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Abstract 46 
Ocean microbes drive global-scale biogeochemical cycling1, but do so under constraints imposed by 47 
viruses on community composition, metabolic activity, and evolutionary trajectories2,3. Due to 48 
sampling and cultivation challenges, genome-level viral diversity remains poorly described and grossly 49 
understudied in nature such that <1% of observed surface ocean viruses are ‘known’4. Here we 50 
assemble complete genomes and large genomic fragments from both surface and deep ocean viruses 51 
sampled during the Tara Oceans and Malaspina research expeditions5,6 and analyze the resulting 52 
Global Ocean Viromes (GOV) dataset to present a global map of abundant, double stranded DNA 53 
(dsDNA) viruses complete with genomic and ecological contexts. A total of 15,222 epi- and 54 
mesopelagic viral populations were identified that comprised 867 viral clusters (VCs, approximately 55 
genus-level groups7,8). This roughly triples the number of ocean viral populations4, doubles candidate 56 
bacterial and archaeal virus genera8, and near-completely samples epipelagic communities at both the 57 
population and VC level. Thirty-eight of the 867 VCs were locally or globally abundant and together 58 
accounted for nearly half of the viral populations in any GOV sample. While two thirds of them 59 
represent newly described viruses that lacked any cultivated representative, most could be 60 
computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 61 
viral-encoded auxiliary metabolic genes (AMGs), only 95 of which were known. Deeper analyses of 62 
four of these AMGs (dsrC, soxYZ, P-II and amoC) revealed that abundant viruses may directly 63 
manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and 64 
functional analyses provide a critically-needed foundation to begin meaningfully integrating viruses 65 
into ecosystem models as key players in nutrient cycling and trophic networks. 66 
 67 
Main text 68 

A fundamental bottleneck preventing the incorporation of viruses of microbes into ecosystem 69 
models is the lack of host-contextualized quantitative surveys of viral diversity in nature. This is 70 
because (i) most naturally-occurring microbes and viruses are not currently cultivated, and (ii) viruses 71 
lack a universally conserved marker gene, which precludes PCR-based surveys of uncultivated 72 
diversity3. While viral metagenomics (viromics) was introduced to circumvent these issues, early 73 
datasets were fragmented and only suitable for descriptive gene-level analyses that were prohibitively 74 
database-biased3. Subsequent experimental, technological, and analytical improvements enabled viral 75 
population ecology through the availability of genomic information3,9–11. For example, 1,148 large viral 76 
genome fragments captured in a fosmid library from Mediterranean Sea microbes revealed remarkable 77 
viral diversity, with some genomes appearing globally distributed based upon analysis of six available 78 
viral metagenomes9. Similarly, 69 viral reference genomes assembled from single-cell samples helped 79 
elucidate the ecology, evolution and potential biogeochemical impacts of uncultivated viruses infecting 80 
an uncultivated anaerobic chemoautotroph11. Finally, metagenomic approaches are now quantitative, at 81 
least for dsDNA templates3, and themselves provide genomic information on uncultivated viruses. For 82 
example, 42 surface ocean viral metagenomes in the Tara Oceans Viromes (TOV) dataset revealed the 83 
global underlying structure of these communities, and identified 5,476 viral populations, only 39 of 84 
which were previously known4. 85 

Here we further identify ocean viral populations, determine and characterize the most abundant and 86 
widespread dsDNA ocean viral types, and analyze viral-encoded AMGs and their distributions to 87 
propose new means by which viruses likely modulate microbial biogeochemistry. We do so by 88 
analyzing the Global Oceans Viromes (GOV) dataset, which augments TOV with 61 samples to better 89 
represent the surface and deep oceans, and now totals 104 viromes and 925 Gbp of sequencing data 90 
(Supplementary Table 1). Further, upgraded analytical approaches including cross-assembly12 and 91 
genome binning13 improved genomic representation of sampled viruses (see Supplementary Text for 92 
details on the dataset generation process). From 1,380,834 contigs which recruited 67% of the reads, 93 
we identified 15,280 viral populations (Fig. 1A, see Supplementary Fig. 1 for viral population 94 



definition explanation). This expands ocean viral populations nearly 3-fold over the prior TOV dataset4, 95 
while also improving average contig lengths and genomic context 2.5-fold for TOV-known populations 96 
(Supplementary Table 2). Rarefaction analyses show that while mesopelagic viral communities remain 97 
undersampled, epipelagic viral communities now appear near-completely sampled (Extended Data Fig. 98 
1A). Because bathypelagic communities were underrepresented due to cellular contamination, we 99 
focused the remaining analyses on 15,222 non-bathypelagic viral populations. 100 

We first categorized viral populations into viral clusters, or VCs using shared gene content 101 
information and network analytics7 (see Supplementary Fig. 1 for VC definition schematic). This 102 
method starts from genome fragments (≥10kb) and results in VCs approximately equivalent to known 103 
viral genera7,8. Clustering of the 15,222 GOV viral populations with 15,929 publicly available bacterial 104 
and archaeal viruses revealed 1,259 VCs (see Supplementary Table 3, Supplementary Text & Extended 105 
Data Fig. 2 for comparison with alternative classification methods). Of these, 658 included exclusively 106 
GOV sequences, which approximately doubles known bacterial and archaeal virus genera8, and another 107 
209 VCs contained at least one GOV sequence (Fig. 1B). As with viral populations, rarefaction 108 
analyses suggested that VC diversity was undersampled in mesopelagic waters, but near-completely 109 
sampled in epipelagic waters (Extended Data Fig. 1B). 110 

We next identified the most abundant and widespread VCs based on read recruitment of VC 111 
members. In each sample, a fraction of the VCs were identified as abundant based on their cumulative 112 
contribution to sample diversity (estimated with Simpson Index, abundant VCs represent 80% of the 113 
total sample diversity, Extended Data Fig. 1C). By these criteria, only 38 of 867 observed VCs were 114 
abundant in two or more stations, and together recruited an average of 50% and 35% of reads from 115 
viral populations for epipelagic and mesopelagic samples, respectively (Supplementary Table 3). Four 116 
of these 38 abundant VCs were also relatively ubiquitous as they were abundant in more than 25 117 
stations, and 62 of the 91 non-bathypelagic samples were dominated by 1 of these 4 VCs (Fig. 2 A & 118 
B). Among the 38 abundant VCs, only 2 corresponded to well-studied viruses, from the T4 119 
superfamily14,15 (VC_2, 1 of the 4 ubiquitous) and the T7virus genus16 (VC_9). Eight represented 120 
known but unclassified viral isolates, 10 included viruses known only from environmental 121 
sequencing9,10, and the remaining 18 VCs were completely novel (Fig. 2C, Extended Data Fig. 3). 122 

Given this global map of the dominant dsDNA viral types in the oceans, we next sought to identify 123 
the range of hosts these viruses infect. This is challenging, as culture-based methods insufficiently 124 
capture naturally-occurring diversity, whereas metagenomic approaches broadly survey viral diversity 125 
but often without host information. Fortunately, sequence-based approaches are emerging that examine 126 
similarities between (i) viral genomes and host CRISPR spacers17, (ii) viral and microbial genomes due 127 
to integrated prophages or gene transfers9, and (iii) viral and host genome nucleotide signatures (here, 128 
tetranucleotide frequencies8, see Supplementary Table 4 and Supplementary Text for discussion of the 129 
accuracy/sensitivity of in silico host prediction methods). We applied all 3 methods to GOV to predict 130 
hosts at the phylum level, or class level for Proteobacteria (Supplementary Table 5), then summarized 131 
these results at the VC level. This led to host range predictions for 392 of 867 VCs – all with 132 
confidence assessed by comparison to a null model (Supplementary Fig. 2 and Supplementary Table 3). 133 

