions defines random variables Y with
expectation 1 and variance Cτ corresponding to Cressie Read divergences with neg-
ative index γ =−τ/(1− τ).

For γ =−1, the resulting divergence is

ϕ−1 (x) =
1
2
(x−1)2

x

which is the modified χ2 divergence (or Neyman χ2). The associated r.v. Y has an
Inverse Gaussian distribution with expectation 1 and variance 1.

For γ = 2 it holds

ϕ2 (x) =
1
2
(x−1)2

which is the Spearman χ2 divergence. The resulting r.v. Y has a Gaussian distribu-
tion with expectation 1 and variance 1. Note that in this case, Y is not a positive
random variable.

For γ = 1/2 we get
ϕ1/2 (x) = 2

(√
x−1

)2

which is the Hellinger divergence. The associated random variable Y has a Com-
pound Gamma-Poisson distribution with ρ =−1,λ =−1, p = 4,a =−1 and b = 4.

When γ = 3/2 the distribution of Y belongs to the NEF generated by the stable
law µ on R+ with characteristic exponent 1/3, hence with density the Modified
Bessel type distribution

f (x) = (dµ(x)/dx) = (2π)−1
λK1/2

(
λx1/2

)
exp
(
−px+3

(
λ

2 p/4
)1/3

)
where λ and p are positive and K1/2 (z) is the modified Bessel function of order 1/2
with argument z.

When γ = 1 then
ϕ0 (x) = x logx− x+1,

the Kullback-Leibler divergence function, and Y has a Poisson distribution with
parameter 1. Since the rate of the corresponding LDP coincides with the rate of
the LDP for the empirical distribution of the data (unconditionally), and since the
variance function characterizes the distribution of the weights, this is the only wild
bootstrap which is LDP efficient.

When γ = 0 then
ϕ0 (x) =− logx+ x−1,

the Likelihood divergence and Y has an exponential with parameter 1.
The L1 divergence function ϕ (x) = |x−1| does not yield to any weighted sam-

pling; indeed ϕ∗ (t) = t1(−1,1)(t)+∞1(−1,1)c(t) which is not a cumulant generating
function.
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5 Monte Carlo minimization of a Cressie read divergence
through Wild bootstrap

Due to the preceding correspondence between the minimization problem (P) and
Large Deviation rates, we propose the following procedures for the estimation of
φ (Ω ,P) .

Simulate nK i.i.d. random variables Y,Y1,i,Y2,i, . . . ,YK,i ,1 ≤ i ≤ n with common
distribution in correspondence with the divergence function ϕ , namely such that

ϕ(x) = Λ
∗(x)

for x ∈ Domϕ where Λ ∗(x) := supt tx−Λ(t) and Λ(t) = logE exp tY. Define

Pn,K(Ω) :=
1
K

card
(

j ∈ {1, . . . ,K} : PWild
n, j ∈Ω

)
where

PWild
n, j :=

1
n

n

∑
i=1

Yj,iδxi

1≤ j ≤ K.
Define

φ
Wild
n,K (Ω ,P) :=−1

n
logPn,K (Ω) .

6 Sets of measures for which the Monte Carlo minimization
technique applies

We explore cases when

φ(int (Ω) ,P) = φ(cl (Ω) ,P) (23)

in the weak topology on M . Two conditions are derived; in the first case we make
use of convexity arguments; we make use of a similar argument as used in [28],
Corollary 3.1. For Ω a subset of M denote clw ((Ω)), resp. intw (Ω), the weak
closure (resp.) the weak interior of Ω in M .

A convex set Ω in M is strongly w−convex if for all Q in clw ((Ω)) and each
R in intw (Ω) it holds that

{αQ+(1−α)R;0 < α < 1} ⊂ intw (Ω) .

