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Abstract 

Cholangiocarcinoma (CCA) is an aggressive tumor with a poor prognosis due to its late 

clinical presentation and the lack of effective non-surgical therapies. Unfortunately, most of 

the patients are not eligible for curative surgery owing to the presence of metastases at the 

time of diagnosis. Therefore, it is important to understand the steps leading to cell 

dissemination in patients with CCA. To metastasize from the primary site, cancer cells must 

acquire migratory and invasive properties by a cell plasticity-promoting phenomenon known 

as epithelial-mesenchymal transition (EMT). EMT is a reversible dynamic process by which 

epithelial cells gradually adopt structural and functional characteristics of mesenchymal cells, 

and has lately become a center of attention in the field of metastatic dissemination. In the 

present review, we aim to provide an extensive overview of the current clinical data and the 

prognostic value of different EMT markers that have been analyzed in CCA. We summarize 

all the regulatory networks implicated in EMT from the membrane receptors to the main 

EMT-inducing transcription factors (SNAIL, TWIST and ZEB). Furthermore, since a tumor is 

a complex structure not exclusively formed by tumor cells, we also address the prominent 

role of the main cell types of the desmoplastic stroma that characterizes CCA in the 

regulation of EMT. Finally, we discuss the therapeutic considerations and difficulties faced to 

develop an effective anti-EMT treatment due to the redundancies and bypasses among the 

pathways regulating EMT. 
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 Key Point Box 

- EMT is an early event of metastasis that endows tumor cells with invasive properties 

enabling them to spread toward other territories. 

- EMT contributes to CCA progression and chemoresistance.  

- The three families of transcription factors that regulate epithelial and mesenchymal marker 

expression during EMT (SNAIL, TWIST and ZEB) contribute to CCA progression. 

- Cells of CCA microenvironment, and not only cancer cells, lead to the activation of EMT. 

- Targeting of EMT is challenging due to the redundancies and bypasses among EMT-

regulated pathways. 
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Introduction 

Cholangiocarcinoma (CCA) accounts for 3% of all gastrointestinal cancers and it is the 

second most common primary hepatic tumor after hepatocellular carcinoma [1, 2]. CCA is 

composed of tumor cells exhibiting a phenotype of biliary epithelial cells, as well as non-

tumor cells, essentially myofibroblasts [3], and characterized by an aggressive behavior with 

early lymphatic and metastatic spread. CCA is subdivided into two main subclasses that 

differ in their anatomical presentation, natural history and treatment [4]. Intrahepatic CCA 

(iCCA) arises from small bile ducts and bile ductules whereas extrahepatic CCA (eCCA) 

originates from the hilum (perihilar CCA (pCCA)) to the distal portion of large bile ducts 

(dCCA) [4]. The term CCA will be used when studies do not distinguish between iCCA and 

pCCA/dCCA. While eCCA incidence remains stable, an increase in the incidence of iCCA 

has been observed, without any clear explanation [5]. 

Patients with CCA display a poor prognosis due to its late diagnosis and lack of effective 

non-surgical curative therapies. Surgical resection is the only curative treatment, but it is only 

available for a small percentage of patients with early-stage disease, and only 20-30% of 

these patients survive after 5 years due to the high rate of recurrence after surgery [6, 7]. 

Most of the patients are ineligible for curative surgery because of the presence of metastases 

at the time of diagnosis [8]. The only option for these patients is to undergo a palliative 

treatment with a combination of gemcitabine and platinum salt, the reference chemotherapy 

validated for advanced unresectable CCA [8, 9]. Understanding the steps that lead to cell 

dissemination in patients with CCA is currently an important issue to be resolved in order to 

identify new therapeutic targets to prevent cancer progression and recurrence. During the 

past few years, epithelial-mesenchymal transition (EMT) has gained a lot of attention 

regarding metastatic dissemination. However, other mechanisms, such as exosomes 

released by different tumor cell types or the role played by circulating tumor cells, cannot be 

ruled out. 
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EMT is a reversible dynamic process during which epithelial cells gradually adopt structural 

and functional characteristics of mesenchymal cells [10-13]. EMT is fundamental in several 

physiological processes, such as embryogenesis and wound healing. During the past decade 

EMT has been proven to be deeply involved in different pathological processes, including 

fibrosis development and cancer progression. More specifically, EMT is an early event of 

metastasis that is required for tumor cell migration and invasion from the primary tumor 

(Figure 1). Major EMT steps comprise modifications of gene expression allowing 

concurrently epithelial phenotype repression and mesenchymal phenotype activation [14, 

15]. The first changes take place at the adherens junctions with a deregulation of two main 

components, E-cadherin and β-catenin. Tight junction disruption also occurs and leads to a 

loss of apical-basal polarity. One mechanism by which E-cadherin is down-regulated occurs 

via EMT-inducing transcription factors (EMT-TFs), which comprise three families: SNAIL, 

ZEB and TWIST. EMT-TFs primarily regulate E-cadherin expression by repressing its 

promoter, but they also regulate in a positive manner the expression of genes associated 

with mesenchymal phenotypes including N-cadherin, vimentin, fibronectin, α-smooth muscle 

actin (α-SMA) and matrix metalloproteinases (MMPs) [15, 16]. Then, a reorganization of the 

epithelial actin cytoskeleton takes place with the formation of several migratory structures 

and the expression of MMPs to degrade the extracellular matrix (ECM). Thus, the acquisition 

of a mesenchymal-like phenotype endows the tumor cells with invasive properties, enabling 

them to spread toward other territories. 

This review aims to give a complete overview on the knowledge gained so far on EMT in 

CCA and its regulation. In addition, contribution of the microenvironment cells in the induction 

of tumor cell plasticity and therapeutic consideration of EMT will be discussed.  

Clinical evidence of EMT in cholangiocarcinoma (Table1) 

Disruption of intercellular junctions 

E-cadherin is a calcium-dependent cell-cell adhesion glycoprotein that constitutes with β-

catenin the backbone of adherens junctions and plays a key role in the maintenance of 
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epithelium integrity [17]. E-cadherin deregulation affects this integrity constituting one of the 

major hallmarks of EMT. While E-cadherin is localized at the plasma membrane in healthy 

biliary epithelium, its down-regulation and/or ectopic localization, i.e. cytoplasmic 

internalization, have been reported in malignant cholangiocytes [18-37]. Genetic mutations 

and epigenetic silencing through promoter hypermethylation of the E-cadherin gene (CDH1) 

are among the mechanisms that account for the down-regulation of E-cadherin [30, 33, 38]. 

A reduction of E-cadherin immunostaining was observed in 16.5-82.1% of iCCA [21, 24-26, 

29, 31, 32, 34-36] and eCCA [18, 37, 39, 40]. Although, down-regulation of E-cadherin in 

iCCA has been correlated with poor tumor differentiation, tumor size, advanced pTNM stage, 

intrahepatic metastasis and lymph node metastasis [25, 26, 29, 31, 32, 36], its prognostic 

value is still controversial. Ryu et al., did not find any impact of E-cadherin expression on 

overall survival (OS) or disease free survival (DFS) [24] whereas other groups demonstrated 

that E-cadherin loss was significantly associated with these parameters and was an 

independent prognostic factor [25, 32, 36]. In eCCA, patients with weak E-cadherin 

expression displayed lower survival rate than patients with high E-cadherin expression [18] 

and was also an independent prognostic factor [40]. 