The hosts of the 38 globally abundant VCs were largely restricted to abundant and widespread 134 
epipelagic-ocean microbes that were previously identified via miTag-based OTU counts in Tara Oceans 135 
microbial metagenomes18. Notably, the 4 ubiquitous and abundant VCs were predicted to infect 7 of the 136 
8 globally abundant microbial groups (Actinobacteria, Alpha-, Delta-, and Gammaproteobacteria, 137 
Bacteroidetes, Cyanobacteria, Deferribacteres; Fig. 2C, Extended Data Fig. 4). The 8th abundant 138 
microbial group, Euryarchaeota, was not linked to these 4 VCs, but was predicted as a host for 3 of the 139 
34 other abundant VCs (VC_3, VC_27, and VC_63, Extended Data Fig. 3). Among the 38 abundant 140 
VCs, the number of VCs predicted to infect a given microbial host phylum (or class for Proteobacteria) 141 
was positively correlated with host global richness rather than relative abundance (Extended Data Fig. 142 
4B). This suggests that, likely because ocean viruses appear globally distributed4, widespread and 143 



abundant hosts that are minimally diverse (e.g. Cyanobacteria) provide few viral niches, whereas more 144 
diverse host groups, even at lower abundance (e.g. Betaproteobacteria), provide more opportunity for 145 
viral niche differentiation. Hence, these host associations provide critically-needed empirical support 146 
for hypotheses derived from global virus-host network models19. 147 

Having mapped viral diversity and predicted virus-host pairings, we next sought to identify virus-148 
encoded AMGs that might modify host metabolism during infection and likely impact biogeochemistry. 149 
To maximize AMG detection, all 298,383 viral contigs >1.5kb were examined, including small contigs 150 
not associated with a viral population. This revealed 243 putative AMGs (Supplementary Table 6). 151 
While 95 of these AMGs were known (reviewed in ref. 20), others offer insights into how viruses may 152 
directly manipulate microbial metabolisms. Here we focus on 4 (dsrC, soxYZ, P-II and amoC; see 153 
Extended Data Table 1, Supplementary Figs. 3-6 and Supplementary Text for functional affiliation of 154 
these AMGs) because of their putative roles in sulfur or nitrogen cycling. Three of these are not known 155 
in viruses, and one, dsrC, has only been observed in viruses from anoxic deep-sea environments11,21. 156 

Sulfur oxidation in seawater involves two central microbial pathways – dissimilatory sulfur 157 
reductase (Dsr) and sulfur oxidation (Sox)22 – and GOV AMG analyses revealed that epipelagic viruses 158 
encode key genes for each. First, 11 dsrC-like genes were identified in viral contigs (Extended Data 159 
Fig. 5). The Dsr operon is used by sulfate/sulfite-reducing microbes in anoxic environments, as well as 160 
sulfur-oxidizing bacteria in oxic and anoxic environments (Fig. 3A)22. DsrC, specifically, provides 161 
sulfur to DsrAB-sulfite reductase for processing through a conserved C-terminal motif (CysBX10CysA), 162 
and dictates sulfur metabolism rates23. Other DsrC-like proteins (also known as TusE) lack CysB and 163 
instead participate to tRNA modification24. In GOV, four clades of DsrC-like sequences were similar to 164 
TusE (DsrC-1 to DsrC-4), whereas the fifth (DsrC-5) was similar to bona fide DsrC (Extended Data 165 
Fig. 5, Extended Data Table 1, Supplementary Fig. 3, and Supplementary text). Second, 4 soxYZ genes 166 
were identified on viral contigs (Extended Data Fig. 6). Like DsrC, SoxYZ is an important sulfur 167 
carrier harboring a conserved functional motif identified in all GOV SoxYZ proteins (Fig. 3A, 168 
Supplementary Fig. 4, and Supplementary text)25. 169 

Other AMGs suggest marine viruses may manipulate nitrogen cycling. First, 10 GOV contigs 170 
encoded P-II, a gene widespread across bacteria and archaea and central in nitrogen metabolism 171 
regulation (Fig. 3B)26. Three AMG clades (P-II-1, P-II-2, and P-II-4) displayed both P-II conserved 172 
motifs and had predicted structures similar to bona fide P-II, whereas the fourth clade (P-II-3) is 173 
functionally ambiguous as it lacked a conserved motif (Supplementary Fig. 5, and Supplementary text). 174 
Second, two P-II AMG clades (P-II-1 and P-II-4) were proximal to an ammonium transporter gene, 175 
amt, in GOV contigs (Extended Data Fig. 7). In bacteria, such an arrangement is a signature of P-II-like 176 
genes that specifically activate alternative nitrogen production and ammonia uptake pathways during 177 
nitrogen starvation26. Third, one GOV contig included amoC, encoding the subunit C of ammonia 178 
monooxygenase, suggesting a role in ammonia oxidation27. While functional annotation is challenging 179 
for these genes27, and functional motifs are not yet known, the translated AMG was 94% identical to 180 
functional AmoC from Thaumarchaeota – a level of identity only observed among expressed and 181 
functional AMGs (Extended Data Fig. 8, Supplementary Fig. 6, and Supplementary text). 182 

Next, we investigated the origin, evolutionary history, and diversity of these AMGs in epipelagic 183 
viruses (see Supplementary Text for additional discussion about taxonomic affiliation and host 184 
prediction for AMG-containing GOV sequences). The 15 GOV contigs encoding dsrC or soxYZ genes, 185 
when affiliated, were all associated with members of the abundant and ubiquitous VC_2 (T4 186 
superfamily, Extended Data Fig. 5 and 6, Extended Data Table 1). Phylogenies suggested that these 187 
viruses obtained AMGs from S-oxidizing proteobacterial hosts, with likely a single transfer event for 188 
soxYZ and two for dsrC (Extended Data Fig. 5 and 6). Among the latter, the bona fide S-oxidation 189 
DsrC-5 was most closely related to a clade of uncultivated S-oxidizing Gammaproteobacteria 190 
(MED13k09, Supplementary Fig. 7). These bacteria are widespread in the epipelagic ocean28 and 191 
suspected to degrade dimethyl sulfide, a key reduced sulfur species involved in ocean-to-atmosphere 192 



sulfur transport and cloud formation. If confirmed, DsrC5-encoding viruses infecting these bacteria 193 
would impact critical sulfur cycling steps throughout surface waters. In contrast to sulfur AMGs, 194 
phylogenies suggest that P-II AMGs originated from diverse viruses (6 VCs including the abundant 195 
VC_2 and VC_12), and were acquired at least 4 times independently from Bacteroidetes, 196 
Proteobacteria, and possibly Verrucomicrobia (Extended Data Fig. 7, and Supplementary Text). Finally, 197 
while a single amoC AMG offers only preliminary evaluation of its evolutionary history, this amoC-198 
encoding contig appears to represent novel and rare archaeal dsDNA viruses (VC_623), predicted to 199 
infect ammonia-oxidizing Thaumarchaeota, known for their major role in global nitrification29 200 
(Extended Data Fig. 8). 201 

Finally, we investigated the ecology of viruses encoding these AMGs by mapping their distribution 202 
across GOV. Seven AMG clades were geographically restricted (DsrC-unc, DsrC-1, DsrC-2, DsrC-4, 203 
P-II-2, P-II-3, and amoC), and 5 were widespread throughout epipelagic (DsrC-3, DsrC-5, SoxYZ, P-204 
II-1) or mesopelagic (P-II-4) waters (Fig. 3C). All widespread epipelagic AMGs were detected in 205 
waters of mid-range temperatures. In contrast, DsrC-5 and SoxYZ were predominantly detected in low-206 
nutrient conditions, while P-II-1 was predominantly detected in high-nutrient conditions (Fig. 3D, 207 
Extended Data Fig. 9). Thus, we hypothesize that viruses utilize DsrC-5 or SoxYZ to boost sulfur 208 
oxidation rates when infecting sulfur oxidizers in low-nutrient conditions, and P-II under high-nutrient 209 
conditions. The latter could be useful to viruses by activating expensive alternative N-producing 210 
pathways typically used only under N-starvation conditions26. Consistent with this, metatranscriptomes 211 
from three low-nutrient stations (11_SRF in Mediterranean Sea, 39_DCM in Arabian Sea, and 212 
151_SRF in Atlantic Ocean) revealed expression of viral homologs of dsrC and soxYZ but not of P-II 213 
(Extended Data Table 1). 214 