It holds

Proposition 3. Let P∈M1 and let Ω1, . . . ,ΩJ be subsets of M . Set Ω := Ω1∪ . . .∪
ΩJ . Then when all Ω j s are strongly w−convex and φ(intw (Ω j) ,P) < ∞ for all j,
(23) holds.
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Proof. For any j = 1, . . . ,J, fix ε > 0. Let Q ∈ clw ((Ω j)) be such that

φ (Q,P)< φ (clw (Ω j) ,P)+ ε

and R ∈ intw (Ω j) be such that φ (R,P)< ∞. Define Qα := αQ+(1−α)R,0 < α <
1. Then Qα ∈ intw (Ω j) and the convexity of Q′→ φ (Q′,P) implies

φ(intw (Ω j) ,P)≤ lim
α↑1
{αφ (Q,P)+(1−α)φ (R,P)}

= φ (Q,P)< φ (clw ((Ω j)) ,P)+ ε.

Hence φ(intw (Ω j) ,P) = φ (clw ((Ω j)) ,P) . Therefore (23) holds for the finite union
of the Ω j’s, as sought.

Some other class of sets Ω ⊂M for which (23) holds are defined as pre-images
of continuous linear functions defined from X onto some Hausdorff topological
space E. Adapting Theorem 4.1 in [28] we may state

Proposition 4. Let P ∈M1 and E be a real Hausdorff topological space; let B1 ⊂
B2 ⊂ . . . be an increasing sequence of Borel sets in supp(P) such that

lim
m→∞

P(Bm) = 1.

LetΨm := {Q ∈M : |Q|(Bm) = 1} for all m∈N and M ∗ :=∪mΨm. Let T : M ∗→E
a function such that its restriction T|Ψm is linear and weakly continuous at each
Q in M ∗ such that φ (Q,P) < ∞ for each m. Let A be a convex set in E with
φ
(
T−1 (intA) ,P

)
< ∞. Then

φ
(
T−1 (intA) ,P

)
= φ

(
T−1 (clA) ,P

)
. (24)

Proof. It proceeds following nearly verbatim the Proof of Theorem 4.1 in [28]. Con-
vexity arguments similar to the one in the Proof of Proposition 3 provide a version
of (24) for sets T−1

|Ψm
(A) . Making use of Theorem 2, which substitutes Theorem 3.1

in [28] concludes the proof.

7 A simple convergence result and some perspectives

All estimators of φ (Ω ,P) considered in this paper converge strongly to φ (Ω ,P) as
n tends to infinity, as does K. Indeed going back to the general setting presented in
Section 1, for fixed n it clearly holds that

lim
K→∞

1
K

card (i : Xn,i ∈Ω) = Pr(Xn ∈Ω)

a.s.
When
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lim
n→∞

1
n

logPr(Xn ∈Ω) =−Φ (Ω)

it follows that
lim
n→∞

lim
K→∞

1
n

log fn,K =−Φ (Ω) a.s.

as sought. Since the estimators of KL(Ω ,P) and KLm (Ω ,P) considered in Section
3, as well as the estimators of φγ (Ω ,P) considered in Section 5 are obtained through
continuous transformations of the former estimates, all estimators considered in the
present article converge strongly to their respective limits as K tends to infinity and
n tends to infinity. This leaves a large field of investigations wide open, such as the
choice of some sequence K = Kn which would lead to a single limit procedure. Also
the resulting rate of convergence of these estimators as well as their distributional
limit would be of interest.

Also Importance Sampling (IS) techniques should be investigated in order to
reduce the calculation burden caused by the fact that any of the weighted empirical
measures considered in this article would visit the set Ω quite rarely, if P does
not belong to Ω . The hit rate can be increased substantially using some ad hoc
modification of the weights, resulting from an IS strategy.

Once estimated the minimum value of the divergence, one may be interested in
the identification of the measures Q which achieve this minimum in Ω . Dichoto-
mous methods can be used, iterating the evaluation of the minimum divergence be-
tween P and subsets of Ω where the global infimum on Ω coincides with the local
ones, leaving apart the subsets where they do not coincide, and iterating this routine.
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