During EMT, E-cadherin is disordered at the expense of the expression of another cadherin 

named N-cadherin that is normally expressed by mesenchymal cells. This switch operates in 

both types of CCA in which an up-regulation of N-cadherin expression has been observed 

[18, 25, 34, 40, 41]. Increasing N-cadherin expression has been associated with lower OS in 

both CCA subclasses [25, 40] and is an independent unfavorable prognostic factor in eCCA 

[40].  

β-catenin is retained at the membrane by E-cadherin while in cell cytoplasm β-catenin is 

recognized by the destruction complex wherein it is phosphorylated by GSK-3β (Glycogen 

Synthase Kinase-3 β). Thus, GSK-3β prevents β-catenin cytoplasm accumulation and 

consequently its translocation to the nucleus. When β-catenin reaches the nucleus, it 

associates with DNA-binding transcription factors to regulate gene expression, including 
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EMT genes [42]. Mutations in that β-catenin that prevent phosphorylation by GSK-3β, 

increasing β-catenin accumulation in the cytoplasm, are frequent in other cancers, but they 

are absent or in a very low frequency in CCA [43-45]. However, increments in β-catenin 

expression both in cytoplasm and nucleus have been observed in 14.1-82% of iCCA and 

12.6% of eCCA, indicating a release of β-catenin from the E-cadherin/β-catenin membranous 

complex by other mechanisms. These changes were associated with high-grade tumor, 

tumor size, lymph node metastasis and OS, but not with DFS [20, 21, 24, 31, 32, 44-47]. 

Intermediate filaments  

Cytokeratin 19 (CK19) and vimentin are members of the intermediate filament family that 

display a differential cell type expression. While CK19 is expressed in epithelial cells, 

vimentin is detected in mesenchymal cells. CK19 down-regulation has been observed in 

tumor cells of CCA, and this down-regulation was significantly associated with neural 

invasion, intrahepatic metastasis, undifferentiated tumor grade and shortened DFS and OS 

[24]. Several studies confirmed an aberrant staining of vimentin in CCA tumor cells while 

there was no staining in benign cholangiocytes [24, 25, 32, 35, 40, 48-50]. Vimentin 

expression was associated with lymph node metastasis, portal vein invasion, tumor size, 

pTNM stage and poorer OS and DFS [25, 31, 32, 35, 50]. In addition, vimentin was mostly 

detected in poorly differentiated tumor foci and a multivariate analysis demonstrated that 

aberrant vimentin expression is an independent adverse prognostic factor in iCCA [50]. As 

expected, vimentin expression was negatively correlated with the expression of CK19 and E-

cadherin in iCCA [24, 25, 35]. Consistently, in eCCA cases (both pCCA and dCCA) 

expressing SNAIL, CK19 expression was lower and vimentin prevailed [48]. 

S100 Calcium Binding Protein A4 (S100A4) 

S100A4 expression has been associated with transcriptional regulation of MMPs and E-

cadherin genes through unidentified mechanisms [51, 52]. Undetectable in normal 

cholangiocytes, S100A4 immunoreactivity was evidenced in approximately 30-50% of iCCA 

[24, 53] and 11% of eCCA [40]. In iCCA, S100A4 protein expression was correlated with 
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aggressive clinical parameters, shortened DFS and OS and was an independent prognostic 

factor in a multivariate analysis [24, 53]. In eCCA, univariate and multivariate analyses 

revealed that S100A4 was a significant and an independent prognostic factor [40]. Recently, 

Fabris et al. demonstrated that nuclear S100A4 localization in iCCA and eCCA defines a 

subclass of CCA associated with decreased OS after resection [54]. 

EMT-inducing transcription factors (EMT-TFs) 

SNAIL family (SNAIL/SNAI1 and SLUG/SNAI2) is by far the most studied in CCA. Tumor 

cells from human iCCA expressing both the mesenchymal marker SNAIL in the nucleus and 

the biliary epithelial marker CK19 were identified by double immunofluorescence staining, 

providing conclusive evidence for the presence of EMT traits in malignant cholangiocytes 

[55]. While not detected in normal biliary epithelium, SNAIL mRNA and protein levels are 

markedly expressed in CCA, with a sub-cellular localization of the protein in the nuclei of 

iCCA and eCCA tumor cells [24, 32, 37, 39, 48, 56]. High expression of SNAIL transcripts 

was correlated with the presence of metastasis [56]. Nuclear overexpression of SNAIL 

protein was associated with aggressive parameters and poor prognosis in both iCCA (28.6-

48.6% of cases) and eCCA (38-54% of cases), and predicted worse OS and DFS [24, 32, 

39, 48]. Consistently with its repressing function on E-cadherin, increased SNAIL mRNA 

levels were negatively associated with E-cadherin transcripts and protein expression [32, 56]. 

SLUG is not detected in normal intrahepatic bile ducts and liver parenchyma but is 

expressed in 72.2% of iCCA, in which it has been associated with lymphovascular invasion, 

lymph node and distant metastasis [57]. Furthermore, high expression of SLUG was 

observed in 38.1% and 61.9% of long-term survivors and short-term survivors (short survival 

time < 12 months), respectively [57]. Described as an independent indicator of poor 

prognosis, SLUG could be used as a marker for predicting the outcome of patients with iCCA 

after surgical resection. High levels of SLUG mRNA were detected in cases of eCCA that 

displayed nodal and distant metastasis, portal vein and liver artery invasion, and lymphatic 

and perineural invasion [37], and also correlated with reduced E-cadherin expression. 
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TWIST family (TWIST1/TWIST1 and TWIST2/TWIST2). TWIST is overexpressed in CCA 

tumors and significantly associated with poor prognosis [41]. Moreover, TWIST nuclear 

expression was significantly correlated with high N-cadherin expression [41]. More 

particularly, TWIST1 was highly expressed in poorly differentiated and sarcomatous CCA 

tissues suggesting a close relationship between EMT-TFs and the appearance of a 

mesenchymal phenotype [58].  

ZEB family (ZEB1/ZEB1 and ZEB2/ZEB2). Nuclear ZEB1 was highly expressed in malignant 

iCCA cells compared to normal non-neoplastic epithelial cells and was associated with 

aggressive parameters and poorer OS [35, 59]. High expression of ZEB2 was found in 51% 

of CCA and correlated with metastasis and poor prognosis [60]. 

Prognostic value of EMT markers in cholangiocarcinoma 

As summarized above (Table 1), hallmarks of EMT (i.e. disruption of intercellular junctions) 

as well as expression of the master regulators (EMT-TFs) can be detected in human CCA 

samples and their presence is associated with poor clinical outcome, both in iCCA and 

eCCA. However, it should be stressed that if a single marker does not show any correlation 

with clinicopathological factors and/or patient outcome, the combination of several EMT 

markers (E-cadherin or β-catenin, two epithelial markers, with vimentin or fibronectin, two 

mesenchymal markers) could do, as it has been shown in different tumor types, including 

CCA [24, 31, 61-63]. Thus, consideration of cumulative alterations of EMT-related markers 

should be taken into account instead of considering either epithelial or mesenchymal 

markers individually to predict poor outcomes in human CCA patients. Whether EMT is 

responsible for the poor outcome of the patients or if EMT markers could be used as 

biomarkers of poor outcome needs further investigations with larger cohorts to deepen the 

current knowledge and strengthen the existing data.  