Overall, this systematically collected and processed GOV dataset provides a critical resource for 215 
marine microbiology. This map of global dsDNA ocean viral diversity, at both the population and VC 216 
level, and viral-encoded AMGs brings global ecological context to abundant surface and deep ocean 217 
viruses. Both will also help interpret future (meta)genomic datasets and select experimental systems to 218 
develop. Together with recent experimental, informatic and theoretical advances3,12,30, this fundamental 219 
resource will accelerate the field towards understanding and dynamically predicting the roles and 220 
planetary impacts of viruses in nature. 221 



Methods 222 
 223 
Sample collection and processing 224 
Tara Oceans expedition 225 

Ninety samples were collected between October 10, 2009, and December 12, 2011, at 45 locations 226 
throughout the world’s oceans (Supplementary Table 1) through the Tara Oceans Expedition32. These 227 
included samples from a range of depths: surface, deep chlorophyll maximum, bottom of mixed layer 228 
when no deep chlorophyll maximum was observed (Station 123, 124, and 125), and mesopelagic 229 
samples. The sampling stations were located in 7 oceans and seas, 4 different biomes and 14 Longhurst 230 
oceanographic provinces (Supplementary Table 1). For TARA station 100, two different peaks of 231 
chlorophyll were observed, so two samples were taken at the shallow (100_DCM) and deep 232 
(100_dDCM) chlorophyll maximum. For each sample, 20 L of seawater were 0.22 µm-filtered and 233 
viruses were concentrated from the filtrate using iron chloride flocculation33 followed by storage at 234 
4ºC. After resuspension in ascorbic-EDTA buffer (0.1 M EDTA, 0.2 M Mg, 0.2 M ascorbic acid, pH 235 
6.0), viral particles were concentrated using Amicon Ultra 100 kDa centrifugal devices (Millipore), 236 
treated with DNase I (100U/mL) followed by the addition of 0.1M EDTA and 0.1M EGTA to halt 237 
enzyme activity, and extracted as previously described34. Briefly, viral particle suspensions were treated 238 
with Wizard PCR Preps DNA Purification Resin (Promega, WI, USA) at a ratio of 0.5 mL sample to 1 239 
mL resin, and eluted with TE buffer (10 mM Tris, pH 7.5, 1 mM EDTA) using Wizard Minicolumns. 240 
Extracted DNA was Covaris-sheared and size selected to 160–180 bp, followed by amplification and 241 
ligation per the standard Illumina protocol. Sequencing was done on a HiSeq 2000 system (101 bp, 242 
paired end reads) at the Genoscope facilities (Paris, France). 243 

Temperature, salinity, and oxygen data were collected from each station using a CTD (Sea-Bird 244 
Electronics, Bellevue, WA, USA; SBE 911plus with Searam recorder) and dissolved oxygen sensor 245 
(Sea-Bird Electronics; SBE 43). Nutrient concentrations were determined using segmented flow 246 
analysis35 and included nitrite, phosphate, nitrite plus nitrate, and silica. Nutrient concentrations below 247 
the detection limit (0.02 µmol kg-1) are reported as 0.02 µmol kg-1. All data from the Tara Oceans 248 
expedition are available from ENA (for nucleotide) and from PANGAEA (for environmental, 249 
biogeochemical, taxonomic and morphological data)36–38. 250 

 251 
Malaspina expedition 252 

Thirteen bathypelagic samples and one mesopelagic sample were collected between April 19, 2011 253 
and July 11, 2011 during the Malaspina 2010 global circumnavigation covering the Pacific and the 254 
North Atlantic Ocean. All samples were taken at 4,000 m depth except two samples from stations 81 255 
and 82 collected at 3,500 and 2,150 m respectively (Supplementary Table 1). Additionally, Station 256 
M114 was sampled at the OMZ region at 294 m depth. For each sample, 80 L of seawater were 0.22 257 
µm-filtered and viruses were concentrated from the filtrate using iron chloride flocculation33 followed 258 
by storage at 4°C. More details about the sampling and additional variables used in the Malaspina 259 
expedition can be found in ref. 39. Further processing was done as for the Tara Oceans samples, except 260 
that Illumina sequencing was done at DOE JGI Institute (151 bp, paired end reads). 261 

 262 
Dataset generation 263 
Contigs assembly 264 

An overview of the contigs generation process is provided in Supplementary Fig. 8. The first step 265 
consisted in the generation of a set of contigs using as many reads as possible from the 104 oceanic 266 
viromes, including 74 epipelagic and 16 mesopelagic samples from the Tara Oceans expedition5, and 1 267 
mesopelagic and 13 bathypelagic from the Malaspina expedition6. This set of contigs was generated 268 
through an iterative cross-assembly12 (using MOCAT40 and Idba_ud41, Supplementary Fig. 8) as 269 
follows: (i) high-quality (HQ) reads were first assembled sample by sample with the MOCAT pipeline 270 



as described in18, (ii) all reads not mapping (Bowtie 242, options --sensitive, -X 2000, and --non-271 
deterministic, other parameters at default) to a MOCAT contig (by which we denote ‘scaftigs’, that is, 272 
contigs that were extended and linked using the paired-end information of sequencing read43) were 273 
assembled sample by sample with Idba_ud (iterative k-mer assembly, with k-mer increasing from 20 to 274 
100 by step of 20), (iii) all reads remaining unmapped to any contig were then pooled by Longhurst 275 
province (i.e. unmapped reads from samples corresponding to the same Longhurst province were 276 
gathered) and assembled with Idba_ud (with the same parameters as above), and (iv) all remaining 277 
reads unmapped from every samples were gathered for a final cross-assembly (using Idba_ud). This 278 
resulted in 10,845,515 contigs (Supplementary Fig. 8B).  279 

 280 
Genome binning and re-assembly  281 

The contigs assembled from the marine viral metagenomes might still contain redundant sequences 282 
derived from the same, or closely related populations. We set out to merge contigs derived from the 283 
same population into clusters representing population genomes. To this end, contig sequences were first 284 
clustered at 95% global average nucleotide identity (ANI) with cd-hit-est44(options -c 0.95 -G 1 -n 10 -285 
mask NX, Supplementary Fig. 8B), resulting in 10,578,271 non-redundant genome fragments. Next, 286 
we used co-abundance (i.e. correlation between abundance profiles estimated by reads mapping) and 287 
nucleotide usage profiles of the non-redundant contigs to further identify contigs derived from the same 288 
populations with Metabat45. Briefly, Metabat uses Pearson correlation between coverage profiles 289 
(determined from the mapping of HQ reads of each sample to the contigs with Bowtie 242, options --290 
sensitive, -X 2000, and --non-deterministic, other parameters at default) and tetranucleotide frequencies 291 
to identify contigs originating from the same genome (Metabat parameters: 98% minimum correlation, 292 
mode “sensitive”, see Supplementary Text for more detail about the selection of these parameters). The 293 
8,744 bins generated, including 3,376,683 contigs, were further analyzed, alongside 623,665 contigs 294 
not included in any genome bin but ≥1.5kb.  295 

In an attempt to better assemble these genome bins, two additional sets of contigs were generated 296 
for each genome bin (beyond the set of initial contigs binned by Metabat45), based on the de novo 297 
assembly of (i) all reads mapping to the contigs in the genome bin, and (ii) only reads from the sample 298 
displaying the highest coverage for the genome bin (both assemblies with Idba_ud41, Supplementary 299 
Fig. 8C). The latter might be expected to lead to the “cleanest” genome assembly because it includes 300 
the minimum between-sample sequence variation, lowering the probability of generating chimeric 301 
contig46. The former may be necessary if the virus is locally rare, so that sequences from multiple 302 
metagenomes are needed to achieve complete genome coverage. Thus, if the assembly from the single 303 
“highest coverage sample” was improved or equivalent to the initial assembly (longest contig in the 304 
new assembly representing ≥95% of the longest contig in the initial assembly), this set of contigs was 305 
selected as the sequence for this bin (n=6,423). This optimal single-sample assembly was thus 306 
privileged compared to a cross-assembly (either based on the initial contigs or on the re-assembly of all 307 
sequences aligned to that bin). Otherwise, the “all samples” bin re-assembly was selected if equivalent 308 
or better than the initial assembly (longest contig representing ≥95% of the longest initial contig, 309 
n=999). The assumption that cross-assembly would be needed for locally rare viruses, without a high-310 
coverage sample, was confirmed by the comparison between the highest coverage of these two types of 311 
bins: on average, bins for which the “optimal” assembly were selected displayed a maximum coverage 312 
of 5.47 per Gb of metagenome, while the bins for which the “cross-assembly” was selected displayed a 313 
maximum coverage of 1.37 per Gb of metagenome (Supplementary Table 2). Finally, if both re-314 
assemblies yielded a longest contig smaller (<95%) than the one in the initial assembly, the bin was 315 
considered as a false positive (i.e. binning of contigs from multiple genomes, n=1,356), and contigs 316 
from the initial assembly were considered as “unbinned” (263,006 contigs, added to the 623,665 317 
contigs ≥1.5kb initially retained as “unbinned”). 318 
 319 



Identification of viral contigs and delineation of viral populations 320 
Despite efforts to completely remove cellular DNA during sample preparation, the resulting viral 321 

metagenomic datasets will only ever be enriched for viruses47. Thus, assembled sequences in the GOV 322 
dataset were in silico filtered a posteriori to identify and remove clearly non-viral signal. In this way, 323 
our purification methods should have greatly enriched for viruses, but the in silico decontamination 324 
step served as a back-up for problematic samples. Together these two “filters” mean that virtually no 325 
known cellular signal should have been considered in our analyses. For the in silico cleaning step, 326 
VirSorter48 was used to identify and remove microbial contigs using the “virome decontamination” 327 
mode, with every contig ≥10kb and not identified as a viral contig being considered as a microbial 328 
contig. Sequences with a prophage predicted were manually curated to distinguish actual prophages 329 
(i.e. viral regions within a microbial contig) from contigs that belonged to a viral genome and were 330 
wrongly predicted as a prophage. Contigs originating from an eukaryotic virus were identified based on 331 
best BLAST hit affiliation of the contig predicted genes against NCBI RefseqVirus (see Supplementary 332 
Text).  333 

The genome bins were affiliated as microbial (if 1 or more contigs were identified as microbial, 334 
n=1,763), eukaryotic virus (if contigs affiliated as eukaryotic virus comprised more than 10kb or more 335 
than 25% of the genome bin total length, n=962) or viral (i.e. archaeal and bacterial viruses, n=4,341), 336 
with the 356 remaining bins, lacking a contig long enough for an accurate affiliation, considered as 337 
“unknown” (see Supplementary Text). 338 

Viral bins were then refined to evaluate if they corresponded to a single or a mix of viral 339 
population(s). To that end, the Pearson correlation and Euclidean distance between abundance profiles 340 
(i.e. profile of the contig average coverage depth across the 104 samples) of bin members and the bin 341 
seed (i.e. the largest contig) were computed, and a single-copy viral marker gene (TerL) was identified 342 
in binned contigs (Supplementary Fig. 8E). Thresholds were chosen to maximize the number of bins 343 
with exactly one TerL gene and minimize the number of bins with multiple TerL genes (Supplementary 344 
Fig. 8G). For each bin, contigs with a Pearson correlation coefficient to the bin seed <0.96 or a 345 
Euclidean distance to the seed >1.05 were removed from the bin, and added to the pool of unbinned 346 
contigs. Eventually, every bin still displaying multiple TerL genes after this refinement step were split, 347 
and all corresponding contigs added to the pool of “unbinned” contigs (Supplementary Fig. 8E).  348 

The final set of contigs was formed by compiling (i) all contigs belonging to a viral bin, (ii) 349 
“unbinned” viral contigs (i.e. contigs affiliated to archaeal and bacterial virus and not part of any 350 
genome bin), and (iii) viral contigs identified in microbial or eukaryote virus bins (considered as 351 
“unbinned” contigs, Supplementary Fig. 8F). Within this set of contigs, all viral bins were considered 352 
as viral populations, as well as every unbinned viral contig ≥10kb, leading to a total of 15,222 epi- and 353 
mesopelagic populations, and 58 bathypelagic populations (Supplementary Fig. 1, Supplementary 354 
Table 2, and Supplementary Text). In this study, we focus only on the 15,222 epi- and mesopelagic 355 
populations, totaling 24,353 contigs. For the detection of AMGs, we added to these populations all 356 
short epi- and mesopelagic unbinned viral contigs (<10kb), adding up to a total of 298,383 contigs. 357 
 358 
Sequence clustering and annotations 359 
Dataset of publicly available viral genomes and genome fragments 360 

Genomes of viruses associated with a bacterial or archaeal host were downloaded from NCBI 361 
RefSeq (1,680 sequences, v70, 05-26-2015). To complete this dataset of reference genomes, viral 362 
genomes and genome fragments available in Genbank but not in RefSeq were downloaded (July 2015) 363 
and manually curated to select only bacterial and archaeal viruses (1,017 sequences). These included 364 
viral genomes not yet added to RefSeq, as well as genome fragments from fosmid libraries generated 365 
from seawater samples9,10. Mycophage sequences (available from http://phagesdb.org49) were 366 
downloaded (July 2015) and included as well if not already in RefSeq (734 sequences). Finally, 12,498 367 
viral genome fragments from the VirSorter Curated Dataset, identified in publicly available microbial 368 



genome sequencing projects, were added to the database8. 369 
 370 

Genome (fragments) clustering through gene-content based network analysis 371 
Proteins predicted from 14,650 large GOV contigs (≥10kb and ≥10 genes), were added to all 372 

proteins from the publicly available viral genomes and genomes fragments gathered, and compared 373 
through all-vs-all blastp, with a threshold of 10-5 on e-value and 50 on bit score. Protein clusters were 374 
then defined using MCL (using default parameters for clustering of proteins, similarity scores as 375 
log-transformed e-value, and 2 for MCL inflation50). vContact (https://bitbucket.org/MAVERICLab/ 376 
vcontact) was then used to calculate a similarity score between every pair of genome and/or contigs 377 
based on the number shared of PCs between the two sequences (as in7,8), and then compute a MCL 378 
clustering of the genomes/contigs based on these similarity scores (thresholds of 1 on similarity score, 379 
MCL inflation of 2). The resulting viral clusters (or VCs, clusters including ≥2 contigs and/or 380 
genomes), consistent with a clustering based on whole-genome BLAST comparison, corresponded to 381 
approximately genus-level taxonomy, with rare cases closer to subfamily-level taxonomy (Extended 382 
Data Fig. 2 and Supplementary Text). A total of 1,259 viral clusters were obtained, with 867 including 383 
at least one GOV sequence. Notably, however, automatically defined VCs merely serve as a starting 384 
place for assigning viral taxonomy. Current ICTV convention for formal taxonomic consideration of 385 
these VCs would require manual comparison of genomes and genome fragments to identify signature 386 
genes, comparison of phylogenetic signals, and ideally observation of morphological features of 387 
corresponding viruses, although this process is currently being reviewed as advanced computational 388 
analytics and genome datasets, such as those presented here, are being developed. 389 
 390 
Viral contigs annotation 391 

A functional annotation of all GOV predicted proteins was based on a comparison to the PFAM 392 
domain database (v2751) with HmmSearch52 (threshold of 30 on bit score and 1e-3 on e-value), and 393 
additional putative structural proteins were identified through a BLAST comparison to protein clusters 394 
detected in viral metaproteomics dataset53. This metaproteomics dataset led to the annotation of 13,547 395 
hypothetical proteins lacking a PFAM annotation. A taxonomic annotation was performed based on a 396 
blastp of the predicted proteins against proteins from archaeal and bacterial viruses from NCBI RefSeq 397 
and Genbank (threshold of 50 on bit score and 10-3 on e-value).  398 

VCs were affiliated based on isolate genome members, when available. When multiple isolates 399 
were included in the VC, the VC was affiliated to the corresponding subfamily or genus of these 400 
isolates (excluding all “unclassified” cases). This was the case for VC_2 (T4 subfamily14,15), and VC_9 401 
(T7virus16). When only one or a handful of affiliated isolate genomes were included in the VC and 402 
lacked genus-level classification, a candidate name was derived from the isolate (if several isolates, 403 
from the first one isolated). This was the case for VC_5 (Cbaphi381virus54), VC_12 (P12024virus55), 404 
VC_14 (MED4-117virus), VC_19 (HMO-2011virus56), VC_31 (RM378virus57), VC_36 (GBK2virus58), 405 
VC_47 (Cbaphi142virus54) , and VC_277 (vB_RglS_P106Bvirus59). Otherwise, VCs were considered 406 
as “new VCs”.  407 
 408 
“Phage proteomic tree” (i.e. “whole-genome comparison tree”) computation and visualization 409 