Functional regulatory networks of EMT in cholangiocarcinoma (Table 2) 

Cytokines (Figure 2A) 
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Transforming-growth factor-β (TGF-β)-dependent signaling is the prototypic inducer of EMT 

in several cancers including CCA [64]. TGF-β1-3 and their receptors TGF-β RI and RII were 

found expressed in both CCA tumor cells and surrounding stroma cells [65-70] while no data 

on TGF-β RIII expression is available. Regarding TGF-β1, it is expressed not only by 

invading malignant cholangiocytes, but also by stroma cells (e.g. fibroblasts, hematopoietic 

cells and macrophages) [71, 72]. Moreover, TGF-β1 expression was significantly correlated 

with lymph node metastasis, distant metastasis, and tumor recurrence in iCCA [73] and 

shorter OS both in iCCA and eCCA [69, 73]. Upon TGF-β1 stimulation, the expression of 

epithelial markers decreased concomitantly with an increased expression of mesenchymal 

markers in CCA cells [18, 41, 48, 69, 74-76]. Abrogation of TGF-β-dependent signaling 

pathway by a soluble TGF-β RII reduced CCA cell invasiveness in a murine CCA xenograft 

model [48]. Similar results were obtained in a rat model of CCA induced by thioacetamide 

wherein TGF-β signaling inhibition by a neutralizing TGF-β antibody led to a reduction in 

number and size of neoplastic ductules [77]. siRNA knockdown of HMGB1 (high–mobility 

group box 1), a chromatin protein, inhibited TGF-β-induced EMT in CCA cells, suggesting a 

role of HMGB1 in TGF-β regulation of EMT [78]. Similarly, chloroquine, an autophagy 

inhibitor, has been described to interfere with EMT induction through TGF-β [79], suggesting 

a potential link between EMT regulation and autophagy. In contrast, another member of the 

TGF-β superfamily, BMP-7 (Bone morphogenetic protein 7), precludes the action of TGF-β 

by promoting the conversion of mesenchymal to epithelial cells [80]. Addition of BMP-7 to 

CCA cells led to an inhibition of TGF-β1-induced EMT by decreasing nuclear expression of 

TWIST and cell migratory ability [41]. 

Tumor necrosis factor-α (TNF-α) reduced the expression of epithelial makers (E-cadherin 

and CK19) and enhanced the expression of mesenchymal markers (S100A4, SNAIL and 

ZEB2) favoring CCA cell migration in vitro [56, 60]. In addition, TNF-α was able to induce the 

expression of MMP9, largely related with tumor invasiveness in CCA [81, 82].  
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Interleukin-6 (IL-6). Patients with CCA display high levels of IL-6 in serum and in malignant 

cholangiocytes [83, 84]. Interestingly, IL-6 is not only expressed by malignant 

cholangiocytes, but also by surrounding cells (e.g. fibroblasts, hematopoietic cells and 

macrophages) in human CCA tumors [71, 72]. IL-6 triggers EMT in CCA cells by promoting 

membrane E-cadherin down-regulation, cell scattering and up-regulation of mesenchymal 

markers N-cadherin and vimentin [71, 85]. The suppressor of cytokine signaling 3 (SOCS3), 

which regulates IL-6/STAT3 pathway by antagonizing STAT3 tyrosine phosphorylation, 

inhibits IL-6-induced EMT [85]. Furthermore, a crosstalk between IL-6 and TGF-β1 in EMT 

has been emphasized in CCA [71]. Both factors induce endogenous expression of IL-6 and 

TGF-β1 in CCA cells through Smad4. Thus, inhibition of Smad4 halted the IL-6/TGF-β1 

crosstalk loop, and reversed IL-6/TGF-β1-induced EMT. In human samples, all protagonists, 

IL-6, TGF-β1, Smad4 along with the mesenchymal marker N-cadherin are expressed at the 

invasion front of tumor cells, suggesting that Smad4 may represent a therapeutic target not 

only to halt CCA progression, but also to control pro-inflammatory environment maintenance 

[71]. 

Receptor tyrosine kinases (Figure 2B) 

Epidermal Growth Factor Receptor (EGFR) expression and signaling are strongly associated 

with CCA development and progression [70, 86-88]. We recently showed that ectopic 

cytoplasmic localization of E-cadherin is correlated with EGFR overexpression in human 

iCCA and pCCA [29]. Interestingly, E-cadherin also displayed a cytoplasmic pattern in 

xenografted tumors, whereas the mice treatment with gefitinib restored the membranous 

expression of E-cadherin. In vitro, EGF and HB-EGF, two EGFR ligands, induced scattering 

of CCA cells that resulted from the disruption of adherens junctions [29, 68]. In EGF-

stimulated CCA cells, EMT-TFs (SLUG and ZEB1) and mesenchymal markers (N-cadherin 

and α-SMA) were induced, favoring cell invasiveness through cytoskeleton remodeling [29, 

89]. We obtained similar results after down-regulating the PDZ scaffold protein EBP50 which 

led to the implementation of an EMT program through EGFR activation with the subsequent 
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acquisition of invasive and migratory properties by CCA cells [86]. Besides EBP50, SOX4 

transcription factor has been described as a potent inducer of EMT in CCA cells possibly 

through modulation of EGFR expression [90]. 

Eph Receptors and their ligands are expressed at very low levels in normal cholangiocytes 

[91, 92]. Among Eph receptors, EphA2 and EphB2 were increased in CCA tumors and 

correlated with the metastatic status of patients and poorer tumor differentiation [91, 92]. 

Overexpression of EphA2 in CCA cells induced a down-regulation of cell-cell junction 

proteins and an up-regulation of mesenchymal markers, leading to the acquisition of 

fibroblastic appearance and invasive properties. 

G protein-coupled receptors (Figure 2C) 

H4 Histamine receptor (H4HR). While H1HR and H2HR stimulate biliary hyperplasia and 

CCA growth, H3HR and H4HR decrease CCA progression [93]. H4HR is up-regulated in 

human CCA cells compared to non-malignant tissue [94]. CCA cells treated with the specific 

H4HR agonist clobenpropit induced a down-regulation of fibronectin, vimentin and S100A4, 

while expression of epithelial markers CK7, CK8 and CK19 was maintained. Consequently, 

clobenpropit treatment reduced invasive and metastatic potential of CCA cells [94].  

C-X-C-motif Chemokine Receptor-4 (CXCR4) binds the stromal-derived-factor-1 (SDF-1; 

also called CXCL12). CXCR4 is expressed by tumor cells in human CCA but not in the 

adjacent non-tumor tissue [95, 96]. High expression of CXCR4 is associated with metastasis 

and poor clinical outcome of iCCA. In vitro, CXCR4 acts as a potent activator of EMT by 

increasing expression of SLUG, vimentin and MMP-9, promoting cell migration and invasion 

through a β-catenin-dependent mechanism [96]. 

Development-related pathways (Figure 2D) 

Notch signaling. Notch-1 and Notch-4 expression is up-regulated in tumor cells from iCCA 

compared with adjacent non-tumor liver tissues [97-100]. In eCCA, the four Notch receptors 

were overexpressed [101] and high expression of Notch-1 and Notch-3 was related to 

advanced TNM stage and advanced T stage, respectively, suggesting a contribution of both 
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receptors to eCCA progression. After stimulation, Notch is cleaved by a γ-secretase and the 

Notch intracellular domain is released and translocated into the nucleus to activate target 

gene transcription. As in many other cancers, Notch signaling activation led to EMT induction 

in CCA cells. Notch-1 overexpression causes an increase in α-SMA and vimentin expression 

and a decrease in E-cadherin protein levels. All these events were accompanied by a cellular 

morphological change and cytoskeleton reorganization characteristic of EMT activation [98]. 

Consistently, Notch-1 inhibition by a γ-secretase inhibitor decreased vimentin and SNAIL 

expression, as well as impaired invasion and migration in CCA cells [102]. Among Notch 

signaling target genes, Sox9 plays a fundamental role in biliary pathophysiology [103, 104]. 

Sox9 has been recently linked to the activation of EMT in CCA [105]. Since Sox9 has been 

described as a Notch1 mediator in EMT activation in lung adenocarcinoma [106], it could 

play a similar role in CCA. 

Hedgehog signaling. Upon Hedgehog ligand binding, GPCR-like protein Smoothened is 

released by Patched receptor and allows generating activated GLI1-3. Hedgehog signaling 

components are overexpressed in iCCA [107-109], and it has been shown that GLI1 and 

GLI2 overexpression was associated with intrahepatic metastasis and poorer OS and DFS 

[108]. A role of Hedgehog signaling in EMT has been described in human CCA cells and 

CCA xenografted tumors by modulating E-cadherin expression [107] Consistently, inhibition 

of Hedgehog signaling by cyclopamine [107] or capsaicin [110] up-regulated E-cadherin 

expression [107] and impaired EMT in CCA [110].  

microRNAs (miRs) (Figure 2E)  

miRs are deeply involved in EMT regulation [14]. So far, 6 miRs including miR-221 [111], mir-

200c [112], miR-204 [113] miR-214 [114], miR-34a [76] and miR-21 [115] have been 

described to regulate EMT in CCA. With the exception of miR-221 and miR-21, which are up-

regulated in CCA tissue and associated with poor survival, all the others are down-regulated 

in human CCA.  
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Transcriptomic profiling of iCCA tissues revealed that a signalling pathway linking miR-200c 

to EMT is preferentially activated in iCCA that display stem cell gene expression traits [112]. 

Ingenuity Pathway Analysis showed that miR-200c was negatively correlated with genes 

from the TGF-β signalling pathway, and NCAM1 (Neural Cell Adhesion Molecule 1) was 

experimentally demonstrated to be a direct target of miR-200c. Forced expression of miR-

200c in HuH28, a CCA cell line that displays a fibroblastic-like cell morphology and low levels 

of miR-200c, led to an inhibition of EMT with suppression of mesenchymal gene expression 

(ZEB1/2, vimentin and N-cadherin) and increment of E-cadherin. Conversely, miR-200c 

down-regulation in HuCC-T1, a CCA cell line with epithelial appearances and high 

expression of miR-200c, led to an activation of EMT with an induction of mesenchymal 

markers and a repression of E-cadherin [112]. 

miR-204, miR-214 and miR-34a inhibit EMT in CCA by targeting SLUG, TWIST and Smad4, 

respectively [76, 113, 114], while miR-221 and miR-21 positively regulate EMT by directly 

repressing PTEN and by unidentified mechanisms, respectively [111, 115]. 

Additional regulatory factors 

Unconjugated primary bile acid, chenodeoxycholic acid, and the secondary bile acid, 

lithocholic acid, induce SNAIL expression and E-cadherin down-regulation in CCA cells, at 

least in part, through two transcription factors, Nuclear factor-Y and Stimulating protein 1 

[116]. Whether these effects involve the bile acid receptors, Farnesoid X Receptor and G 

protein-coupled bile acid receptor 1 (TGR5), remains to be elucidated. However, since bile 

acids can activate EGFR [117], they may induce indirectly EMT through EGFR signaling 

pathway.  

Hepatitis C virus core (HCVc) in CCA tissues was associated with decreased E-cadherin 

expression and increased N-cadherin, vimentin and fibronectin expression [118, 119]. A 

correlation between HCVc and metastasis in lymph nodes and other organs was evidenced. 

Consistently, expression of HCVc in CCA cells induced a fibroblastic and scattered 

appearance, along with an augmentation of vimentin and fibronectin, and a down-regulation 



  

   

 16

of E-cadherin, that may be mediated by lysyl oxidase homolog 2 [118, 119]. These effects 

may be of special relevance in areas of East-Asia with high HCV prevalence or countries 

where the diagnosis of primary tumors in livers with a cirrhotic background has been recently 

increasing [2]. 

Small proline rich protein 2a (SPRR2a) overexpression in CCA cells induced EMT, which in 

turn promotes invasiveness [59, 120]. Further experiments showed that SPRR2A acts as a 

transcriptional corepressor with ZEB1 to repress miR-200c/141 transcription in CCA cells in 

order to maintain a mesenchymal phenotype [59].  

In addition, 14-3-3zeta and aPKC-ι [121, 122], adrenomedullin [123], Forkhead box protein 

C2 [124], WAVE3 [125] and Fibroblast growth factor (FGF)19/FGFR4 axis [126] promote 

EMT in CCA. Conversely, FBXW7 [127, 128], thymosin β10 [129] and MAP3K4 [130] act as 

negative regulators of EMT through inhibition of mTOR, ERK1/2 and NFκB pathways, 

respectively.  

EMT regulation by the microenvironment in cholangiocarcinoma 

For a long time perceived as a tissue composed only of cancer cells, the tumor tissue is in 

fact, like all tissues, composed of different cellular and acellular components. It is now well 

established that all these components constitute a favorable environment for tumor 

development. CCA is characterized by a prominent desmoplastic stroma [3], which is 

composed primarily by cancer-associated fibroblasts (CAFs) and to a lesser proportion of 

tumor-associated macrophages (TAM) and vascular cells. As discussed below, stromal cells 

play a key role in CCA progression through reciprocal interactions with malignant cells that 

lead to EMT activation. 