All publicly available complete genomes (see above), all complete (circular) and near-complete 410 
(extrachromosomal genome fragment >50kb with a terminase) from the VirSorter Curated Dataset, and 411 
all complete and near-complete GOV contigs were compared to generate a phage proteomic tree, as 412 
previously described9,60. Briefly, a proteomic similarity score was calculated for each pair of genome 413 
based on a all-vs-all tblastx similarity as the sum of bit scores of significant hits between two genomes 414 
(e-value ≤ 0.001, bit score ≥30, identity percentage ≥ 30). To normalize for different genome sizes, 415 
each genome was also compared to itself to generate a self-score, and the distance between two 416 
different genomes was calculated as a Dice coefficient (as in9), i.e. for two genomes A and B with a 417 



proteomic similarity score of AB, the corresponding distance d would be 1-(2*AB)/(AA+BB), with AA 418 
and BB being the self-score of genomes A and B respectively. For clarity, the tree displayed in 419 
Extended Data Fig. 2 only include non-GOV sequences found in a VC with GOV sequence(s) or within 420 
a distance <0.5 to a GOV sequence, adding for a total of 1,522 reference sequences. iTOL61,62 was used 421 
to visualize and display the tree. 422 
 423 
Distribution and relative abundance of viral populations and VCs 424 
Detection and estimation of abundance for viral contigs and populations 425 

The presence and relative abundance of a viral contig in a sample were determined based on the 426 
mapping of HQ reads to the contig sequences, computed with Bowtie 2 (options --sensitive, -X 2000, 427 
and --non-deterministic, default parameters otherwise42), as previously described4. A contig was 428 
considered as detected in a metagenome if more than 75% of its length was covered by aligned reads 429 
derived from the corresponding sample. A normalized coverage for the contig was then computed as 430 
the average contig coverage (i.e. number of nucleotides mapped to the contig divided by the contig 431 
length) normalized by the total number of bp sequenced in this sample. The detection and relative 432 
abundance of a viral population was based on the coverage of its contigs: a population was considered 433 
as detected in a sample if more than 75% of its cumulated length was covered, and its normalized 434 
coverage was computed as the average normalized coverage of its contigs. 435 

 436 
Relative abundance of VCs 437 

The relative abundance of VCs was calculated based on the coverage of its members within the 438 
15,222 viral populations identified. If a population included contigs all linked to the same VC, or 439 
linked to a single VC except for unclustered (because too short) contigs, this population coverage was 440 
added to the total of the corresponding VC. In the rare cases where the link between population and VC 441 
was ambiguous because different contigs within a population pointed toward different VCs (n=475, i.e. 442 
3.1% of the populations), the population coverage was equally split between these VCs. Finally, if no 443 
contig in the population belonged to any VC (n=2,605, 17% of the populations), the population 444 
coverage was added to the “unclustered” category. Eventually, for each sample, the cumulated coverage 445 
of a VC was normalized by the total coverage of all populations to calculate a relative abundance of the 446 
VC among viral populations. 447 

The selection of abundant VCs within a sample was based on the contribution of the VC to the 448 
sample diversity as measured by the Simpson index. For each sample, the overall Simpson index was 449 
first calculated with all VCs. Then, VCs were sorted by decreasing relative abundance and 450 
progressively added to a new calculation of the Simpson index. VCs considered as abundant were the 451 
ones which, once cumulated, represented 80% of the sample diversity (i.e. a Simpson index greater or 452 
equal to 80% of the sample total Simpson index, Extended Data Fig. 1C). The 38 VCs identified as 453 
abundant in at least 2 different stations were selected as “recurrently abundant VCs in the GOV 454 
dataset” (Fig. 2 and Extended Data Fig. 3). 455 
 456 
Host prediction and diversity 457 

Three different approaches were used to link viral contigs and putative host genomes: blastn 458 
similarity, CRISPR spacer similarity, and tetranucleotide frequencies similarities. An overview of the 459 
contigs generation process is provided in Supplementary Fig. 8, and an extended discussion about the 460 
efficiency and raw results of these host prediction methods is provided in Supplementary Text, 461 
Supplementary Table 4, and ref. 63. A list of all host predictions by viral sequence is available in 462 
Supplementary Table 5. 463 

 464 
Generation of host database 465 

A genome database of putative hosts for the epi- and mesopelagic GOV viruses was generated, 466 



including all archaea and bacteria genomes annotated as “marine” from NCBI RefSeq and WGS (both 467 
times only sequences ≥5kb, 184,663 sequences from 4,452 genomes, downloaded in August 2015), and 468 
all contigs ≥5kb from the 139 Tara Oceans microbial metagenomes corresponding to the bacteria and 469 
archaea size fraction (791,373 sequences)18. For these microbial metagenomic contigs, a first blastn 470 
was computed to compare them to all GOV contigs, and exclude from the putative host dataset all 471 
metagenomic contigs with a significant similarity to a viral GOV sequence (thresholds of 50 on bit 472 
score, 0.001 on e-value, and 70% on identity percentage) on ≥90% of their length, as these are likely 473 
sequences of viral origin sequenced in the bacteria and archaea size fraction (these represented 2.2% of 474 
the contigs in the assembled microbial metagenomes). The taxonomic affiliation of NCBI genomes was 475 
taken from the NCBI taxonomy. For Tara Oceans contigs, a last common ancestor (LCA) affiliation 476 
was generated for each contig based on genes affiliation18, if 3 genes or more on the contig were 477 
affiliated. 478 
 479 
BLAST-based identification of sequence similarity between viral contigs and host genome 480 

All GOV viral contigs were compared to all archaeal and bacterial genomes and genome fragments 481 
with a blastn (threshold of 50 on bit score and 0.001 on e-value), to identify regions of similarity 482 
between a viral contig and a microbial genome, indicative of a prophage integration or horizontal gene 483 
transfer63. A host prediction was made when (i) a NCBI genomes displayed a region similar to a GOV 484 
viral contig ≥5kb at ≥70% id, or (ii) when a Tara Oceans microbial metagenomic contig (≥5kb) 485 
displayed a region similar to a GOV viral contig ≥2.5kb at ≥70% id. 486 
 487 
Matches between GOV viral contigs and CRISPR spacers. 488 

CRISPR arrays were predicted for all putative host genomes and genome fragments (NCBI 489 
microbial genomes and Tara Oceans microbial metagenomic contigs) with MetaCRT64,65. CRISPR 490 
spacers were extracted, and all spacers with ambiguous bases or low complexity (i.e. consisting of 4 to 491 
6 bp repeat motifs) were removed. All remaining spacers were matched to viral contigs with fuzznuc66, 492 
with no mismatches allowed, which although rarely observed yields highly accurate host predictions63( 493 
Supplementary Table 4). 494 
 495 
Nucleotide composition similarity: comparison of tetranucleotide frequency  496 

Bacterial and archaeal viruses tend to have a genome composition close to the genome composition 497 
of their host, a signal that can be used to predict viral-host pairs8,63,67. Here, canonical tetranucleotide 498 
frequencies were observed for all viral and host sequences using Jellyfish68, and mean absolute error 499 
(i.e. average of absolute differences) between tetranucleotide frequency vectors were computed with 500 
in-house Perl and Python scripts for each pair of viral and host sequence as in ref. 8. A GOV viral 501 
contig was then assigned to the closest sequence (i.e. lowest distance d) from the pool of NCBI 502 
genomes if d<0.001 (because both the tetranucleotide frequency signal and the taxonomic affiliation of 503 
these complete genomes are more robust than for metagenomic contigs), and otherwise assigned to the 504 
closest (i.e. lowest distance) Tara Oceans microbial contig if d<0.001. 505 
 506 
Summarizing host prediction at the VC level 507 