Cancer-associated fibroblasts (CAFs) and hepatic stellate cells (HSCs) (Figure 3A) 

CAFs are probably derived from activated HSCs and/or portal (or periductal) fibroblasts in 

the liver [131] although a circulating bone-marrow-derived precursor cell origin has also been 

suggested. The possibility that cholangiocytes could also feed the pool of stroma 

myofibroblasts has been refuted in different models of fibrosis [132] and more recently in a 
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murine model of xenografted tumors [133]. CAFs have a crucial role in favoring CCA 

progression, and more particularly in promoting EMT, through interactive autocrine and 

paracrine signaling pathways [68, 131]. We have recently shown that CAFs from human 

iCCA synthesize HB-EGF, which activates EGFR in CCA cells leading to the disruption of 

cell-cell junctions and an increase of invasiveness [68]. Furthermore, we described a 

paracrine reciprocal loop in which CCA cells produced TGF-β1 that stimulates HB-EGF 

expression by CAF. Thus, this cyclic interplay between tumor and stroma cells, contributes to 

EMT of CCA cells through a constant activation of EGFR pathway.  

Regarding the intercellular dialogue between HSCs and CCA cells, the SDF-1/CXCR4 axis 

has been described as a major interaction pathway, which could contribute to stromal fibrosis 

in CCA [75, 95]. It has been shown that SDF-1 and CXCR4 are expressed by HSCs in 

human iCCA. In vitro, angiotensin II and TGF-β enhanced the release of SDF-1 by LI-90 cells 

(a human HSC line), which in turn, promoted activation of LI-90 cells. Furthermore, SDF-1 

reduced E-cadherin expression and enhanced nuclear β-catenin and vimentin expression in 

CXCR4-expressing CCA cells [75]. In this study, angiotensin II was shown to act not only on 

HSCs, but also on CCA tumor cells by inducing EMT. 

Tumor-associated macrophages (TAMs) and mast cells (Figure 3B) 

TAMs represent the major class of immune cells within the tumor microenvironment and 

derive from circulating monocytes that infiltrate tumor tissues and differentiate into 

macrophages. Many infiltrating CD68-positive macrophages and TNF-α-positive 

macrophages exist at the iCCA interface [134, 135]. TAMs secrete several factors that 

influence EMT in CCA tumor cells. CCA cells cultured in presence of conditioned media from 

activated TAMs experienced an accumulation of β-catenin in cell cytoplasm [46] down-

regulation of E-cadherin and CK19, and an increment in the expression of mesenchymal 

markers (i.e. S100A4, N-cadherin and MMP9) [72, 136], as well as an increment in cell 

migration. This augmented migration could explain the association between the extrahepatic 

metastases and the high density of TAMs described in patients with CCA [136]. The 
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paracrine stimulation of EMT in CCA tumor cells by TAMs may be related to the production 

and secretion of interleukins, TNF-α and TGF-β1 by activated macrophages [72]. More 

recently, TAMs have been described as potent providers of Wnt ligands [137], which are 

known to induce EMT in other cancers [138, 139]. 

Mast cells are master regulators of the immune system, which are involved in liver 

pathogenesis [140]. Inhibition of mast cell-derived histamine prevents EMT switch and ECM 

breakdown in CCA cells through H1HR and H2HR [141]. Moreover, if the SCF/Kit pathway 

involved in tumor mast cell recruitment is inhibited, the paracrine influence of mast cells on 

CCA is vanished [141], suggesting a role of mast cells/tumor cells interaction in the 

promotion of EMT and progression of CCA. 

The information summarized above points out the role of the different cell types within the 

tumor, and not only cancer cells, in CCA progression, and more specifically in the activation 

of EMT that may lead to metastasis. Although not related to EMT, a recent study [142] 

showed the possibility of targeting CAFs in a syngeneic rat model with a pro-apoptotic drug 

called Navitoclax, which suppressed tumor growth and improved host survival. Therefore, 

efforts should be directed to the development of targeted therapies against both tumor cells 

and their interactions with the surrounding stroma, in order to reduce metastasis and improve 

patient conditions. 

EMT and therapeutic considerations 

Chemoresistance 

Drug resistance is a challenge constantly faced by clinicians regarding the use of antitumor 

agents in patients. In CCA, EMT has been identified in vitro as a mechanism of resistance 

against gemcitabine and cisplatin [71, 143], both used in combination as the standard of care 

for patients with CCA [9]. Yamada et al., recently showed that CCA cell lines exhibiting 

mesenchymal traits were more resistant to gemcitabine than CCA cell lines having a 

prominent epithelial phenotype [71]. IL-6 and TGF-β1, through an autocrine and crosstalk 

loop involving Smad4, were incriminated in the resistance to gemcitabine by inducing EMT. 
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Indeed, establishment of gemcitabine-resistant CCA cell lines showed that these cells 

displayed a reduced expression of E-cadherin and an increased expression of N-cadherin 

and vimentin [71]. In addition, inhibition of SLUG sensitized CCA cells to cisplatin through up-

regulation of the proapoptotic protein PUMA [143]. It is noteworthy that the activity of EMT-

TFs is not restricted to the repression of E-cadherin promoter, but they also trigger cell 

survival by promoting apoptosis escape of tumor cells through inhibition of PUMA-mediated 

cell death in CCA [15, 144]. 

Something that is worth to be mentioned is the increasing evidence suggesting that EMT 

could be associated with other features such as the acquisition of cancer stem cell (CSC) 

properties [145]. The acquisition of CSC properties by tumor mesenchymal-like cells in 

response to EMT could have major consequences, in particular by fostering tumor 

heterogeneity and by contributing to resistance to anticancer drugs in CCA, a tumor 

containing a strong contingent of CSC [55]. In fact, Shuang et al. have recently found, both in 

iCCA and eCCA, a significant correlation between TGF-β1 and ALDH1 (aldehyde 

dehydrogenase 1), a functional CSC marker. In addition, TGF-β1-induced EMT in CCA cells 

resulted in an acquisition of mesenchymal traits, as well as ALDH expression, which were 

accompanied by a decreased sensitivity to 5-fluorouracil [69]. 

By helping cells to counteract endogenous safeguard mechanisms, EMT may confer 

resistance to cell death triggered by chemotherapeutic agents. However, it still remains 

unclear whether chemotherapeutic agents directly induce EMT or lead to the selection of 

tumor cells that already display EMT traits.  

Targeting EMT pathways 

The first thought when it comes to target EMT would be playing with E-cadherin repressors. 

However, the master EMT regulators are transcription factors, what make them quite difficult 

to target. Thus, the most useful alternative strategy would be the use of drugs that negatively 

regulate EMT, though only few studies testing chemical agents against EMT in CCA have 

been performed. Paclitaxel is a chemotherapeutic agent that stabilizes microtubules and 
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arrests cell cycle. At low doses, paclitaxel has been shown to inhibit TGF-β-induced EMT in 

CCA cells [74]. FTY720, a synthetic sphingosine immunosuppressant, inhibits EMT and 

favors reversion of EMT that is called MET (mesenchymal-epithelial transition) in CCA cells 

and, prevents metastasis in vivo after implantation of CCA cells into the peritoneal cavity of 

immunocompromised mice [146]. Recently, taking advantage of the presence of CXCR4 at 

the surface of CCA cells, a polymeric CXCR4 antagonist capable of delivering miR-200c has 

been developed to inhibit EMT inducer ZEB1 in CCA cells [147]. miR-200c was chosen as a 

potential treatment for its ability to target ZEB1. Thus the combination CXCR4 

antagonist/miR200c offers a promising antimetastatic strategy for the CCA treament, which 

must be tested in preclinical models to move forward. In addition, as displayed above, EMT 

is highly regulated by a large number of signaling pathways. These pathways are targetable 

by drugs currently tested in preclinical studies or clinical trials in CCA, such as the EGFR 

inhibitor erlotinib (see reviews [13, 148]). 

However, in many cases the prolonged use of these drugs results in the opposite undesired 

effect, the induction of an EMT program as a chemoresistance mechanism through the 

activation of compensatory alternative pathways. This issue has already been described in 

non-small cell lung cancer, where src/FAK signaling pathway was up-regulated in a resistant 

cell line to erlotinib leading to EMT [149]. Furthermore, our preliminary results suggest that 

EMT is induced as a mechanism involved in acquired resistance to erlotinib in human CCA 

cells, probably through an up-regulation of IGF signaling [150]. 

Final remarks and future perspectives 

Given the large body of evidence displayed in this review, there is no doubt of the prominent 

role of EMT in CCA progression. It becomes imperative to consider EMT as another player in 

the high metastatic and chemoresistant features characteristic of this tumor. However, some 

points should be taken in consideration before jumping to patient treatment. Definition of 

proper combinations of epithelial and mesenchymal markers is eagerly needed in order to 

select the appropriate patients for the available therapies and the prediction of possible 
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outcomes. Among these markers, proper characterization of EMT-TFs is of special 

importance, since they are deeply involved in the induction of the highly chemoresistant CSC 

phenotype that has not been profoundly investigated in CCA. Furthermore, since CCA is a 

very complex and heterogeneous tumor with a prominent stromal component that interacts 

closely with cancer cells, strong effort should be directed to the development of 

combinational therapies directed towards both cancer and stromal cells. Finally, the 

possibility to inhibit signaling pathways involved in this complex process with single 

molecules against receptors or intracellular kinases should be taken with extreme care, given 

that the inhibition of these pathways could also trigger compensatory pathways leading to 

EMT induction as a mechanism of resistance.  

Altogether, EMT has become an attractive therapeutic target for CCA. However, due to the 

redundancies and bypasses among the different signaling pathways and cell types involved, 

further studies focused on the development of combination therapeutics targeting EMT in 

CCA are eagerly needed. 
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Figure legends 

Figure 1. 

Cancer cell EMT events. The diagram shows a group of cells progressively engaged in 

EMT and the differential changes in epithelial and mesenchymal markers during this process. 

A typical epithelial sheet (A) contains polarized epithelial cells on top of a basement 

membrane. Cells are joined together by several cell-cell junctions, tight junctions, GAP 

junctions and adherens junctions containing E-cadherin/β-catenin. (B) Upon stimuli, 

increment in the expression of EMT-inducing transcription factors (EMT-TFs) leads to the 

down-regulation and disassembly of cell-cell junctions with the consequent loss of epithelia 

integrity. (C) EMT-TFs stimulate a mesenchymal phenotype, which includes reorganization of 

the actin cytoskeleton and secretion of matrix metalloproteinases allowing the dissolution of 

the basement membrane and the mobility of the resulting mesenchymal-like cells. The 

different proteins expressed through EMT are listed in the box. 

 

Figure 2. 

Regulatory networks involved in EMT regulation in CCA. Cytokines (A), tyrosine kinase 

receptors (B), G protein coupled receptors (C) and receptors involved in developmental 

processes (D) play a role in the induction of EMT program by activating intracellular signaling 

pathways in CCA tumor cells. miRNAs target several EMT regulatory proteins (E). 

Abbreviations: CXCR4, chemokine receptor type 4; EBP50, ezrin-radixin-moesin-binding 

phosphoprotein 50; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; 

EMT, epithelial-mesenchymal transition; EphA2, ephrin type-A receptor 2; GLI, glioma-

associated oncogene; H4HR, H4 histamine receptor; HB-EGF, heparin-binding EGF-like 

growth factor; IL, interleukin; ILR, interleukin receptor; miR, microRNA; NICD, notch 

intracellular domain; PTCH, patched receptor; SDF-1, stromal cell-derived factor 1; SMO, 

smoothened; SOX4, sex determining region Y box 4; SOX9, sex determining region Y box 9; 

Sp1, specificity protein 1; STAT3, signal transducer and activator of transcription 3; TGF-β, 

transforming-growth factor-β; TGFβR, transforming-growth factor-β receptor; TNF-α, tumor 
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necrosis factor-α; TNFR, tumor necrosis factor receptor; ZEB, zinc finger E-box binding 

homeobox. 

 

Figure 3. 

Model depicting the reciprocal paracrine loop between CCA cells and cells from the 

tumor microenvironment involved in EMT regulation. (A) Hepatic myofibroblasts produce 

the EGFR ligand, HB-EGF, which activates EGFR at the CCA cell surface. EGFR activation 

leads to the stimulation of its downstream pathways and eventually to the activation of an 

EMT program. In addition, EGFR signaling also triggers TGF-β production by CCA cells, 

which results in myofibroblast activation and in increased HB-EGF synthesis by 

myofibroblasts. Hepatic stellate cells produce SDF-1, which, together with ANGII induce β-

catenin nuclear translocation through their receptors. Furthermore, both SDF-1 and ANGII 

are able to promote hepatic stellate cell activation. (B) LPS activated macrophages produce 

different factors, including several ILs, TGF-β, TNF-α and WNT ligands that promote EMT by 

signaling through their receptors. Recruited mast cells release histamine that induce EMT in 

CCA cells through HRs signaling. In turn, CCA cells produce SCF that promote mast cell 

migration and recruitment. Each color indicates a group of signaling pathways described in 

the text. Abbreviations: ANGII, angiotensin II; AT1, angiotensin II receptor type 1; CXCR4, 

chemokine receptor type 4; EGFR, epidermal growth factor receptor; EMT, epithelial-

mesenchymal transition; FDZ, frizzled receptor, HB-EGF, heparin-binding EGF-like growth 

factor; HRs, histamine receptors; IL, interleukin; ILR, interleukin receptor; LPS, 

lipopolysaccharide; SCF, stem cell factor; SDF-1, stromal cell-derived factor 1; TGF-β, 

transforming-growth factor-β; TGFβR, Transforming-growth factor-β receptor; TNF-α, tumor 

necrosis factor-α; TNFR, tumor necrosis factor receptor. 
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Table 1 Clinical relevance of EMT in human cholangiocarcinoma 
Epithelial  
markers 

CCA  
subtype 

Number  
of samples 

Membrane 
expression/ 
localization 

% of 
cases 

Association with  
clinical parameters 

Ref. 