Overall, 3,675 GOV contigs could be linked to a putative host group among the 24,353 GOV 508 
contigs associated with an epi- or mesopelagic viral population. To summarize these affiliations at the 509 
VC level, a Poisson distribution was used to estimate the number of expected false positive associations 510 
for each VC – host group combination based on (i) the global probability of obtaining a host prediction 511 
across all pairs of viral and host sequences tested and for all methods (5.8x10-08), (ii) the number of 512 
potential predictions generated for the VC, corresponding to 3 times the number of sequences in the VC 513 
(to take into account the three methods), and (iii) the number of sequences from the host group in the 514 
database (Supplementary Figure 2). By comparing the number of links observed between a VC and a 515 



host group to this expected value, which takes into account the bias in database (i.e. some host groups 516 
will be over- or under-represented in our set of archaeal and bacterial genomes and genome fragments) 517 
and the bias linked to the variable number of sequences in VCs, we can determine if the number of 518 
associations observed for any VC – host group combination is likely to be due to chance alone (and 519 
calculate the associated p-value). 520 
 521 
Microbial community diversity and richness indexes 522 

Diversity and richness indexes for putative host populations were based on the OTU abundance 523 
matrix generated from the analysis of miTAGs in Tara Oceans microbial metagenomes18. These indexes 524 
were computed for each host group at the same taxonomic level as the host prediction, i.e. the phylum 525 
level except for Proteobacteria where the class level is used. The R package vegan69 was used to 526 
estimate for each group (i) a global Chao index (i.e. including all OTUs from all samples) through the 527 
function estaccumR, (ii) a sample-by-sample Chao index with the function estimateR, and (iii) 528 
Sorensen indexes between all pairs of samples with the function betadiver. Diversity indexes presented 529 
in Extended Data Fig 4 are based on epipelagic samples only, as the 38 VCs identified as abundant 530 
were mostly retrieved in epipelagic samples. Candidate division OP1 was excluded from this analysis 531 
because no OTU affiliated to this phylum was identified. 532 

 533 
Identification and annotation of putative AMGs 534 
Detection of AMGs 535 

Predicted proteins from all GOV viral contigs were compared to the PFAM domain database 536 
(hmmsearch52, threshold of 40 on bit score and 0.001 on e-value), and all PFAM domains detected 537 
were classified into 8 categories: “structural”, “DNA replication, recombination, repair, nucleotide 538 
metabolism”, “transcription, translation, protein synthesis”, “lysis”, “membrane transport, membrane-539 
associated”, “metabolism”, “other”, and “unknown” (as in ref. 20). Four AMGs (i.e. similar to a domain 540 
from the “metabolism” category) were then selected for further study because of their central role in 541 
sulfur (dsrC and soxYZ) or nitrogen (P-II, amoC) cycle, and the fact that these had never been detected 542 
in a surface ocean viral genome so far (dsrC/tusE-like genes have been detected in deep water 543 
viruses11,21). To evaluate if an AMG was “known”, a list of PFAM domain detected in NCBI 544 
RefSeqVirus and Environmental Phages was computed based on a similar hmmsearch comparison 545 
(threshold of 40 on bit score and 0.001 on e-value), and augmented by manual annotation of AMGs 546 
from20,70. These corresponded for the most part to photosynthesis and carbon metabolism AMGs 547 
previously described in cyanophages71–75. The complete list of PFAM domains detected in GOV viral 548 
contigs is available as Supplementary Table 6. 549 

 550 
Phylogenetic tree generation and contigs map comparison 551 

Sequences similar to these AMGs were recruited from the Tara Oceans microbial metagenomes18 552 
based on a blastp of all predicted proteins from microbial metagenome to the viral AMGs identified 553 
(threshold of 100 on bit score, 10-5 on e-value, except for P-II where a threshold of 170 on bit score was 554 
used because of the high number of sequences recruited). The viral AMG sequences were also 555 
compared to NCBI nr database (blastp, threshold of 50 on bit score and 10-3 on e-value) to recruit 556 
relevant reference sequences (up to 20 for each viral AMG sequence). These sets of viral AMGs and 557 
related protein sequences were then aligned with Muscle76, the alignment manually curated to remove 558 
poorly aligned positions with Jalview77, and two trees were computed from the same curated 559 
alignment: a maximum-likelihood tree with FastTree (v2.7.1, model WAG, other parameters set to 560 
default78) and a bayesian tree with MrBayes (v3.2.5, mixed evolution models, other parameters set to 561 
default, 2 MCMC chains were run until the average standard deviation of split frequencies was <0.015, 562 
relative burn-in of 25% used to generate the consensus tree79). In all cases except AmoC, the mixed 563 
model used by MrBayes was 100% WAG, confirming that this model was well suited for archaeal and 564 



bacterial virus protein trees. Manual inspection revealed only minor differences between each pair of 565 
trees, so an SH test was used to determine which tree best fitted the sequence alignment, using the R 566 
library phangorn80. Itol61 was used to visualize and display these trees, in which branches with supports 567 
<40% were collapsed. Annotated interactive trees are available online at 568 
http://itol.embl.de/shared/Siroux. Contigs map comparison were generated with Easyfig81, following 569 
the same method as for the VCs (see Supplementary Information). 570 

 571 
Functional characterization of putative AMGs 572 

Conserved motifs were identified on the different AMGs based on the literature: dsrC conserved 573 
motifs were obtained from ref. 24, soxYZ conserved residues were identified from the PFAM domains 574 
PF13501 and PF08770, and P-II conserved motifs from PROSITE documentation PDOC00439. A 3D 575 
structure could also be predicted for P-II AMGs by I-TASSER82 (default parameters), the quality of 576 
these predictions being confirmed with ProSA web server83. To further confirm the functionality of 577 
these genes, selective constraint on these AMGs was evaluated through pN/pS calculation, as in ref. 84. 578 
Briefly, synonymous and non-synonymous SNPs were observed in each AMG, and compared to 579 
expected ratio of synonymous and non-synonymous SNPs under a neutral evolution model for this 580 
genes. The interpretation of pN/pS is similar as for dN/dS analyses, with the operation of purifying 581 
selection leading to pN/pS values < 1. Finally, AMG transcripts were searched in metatranscriptomic 582 
datasets generated through the Tara Oceans consortium (ENA Id ERS1092158, ERS488920, and 583 
ERS494518). For generating these metatranscriptomes, bacterial rRNA depletion was carried out on 584 
240–500 ng total RNA using Ribo-Zero Magnetic Kit for Bacteria (Epicentre, Madison, WI) for 0.2–585 
1.6 and 0.22–3µm filters. The Ribo-Zero depletion protocol was modified to be adapted to low RNA 586 
input amounts85. Depleted RNA was used to synthetize cDNA with SMARTer Stranded RNA-Seq Kit 587 
(Clontech, Mountain View, CA)85. Metatranscriptomic libraries were quantified by qPCR using the 588 
KAPA Library Quantification Kit for Illumina Libraries (KapaBiosystems, Wilmington, MA) and 589 
library profiles were assessed using the DNA High Sensitivity LabChip kit on an Agilent Bioanalyzer 590 
(Agilent Technologies, Santa Clara, CA). Libraries were sequenced on Illumina HiSeq2000 instrument 591 
(Illumina, San Diego,CA) using 100 base-length read chemistry in a paired-end mode. High quality 592 
reads were then mapped to viral contigs containing dsrC, soxYZ, P-II, or amoC genes with 593 
SOAPdenovo243 within MOCAT40 (options screen and filter with length and identity cutoffs of 45 and 594 
95%, respectively, and paired-end filtering set to yes), and coverage was defined for each gene as the 595 
number of bp mapped divided by gene length (including only reads mapped to the predicted coding 596 
strand). 597 

 598 
Distribution of AMGs and association with geochemical metadata 599 

The distribution and relative abundance of AMGs was based on the read mapping and normalized 600 
coverage of the contig including the AMG. To get a range of temperature and nutrient concentrations 601 
for the widespread AMGs (detected in >5 stations) that takes into account both the samples in which 602 
these AMGs were detected and the differences in normalized coverage, a set of samples was selected 603 
through a weighted random drawing replacement, with the weight of each sample corresponding to the 604 
AMG's normalized coverage. That way, a range of temperature or nutrient concentration values 605 
associated with the AMG's distribution and abundance could be generated for each AMG and each 606 
environmental parameter tested. The number of samples randomly selected for each AMG was the 607 
same as the total number of samples for which a value of this parameter was available. 608 
 609 
Code and data availability 610 