E-cadherin 
 
 
 

CCA 35 Reduced 62.9 Tumor differentiation 
Infiltration status 
Lymph node metastasis 
Clinical TNM staging 
Median survival 
Independent prognostic 
factor in univariate and 
multivariate analyses 

[19] 

CCA 47 Reduced 45 Tumor Grade [20] 
CCA 83 Reduced 51.8 Poor tumor differentiation [26] 
CCA 140 Reduced 52 Positive metastasis status [28] 
iCCA 31 Reduced 61.3 Not correlated  [21] 
iCCA 119 Reduced  41.2 Not Correlated  [24] 
iCCA 96 Reduced 43.8 Lymph node metastasis 

Advanced pTNM stage 
Poor differentiation  
Poorer overall survival 
Independent prognostic 
factor in multivariate analysis 

[25] 

iCCA 83 Reduced 51.8 Poor histological 
differentiation 

[26] 

iCCA 100 Cytoplasmic  50 Tumor size 
Presence of satellite nodules 

[29] 

iCCA 85 Reduced 16.5 Poor tumor differentiation [31] 
iCCA 140 Reduced 55 Lymphatic metastasis 

Poorer overall survival 
Poorer disease free survival 

[32] 

iCCA 102 Reduced 44.1 Not correlated  [35] 
iCCA 42 Reduced 

Absent 
64.3 
19 

Tumor grade 
pTNM stage 
Intrahepatic metastasis 
Poorer survival 

[36] 

eCCA 38 Reduced 42.1 Lymph node metastasis  
Tumour stage  
Lymphatic invasion  
Blood vessel invasion 
Overal lower survival 

[18] 

eCCA 
(pCCA) 

52 Reduced 36.5 Not correlated  [37]  

eCCA 
(pCCA) 

47 Reduced 40.4 Not correlated  [39] 

eCCA 117 Reduced 82.1 Poorer overall survival 
Independent prognostic 
factor  

[40] 

β-catenin 
 

CCA 47 Reduced 58 Tumor differentiation grade [20] 
iCCA 31 Nuclear 16.1 Not correlated  [21] 
iCCA 119 Loss or delocalization 57.1 Not correlated  [24] 
iCCA 85 Reduced / nuclear 14.1 Poor tumor differentiation 

Tumour size 
Lymph node metastasis 

[31] 

iCCA 140 Cytoplasmic or nuclear 45.7 Poorer overall survival [32] 
iCCA 71 Reduced  

Nuclear 
82 
15 

Poor tumor differentiation  
 

[44] 

iCCA 24 Cytoplasmic or nuclear 58.3 Tumor size [45] 
iCCA 38 Reduced / cytoplasmic 73.7 Not correlated  [46] 

 eCCA 79 Nuclear 12.6 Not correlated  [47] 
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CK19 iCCA 119 Reduced  42 Neural invasion 
Intrahepatic metastasis  
Undifferentiated tumor 
Poor overall survival and 
disease free survival 

[24] 

Mesenchymal 
markers 

CCA 
subtype 

Number  
of samples 

Expression %  Association with  
clinical parameters 

Ref. 

N-cadherin 
 
 

CCA 30 Increased 53.3 Not correlated [41] 
iCCA 96 Increased 57.3 Higher recurrence rate of 

vascular invasion 
Poorer overall survival 

[25] 

iCCA 29 Increased 79 Not correlated [34] 
eCCA 38 Increased 23.7 Not correlated [18] 
eCCA 
(pCCA) 

23 Increased 30.4 Not correlated [34] 

eCCA 117 Increased 18.8 Poorer overall survival 
Independent prognostic 
factor in multivariate analysis 

[40] 

Vimentin iCCA 119 Increased 20.2 Not correlated  [24] 
iCCA 96 Increased 37.5 Lymph node metastasis 

Advanced pTNM stage 
Poorly differentiated type 
Poorer overall survival 

[25] 

iCCA 85 Increased 21.2 Poor differentiation 
Higher stage tumor 

[31] 

iCCA 140 Increased 55.7 Lymphatic metastasis 
Poorer overall survival 
Poorer disease free survival 

[32] 

iCCA 102 Increased 43.1 Portal vein invasion 
Tumor size 

[35] 

iCCA 23 Increased 69.6 Not correlated  [49] 
iCCA 21 Increased 23.8 Tumor grade differentiation 

Poorer overall survival 
Independent prognostic 
factor in multivariate analysis  

[50] 

eCCA 117 Increased 13.7 Poorer overall survival [40] 
eCCA 
(pCCA) 

17 Increased 11.8 Not correlated with clinico-
pathological features 

[49] 

S100A4 
 

CCA 86 Absent 
Low nuclear 
High nuclear 

57 
22.1 
20.9 

Overall survival after surgical 
resection 
Increased metastasis after 
surgical resection 

[54] 

CCA 50 mRNA overexpression 52 Lymph node metastasis [60] 
iCCA 119 Increased 30.3 Angiolymphatic invasion 

Neural invasion 
Intrahepatic metastasis  
Undifferentiated tumor 

[24] 

iCCA 65 Increased 49.2 Vascular invasion 
Lymph node metastasis 
TNM stage 
Poorer overall survival rate 
Independent prognostic 
factor in multivariate analysis 

[53] 

eCCA 117 Increased 11.1 Poorer overall survival 
Independent prognostic 
factor in multivariate analysis 

[40] 

SNAIL 
 

CCA 50 mRNA overexpression 66 Metastasis stage [56] 
iCCA 119 Increased 28.6 Angiolymphatic invasion  

Neural invasion 
Intrahepatic metastasis 

[24] 



  

   

 44

Undifferentiated tumor 
iCCA 140 High/Low 

 
48.6/51.4 Lymphatic metastasis 

Poorer overall survival 
Poorer disease free survival 

[32] 

eCCA 
(pCCA) 

52 mRNA overexpression 23 Not correlated  [37] 

eCCA 
(pCCA) 

47 High/Low/Negative 38/36/12 Poorer overall survival [39] 

eCCA 
(pCCA) 

37 Increased and nuclear 54 Lymph node metastasis 
Poorer overall survival 

[48] 

SLUG iCCA 36 Increased 72.2 Lymph node metastasis 
Lymphovascular invasion 
Distant metastasis 
Hematogenous recurrence 
Lymph node recurrence 
Poorer overall survival 

[57] 

eCCA 
(pCCA) 

52 mRNA overexpression 34.6 Nodal metastasis 
Distant metastasis 
Poorer overall survival 

[37] 

Twist CCA 30 Increased and nuclear 26.7 Poorer overall survival [41] 
ZEB1 
  

iCCA 102 Nuclear 43.1 Nodal metastasis 
Tumor stage 
Undifferentiated-type 
histology 
Lymph node metastasis 
Portal vein invasion 
Poorer overall survival 

[35] 

ZEB2 CCA 165 Cytoplasmic/Nuclear 51/12.8 Lymph node metastasis [60] 

Abbreviations: CCA, cholangiocarcinoma; eCCA, extrahepatic CCA; EMT, Epithelial-mesenchymal transition; iCCA, 
intrahepatic CCA; pCCA, perhilar CCA; Ref, references; S100A4, S100 Calcium Binding Protein A4; ZEB, zinc finger E-box 
binding homeobox. In most cases, expression of the markers was analyzed at the protein level. When mRNA has been 
analyzed, the information is mentioned. 
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Table 2 Regulation of EMT in human cholangiocarcinoma cells 
EMT  
Inducer 

EMT  
Inhibitor 

Receptor
/Target 

Epithelial 
Marker  

Mesenchymal  
Marker 

Biological  
Effect 

Cell lines Ref. 

ADM  Unknown E-cadherin 
ZO-1 

N-cadherin 
Vimentin 
ZEB1 

 HuCC-T1 
HuH-28 

[123] 

ANGII  AT1 β-catenin  
E-cadherin 

Vimentin Migration CCKS-1 
HuCC-T1 

[75] 

Bile acids  Unknown E-cadherin Snail  HuCC-T1 [116] 
 Capsaicin 

 
Hh 
signaling 

E-cadherin N-cadherin 
Vimentin 

Invasion 
Migration 

SZ1 
TFK-1 

[110] 

 Clobenpropit H4HR CK7 
CK8 
CK19 

Fibronectin 
MMP-1/-2/ 
-3/-9/-11 
S100A4 
Vimentin 

 Mz-ChA-1 
 

[94] 

 Cyclopamine  
 

Hh 
signaling 

E-cadherin  Invasion 
Migration 

SZ1 
TFK-1 

[107] 

EGF Gefitinib EGFR β-catenin 
DSP 1/2 
E-cadherin 
ZO-1 
 

α-SMA 
Fibronectin 
MMP-1/-9 
N-cadherin 
SLUG 
Vimentin 
ZEB-1 

Invasion 
Migration 
 

Choi-CK  
Mz-ChA-1 
SK-ChA-1 

[29] 
[89] 

 FTY720 STAT3 
signaling 

E-cadherin N-cadherin 
TWIST1 
Vimentin 

Invasion HuCC-T1 
QBC939 
TFK-1 

[146] 

 γ-secretase  
inhibitor 

Notch 
signaling 

β-catenin  
E-cadherin 

SNAIL  
Vimentin 

Invasion 
Migration 

SZ1 
TFK-1 

[102] 

FGF19 AP24354 FGFR4 E-cadherin N-cadherin 
SNAIL 
Vimentin 

Invasion RBE [126] 

HB-EGF Gefitinib EGFR β-catenin  
E-cadherin 

 Invasion 
Migration 
 

EGI-I  
Mz-ChA-1 
SK-ChA-1 

[68] 

Histamine Cromolyn 
sodium 

HR E-cadherin Paxilin 
S100A4 
Vimentin 
MMP-2/-3/-9 

 Mz-ChA-1 [141] 

IL-6  IL6R E-cadherin N-cadherin 
SNAIL 
Vimentin 

Invasion 
Migration 

CCLP1 
HCCC9810 
HuCC-T1 
KMCH 
Mz-ChA-1 
RBE 

[71] 
[85] 
 

 PCX/miR200c CXCR4/ 
ZEB1 

 ZEB1 Migration HuCC-T1 [147] 

SDF1 
 

AMD3100 CXCR4 β-catenin  
E-cadherin 

MMP-9 
SLUG 
Vimentin 

Invasion 
Migration 

CCKS-1 
HuCC-T1 

[95] 
[96] 
[75] 

TGF-β BMP-7 
Paclitaxel  

TGF-βsRII 
 

TGFβR β-catenin  
CK19 
E-cadherin 
 

α-SMA 
Col1A1 
Fibronectin 
MMP-2 
N-cadherin 
S100A4 
SNAIL 
TWIST  
Vimentin 

Invasion 
Migration 
 

BECs  
CCKS-1 
CCLP1 
GBC-SD 
HuCC-T1 
KMCH 
M139 
M213 
Mz-ChA-1 

[18] 
[41] 
[48] 
[69] 
[74] 
[76] 
[75]  
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QBC939 
TFK-1 

TNF-α  TNFR CK19 
E-cadherin 

MMP-9 
S100A4  
SNAIL 
Vimentin 
ZEB2 

Invasion 
Migration 
 

CCKS-1 
HuCC-T1 
M139 
M213 
M214 

[56] 
[60] 
[81] 
[82] 

WNT3  β-catenin 
signaling 

β-catenin    M214 [46] 

Abbreviations: ADM, adrenomedullin; ANGII, angiotensin II; AT1, angiotensin II receptor type 1; BMP-7, bone 

morphogenetic protein-7; CK, cytokeratin; CXCR4, chemokine receptor type 4; DSP, desmoplakin; EGF, 
epidermal growth factor; FGF19, fibroblast growth factor 19; FTY720, fingolimod; HB-EGF, heparin-binding EGF-like 
growth factor; Hh, hedgehog; HR, histamine receptor; IL, interleukin; MMP, matrix metalloproteinase; Ref, 
references; S100A4, S100 Calcium Binding Protein A4; SDF-1, stromal cell-derived factor 1; TGF-β, transforming-

growth factor-β; TGF-βsRII, soluble TGF-β type II receptor; TNF-α, tumor necrosis factor-α; WNT3, wingless-Type 
MMTV Integration Site Family, Member 3; ZO-1, zonula occludens 1. 

 



  

Basement membrane

Apical membrane components

Basolateral membrane components

Integrins

Cytokeratin intermediate filaments

GAP junctions

Tight junctions

E-cadherin

β-catenin

ɑ-catenin

Actin cytoskeleton

Vimentin

EMT-inducing transcriptional factors

Matrix metalloproteinases

N-cadherin

EMT stimulus

EMT-TFs increment

E-cadherin deregulation

Loss of Apico-Basal polarity

Gain of mesenchymal proteins

Migration and invasion 

A

B

C

FIGURE 1



  

EMT PROGRAMEMT PROGRAM

D. Development-related pathways

Sonic
Indian

Dessert

PTCH1

Notch

γ-secretase

SMO

NICD
GLI

C. G protein coupled receptors

H4HR

Clobenpropit

CXCR4

SDF-1

G protein G protein

β-catenin

EMT PROGRAMEMT PROGRAM

B. Receptor tyrosine kinases

PP

PPPP

EGFR EphA2

E-caderine 
internalization

SOX4

Increased 
EGFR 

activation

EBP50
Increased 

EGFR 
expression

EGF HB-EGF

A. Cytokines

IL

ILR

TNF-α

TNFR

TGF-βTGF-β

TGFβR

Smad4

Smad4

Stat3

EMT PROGRAMEMT PROGRAM

E. miRNAs

miR-200c miR-214miR-204 miR-34a

EMT inhibition

ZEB1/2 SLUG TWIST Smad4

miR-21

EMT Activation

??

miR-221

PTEN

β-catenin

Sox9?

FIGURE 2



  

TGF-β

PP

B. Tumor-Associated Macrophages and Mast CellsA. Myofibroblasts and Hepatic Stellate Cells

Macrophages
LPS LPS

TGF-β TNF-α WNT3

TGFβR

TNFR ILR FDZ

β-catenin

EMT PROGRAM

Cholangiocarcinoma 
cells

Cholangiocarcinoma 
progression and metastasis

Cholangiocarcinoma 
progression and metastasis

EMT PROGRAM

Cholangiocarcinoma 
cells

β-cateninβ-catenin
ERK1/2

STAT3

EGFR
AT1

CXCR4

Hepatic Stellate cells
Myofibroblasts

myofibroblasts
activation

TGF-β HB-EGF ANGII
SDF-1

activation
IL-4
IL-6

IL-10

FIGURE 3

Histamine

Mast cells

SCF

HRs

migration