Scripts used in this manuscript are available on the Sullivan lab bitbucket under project 611 
“GOV_Ecogenomics” (http://bitbucket.org/MAVERICLab/gov_ecogenomics/overview). Scripts used 612 
in the assessment of microbial diversity are gathered in the directory “Host_diversity”, the ones used 613 



for host predictions are in “Host_prediction”, and the scripts used to identify abuntant VCs are in 614 
“Virus_clusters_prevalence”. All raw reads are available through ENA (Tara Oceans) or JGI 615 
(Malaspina) using the dataset identifiers listed in Supplementary Table 1. Processed data are available 616 
through iVirus (http://mirrors.iplantcollaborative.org/browse/iplant/home/shared/ivirus/GOV/), 617 
including all sequences from assembled contigs, list of viral populations and associated annotated 618 
sequences as genbank files, viral clusters composition and characteristics, map comparisons of 619 
genomes and contigs of the 38 abundant VCs, and host predictions for viral contigs. 620 
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Figure legends 839 
 840 
Figure 1: Composition of the Global Ocean Viromes (GOV) dataset. A. Size of viral contigs (x-841 
axis) and cumulative coverage across the GOV dataset (y-axis). Contigs corresponding to complete 842 
(345 contigs) or near-complete genomes (425 contigs) are indicated. For clarity, only contigs associated 843 
with a viral population (24,412 contigs) are displayed. B. Distribution of all viral clusters (VCs) 844 
according to the origin of their members. Viral genomes (or fragments) in a VC can originate from 845 
isolate viral genomes, the VirSorter Curated Dataset8 (viral genomes identified in silico from microbial 846 
genomes), environmental viral genomes and genome fragments (e.g. from fosmid libraries), or the 847 
GOV dataset. VCs including at least one GOV sequence and further analyzed in this study are 848 
highlighted in bold. 849 
 850 
Figure 2: Characterization of the dominant oceanic viral clusters (VCs). A. Distribution and 851 
abundance of the 38 recurrently abundant VCs according to the total number of stations in which 852 
members of the VC were detected (x-axis), and the number of samples in which the VC was detected in 853 
the abundant fraction (y-axis). “Known viruses” are VCs with ICTV-classified reference sequences, 854 
“Unclassified reference(s)” are VCs with isolate genomes lacking ICTV classification, and “New VCs” 855 
are composed solely of environmental sequences. B. GOV samples with their most abundant VC 856 
mapped to station locations. Samples are stacked vertically when multiple depths are available, with a 857 
horizontal line separating epipelagic from mesopelagic layers. Map modified with permission from N. 858 
Le Bescot, EPEP, CNRS Roscoff. C. Summary of the 4 globally abundant VCs affiliation, origin of VC 859 
members (Env: environmental viral sequences), estimated genome size, predicted host range, and 860 
distribution (relative abundance are indicated as % of the viral populations identified). The abundant 861 
epipelagic microbial groups (representing >1% of the microbial OTUs abundance of epipelagic 862 
samples) are highlighted in bold; Alphaproteob.-Alphaproteobacteria, Betaproteob.-Betaproteobacteria, 863 
Deinococcus-Th.-Deinococcus-Thermus, Deltaproteob.-Deltaproteobacteria, Gammaproteob.-864 
Gammaproteobacteria, Cand div OP1-Candidate division OP1. Oceanic basins are indicated for VCs 865 
distributions; Med. Sea-Mediterranean Sea. 866 
 867 
Figure 3: Characterization and distribution of viral Auxiliary Metabolic Genes (AMGs) involved 868 
in sulfur and nitrogen cycles. Schematics for (A) microbial sulfur oxidation pathways involving the 869 
two main gene clusters (dsr and sox) and (B) the central role of the P-II protein in cell regulation 870 
(adapted from26,31). AMG color outlines indicate their viral taxonomic affiliation. Ammonium 871 
transporters detected next to viral P-II are highlighted with a dashed outline. C. Distribution of viral 872 
AMG clades, with mesopelagic samples highlighted in green, and geographically restricted clades 873 
outlined. D. Temperature and nutrient conditions for which widespread epipelagic AMGs tend to be 874 
most abundant. For each environmental parameter, the range across all epipelagic samples is displayed 875 
alongside distributions representing the range of values where each AMG clade was detected, weighted 876 



by the AMG coverage across these samples (see Extended Data Fig. 9 for underlying coverage data). 877 
Distributions significantly different from the “All Samples” distribution (two-sided KS-test) are 878 
indicated with stars. Boxes represent the first and third quartiles around the median. 879 
 880 
Extended Data Figure 1: Accumulation curves of populations (A) and viral clusters (VCs, B) and 881 
identification of abundant VCs in GOV samples (C). A & B. Accumulation curves were computed 882 
from 50 randomly shuffled samples (blue dots), with all, epipelagic, mesopelagic, or bathypelagic 883 
subsets of the data. For each curve, the average of 50 iterations is displayed with red dots. C. Schematic 884 
of the selection process of abundant VCs. For each sample, VCs accounting for (up to) 80% of the 885 
sample diversity (as assessed by Simpson index) were considered as abundant (example for sample 886 
125_MIX on the left). VCs detected as abundant in at least two different stations were included in the 887 
38 VCs described in Fig. 2 and Extended Data Fig. 3. 888 
 889 
Extended Data Figure 2: Comparison of VCs with other classification methods: phage proteomic 890 
tree and percentage of shared genes. The phage proteomic tree includes the 756 GOV complete and 891 
near-complete genomes from epi- and mesopelagic samples, and closest references from RefSeq and 892 
Environmental phages (d<0.5 to a GOV sequence or found in the same VC as a GOV sequence). 893 
Branches of monophyletic clades including more than 3 GOV and/or uncultivated marine sequences 894 
with no isolate reference are highlighted in blue. All VCs with more than 8 representatives in the tree or 895 
part of the 38 abundant VCs are indicated with coloring of the outer ring. The name and affiliation (if 896 
available) of the 38 abundant VCs are indicated next to the VC on the colored ring. VCs whose 897 
members were gathered in a single monophyletic clades are indicated with a solid black outline, while 898 
VCs for which all but one members were gathered in a single monophyletic clades are highlighted with 899 
a dashed black outline. Inset: distribution of number of shared genes estimated based on the number of 900 
shared PCs (protein clusters) for viral genome/contigs pairs either between different VCs or within 901 
VCs. On average, 73% and 39% of sequences within a VC shared more than 20% and 40% of their 902 
genes, respectively, which represent the current thresholds currently accepted for sub-family and genus 903 
designations. Similarly, 83% of sequences within a VC were consistently affiliated in the phage 904 
proteomic tree as they formed a monophyletic group including only members of the particular VC. 905 
Thus all three classification methods are largely consistent for the GOV dataset (see Supplementary 906 
Text). 907 
 908 
Extended Data Figure 3: Summary of 34 of the 38 abundant viral clusters (VCs, the 4 other 909 
abundant VCs being the ubiquitous ones presented in Fig. 2). Predicted genome size is based on the 910 
set of isolates and circular contigs in the VC (NA corresponds to VCs without any circular contigs, or 911 
for which the relative standard deviation of estimated genome size across the different isolate(s) and/or 912 
circular contigs is greater than 15%). Host association values are based on the number of cluster 913 
members associated with each host group, the statistical significance of this number of predictions 914 
being evaluated by comparison with an expected number of associations calculated from a Poisson 915 
distribution. Host associations based on known isolates are indicated with a star (for associations based 916 
on cultivated isolates) or a dot (for associations based on the detection of a cluster member in a 917 
microbial genome from the VirSorter Curated Dataset). The abundant epipelagic microbial groups 918 
(representing >1% of the microbial OTUs abundance of epipelagic samples) are highlighted in bold. 919 
Distribution and relative abundance of VCs are based on the cumulated coverage of VC members 920 
among sample viral populations. The main oceanic basins are indicated for each set of sample, Med. 921 
Sea-Mediterranean Sea. 922 
 923 
Extended Data Figure 4: Association between abundant viral clusters (VCs) and host group 924 
abundance and diversity A. Abundance and diversity of bacterial and archaeal host groups associated 925 



with the 38 abundant VCs (see Fig. 2A). For each host group (phylum level, except for Proteobacteria 926 
where the class level is used), the different panels display from top to bottom (i) the number of VCs 927 
associated with this host group, (ii) the global relative abundance of this group estimated from the 928 
microbial metagenomic OTU counts, (iii) the global diversity of this group based on a Chao index 929 
computation including all Tara Oceans microbial metagenome samples (i.e. including both Alpha and 930 
Beta diversity), (iv) the distribution of Chao indexes by sample for this group (Alpha diversity), and (v) 931 
the average Sorensen index between pairs of samples including at least one OTU of this group (Beta 932 
diversity). OTU counts were derived from the 109 epipelagic microbial metagenomes described in18. B. 933 
Pearson correlations between host group relative abundance or diversity indexes (Global Chao, 934 
Average Chao across samples, and Average Sorensen across samples) and the number of VCs. 935 
 936 
Extended Data Figure 5: Diversity, distribution, and genome context of dsrC genes in GOV 937 
contigs. A. Maximum-likelihood tree (from an amino-acid alignment) including the 11 viral DsrC and 938 
microbial sequences from microbial metagenomes and NCBI nr database. The presence of conserved C 939 
residues (named Cys-A & Cys-B, as in ref. 24) is indicated with color circles next to each sequence or 940 
clade, and the corresponding type of DsrC-like protein is indicated by coloring the branch or clade. The 941 
microbial metagenomic contigs affiliated to uncultivated, marine sulfur-oxidizing 942 
Gammaproteobacteria (as confirmed by complementary phylogenetic analysis of DsrAB, 943 
Supplementary Fig. 7) are indicated with a star next to the sequence or clade. Viral AMG sequences are 944 
highlighted in blue, internal nodes SH-like supports are represented by proportional circles (all nodes 945 
with support < 0.40 were collapsed). Each dsrC AMG is associated with an abundance profile (on the 946 
right) displaying the relative abundance of the contig across the 91 epi- and mesopelagic samples 947 
(based on normalized coverage, i.e. contig coverage / Gb of metagenome). B. Comparison of dsrC-948 
containing contigs maps. T4-like marker gene (T4 baseplate) is indicated on the maps, alongside 949 
putative AMGs (Fe-S biosyn for Iron-sulfur cluster biosynthesis, and Amt for Ammonia transporter). 950 
 951 
Extended Data Figure 6: Diversity, distribution, and genome context of soxYZ genes in GOV 952 
contigs. A. Bayesian tree (from an amino-acid alignment) including the 4 viral SoxYZ and microbial 953 
sequences from microbial metagenomes and NCBI nr database. The affiliation of microbial clades 954 
(either from the NCBI reference or from the LCA affiliation of metagenomic contigs) is indicated by 955 
coloring of the grouped clades or with a colored square next to the sequence. Viral AMG sequences are 956 
highlighted in blue, posterior probabilities are represented by proportional circles (all nodes with 957 
posterior probability < 0.40 were collapsed). Clades including sulfur-oxidation proteobacteria are 958 
indicated on the tree. Each soxYZ AMG is associated with an abundance profile (on the right) 959 
displaying the relative abundance of the contig across the 91 epi- and mesopelagic samples (based on 960 
normalized coverage, i.e. contig coverage / Gb of metagenome). B. Comparison of soxYZ-containing 961 
contigs maps. For contig GOV_bin_4310_contig-100_0, the second largest contig from the same bin 962 
(GOV_bin_4310_contig-100_1) is displayed. T4-like marker genes (Gp23 and T4 baseplate) are 963 
indicated on the maps, alongside putative AMGs (Fe-S biosyn: Iron-sulfur cluster biosynthesis). 964 
 965 
Extended Data Figure 7: Diversity, distribution, and genome context of P-II genes in GOV 966 
contigs. A. Maximum-likelihood tree (from an amino-acid alignment) including the 10 viral P-II and 967 
microbial sequences from microbial metagenomes and NCBI nr database. The affiliation of microbial 968 
clades (either from the NCBI reference or from the LCA affiliation of metagenomic contigs) is 969 
indicated by coloring of the grouped clades or with a colored square next to the sequence. The 970 
sequences lacking the conserved uridylation site of P-II (Supplementary Fig. 5) are highlighted with a 971 
star next to the sequence name or clade. Viral AMG sequences are highlighted in blue, internal nodes 972 
SH-like supports are represented by proportional circles (all nodes with support < 0.40 were collapsed). 973 
Each P-II AMG is associated with an abundance profile (on the right) displaying the relative abundance 974 



of the contig across the 91 epi- and mesopelagic samples (based on normalized coverage, i.e. contig 975 
coverage / Gb of metagenome). B. Comparison of P-II-containing contigs maps. Ammonia transporter 976 
genes linked to P-II are indicated on the map (Amm Transp, dark red). When available, the VC 977 
affiliation of each contig is indicated next to the contig name. Contig GOV_bin_5834_contig-100_7 is 978 
too short to be clustered based on a shared PC network, however the seed contig of its population was 979 
clustered (in VC_12, Siphoviridae - P12024virus), hence this seed contig affiliation is indicated. 980 
 981 
Extended Data Figure 8: Diversity, distribution, and genome context of amoC gene in GOV 982 
contigs. A. Maximum-likelihood tree (from an amino-acid alignment) including the GOV amoC AMG 983 
and microbial sequences from microbial metagenomes and NCBI nr database. The affiliation of 984 
microbial clades (either from the NCBI reference or from the LCA affiliation of metagenomic contigs) 985 
is indicated by coloring of the grouped clades or with a colored square next to the sequence. Viral AMG 986 
sequence is highlighted in blue, internal nodes SH-like supports are represented by proportional circles 987 
(all nodes with support < 0.40 were collapsed). B. Abundance profile displaying the relative abundance 988 
of the contig across the 91 epi- and mesopelagic samples (based on normalized coverage, i.e. contig 989 
coverage / Gb of metagenome). C. Map of the amoC-containing contig. 990 
 991 
Extended Data Figure 9: Normalized coverage of contigs harboring AMG as function of the 992 
temperature and nutrient concentrations (NO2, NO3, PO4) of the corresponding samples. AMGs 993 
are grouped by clade based on the phylogeny (see Extended Data Fig. 5-6-7), and coverages are 994 
cumulated when a clade included multiple contigs. Plots display the cumulated normalized coverage of 995 
a clade (y-axis) as function of the temperature or nutrient concentration (x-axis) across all epipelagic 996 
samples (mesopelagic samples were excluded from the analysis since the AMG signal was detected in 997 
epipelagic samples), only for clades not geographically restricted (i.e. found in >5 samples, see Fig. 998 
3C). Samples are color-coded according to their ocean and sea region (Supplementary Table 1). The 999 
calculated preferential range of temperature or nutrient concentration is displayed below each plot for 1000 
the epipelagic AMGs (P-II-4 distribution could not be linked to specific environmental conditions, but 1001 
this AMG is the only one consistently retrieved in mesopelagic samples). 1002 
 1003 
Extended Data Table 1: Summary of genes and contigs characteristics for new viral DsrC, 1004 
SoxYZ, and P-II AMGs. Each gene is linked to its contig, and when available, to the corresponding 1005 
viral cluster and predicted host (from BLAST hit, CRISPR spacer similarity, or nucleotide composition 1006 
similarity, Alphaprot.-Alphaproteobacteria, Gammaprot.-Gammaproteobacteria). Widespread and 1007 
abundant VCs are highlighted in bold. In addition, the calculated pN/pS of each gene is indicated 1008 
(measuring the strength of selection pressure occurring for this gene, the gene with a pN/pS not 1009 
representing a strong purifying selection is highlighted in red), as well as the coverage of these genes 1010 
and other genes in the contigs in 3 metatranscriptomic samples from 3 open ocean Tara stations (cases 1011 
where the AMG coverage is >0.5 and associated with the coverage of other genes from the same viral 1012 
contig are highlighted in green). 1013 
 1014 
 1015 
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