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Statistical aspects in crack growth phenomena:

How the fluctuations reveal the failure mechanisms

Laurent Ponson

Abstract Material failure often gives rise to strong fluctua-
tions that reflect on the rough trajectory followed by cracks
and on their intermittent dynamics. Understanding the origin
of these fluctuations is a major challenge in fracture mechan-
ics since they emerge from the interaction of the cracks with
the material microstructure that it still poorly understood.
Here, we illustrate through recent studies how the statistical
properties of these fluctuations can reveal elementary failure
mechanisms taking place at the microstructure scale. The
implications of these findings in terms of material character-
ization and failure analysis is discussed and some promising
directions for future investigations are presented.

Keywords Statistical approach - crack roughness - velocity
fluctuations - disordered materials - scaling properties -
fractography

1 Introduction

Crack propagation is the central mechanism leading to mate-
rial failure. However, crack growth phenomena are far from
being fully understood. A major challenge underlying frac-
ture problems relates to its multiscale nature: The macro-
scopic failure behavior of materials are largely governed by
microstructural features and processes localized at the crack
tip vicinity. Cracks that are efficient stress concentrators ex-
acerbate their impact that can be felt on macroscopic quan-
tities like toughness and crack speed.

For brittle cracks, this strong coupling between length
scales has been used as an opportunity to design systems
with improved failure properties, as patterning their struc-
ture at the small scale can enhance their resistance at the
large scale (Xia et al., 2012; Hossain et al., 2014). But when
complex dissipative mechanisms come into play, going from
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the small to the large, i.e. from the microscale features of
materials to their macroscale failure behavior, remains a chal-
lenging task. The multiscale nature of fracture phenomena
can then be used as a means to probe local failure mech-
anisms. Altough they might not be amenable to direct ob-
servations due to the small length and time scales involved,
their impact on the macroscopic material response may in-
deed be more easily characterized. A direct manifestation of
microscale processes at the large scale is the strongly fluc-
tuating behavior of cracks. The challenge raised by this ap-
proach then concerns the interpretation of these fluctuations
in term of physical processes.

Extracting meaningful information from fluctuations has
been a preferred line of research in various domains, includ-
ing the physics of condensed matter. As a result, the ap-
proaches and concepts developed in these fields have been
largely borrowed and applied to fracture problems (Alava
et al., 2006; Bonamy and Bouchaud, 2011). A major output
of these works has been to establish a connection between
the failure of disordered materials and critical phenomena
like percolation or depinning transition. In critical phenom-
ena, the system behavior and its fluctuations can be char-
acterized by power laws that emerge from the competition
between disorder and long-range interactions. In the context
of material failure, the observed power laws emerge from
the competition between the microstructural disorder of the
material and the elasticity, very often influenced by damage
processes. In the following, we will illustrate through some
recent research studies how to make sense to these scaling
behaviors and use them to identify and characterize elemen-
tary crack growth mechanisms. We will focus on two quanti-
ties that are ready-made directions of investigation in failure
problems, the crack speed and its fluctuations in Section 2
and the crack path and its fluctuations in section 3. The Sec-
tion 4 discusses promising research directions for future in-
vestigations.
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Fig. 1 (a): Isolated system of total energy Eiot = Em () 4 E¢(f) consistuted of a notched specimen under dead weight loading conditions. Before
failure, the energy is stored as potential energy Eiot = En(0) that has been fully dissipated in fracture energy Eiox = Ef(fenq) after failure. (b):
Experiments in heterogeneous solids show that this transfer from mechanical into fracture energy proceeds through bursts that can be studied
through the variations of the crack velocity vy, that is proportional to the dissipation rate & = —dEy, /dt = dE¢/dt as shown in inset. (c) Probability
density of the dissipation rate. The different symbols correspond to different experimental sampling rates, while both curves correspond to two
average crack growth velocities. [Figs. (b) and (c) are courtesy of Barés et al. (2014)]

2 Statistics of fluctuations in the dynamics of cracks
2.1 Experimental observations

Crack dynamics has been extensively used to investigate
failure mechanisms in materials. Here, the emphasis is put
on the fluctuations of crack speed that can be either investi-
gated at the local scale, i.e. at some location along the crack
front, or at the global scale, through the evolution of the
average crack position. Interestingly, this second approach
amounts to investigate the rate of dissipated energy through
failure. To establish this connection, one considers the iso-
lated system depicted in Fig. 1(a) made of a notched speci-
men and a dead load pulling on its upper face through fric-
tionless pulleys. The total energy Eio; = Em + Ef can be par-
titioned into mechanical and fracture energy. The process of
failure proceeds through a transfer of the first contribution
into the second one.

In the example depicted in Fig. 1, the initial condition
corresponds to a state of the system where the energy is en-
tirely stored in mechanical energy with {EQ, = Eyi, E{ =0}
at t = 0. On the contrary, once the sample is broken, all the
mechanical energy initialy available has been dissipated into
fracture so that {Ef{{‘d = O,Ef““l = Etot} at t = fepg. In prac-
tice, for more general loading conditions, the total dissipated
energy corresponds to the work of the force applied to the
sample during the test that reduces well to the potential en-
ergy E0 = mg§ of the dead load m displaced over the height
d in the specific example considered here.

To describe this energy transfer, we introduce the elas-
tic energy release rate G(z,¢) that measures the decrease
dE,(t) = ffé’ G(z,t)df(z,t) of mechanical energy for an
incremental crack advance df(z,t), where f(z,t) provides
the crack length in z at time ¢ and b denotes the sample width
along the z-axis. Wherever the crack propagates, G(z,7) is
equal to the rate of energy dissipated or fracture energy G,

so that the mechanical energy released compensates the en-
ergy dissipated dE;(t) = fé’ G.df(z,t). It follows that the
transfer rate

b
P(1) = dj“ _ fdft’" :/O G(z,t)%dz ~ bGevm(t) (1)
is proportional to the average crack growth velocity v,,. This
linear relation has been tested experimentally in Barés et al.
(2014) and is shown in the inset of Fig. 1(b). The propor-
tionality constant provides the material fracture energy G..
Interestingly, in disordered solids, the dissipation rate is
far from being constant in time. Instead, it displays a strong
intermittency characterized by bursts of failure activities,
as exemplified in Fig. 1(b) for an artificial rock made of
sintered PMMA beads. This observation contrasts with the
smooth variation of the displacement imposed to the fractur-
ing specimen that produces a smoothly varying rate dW /dt
of mechanical energy injected into the system. To reconcile
these two different dynamics, we separate the mechanical
energy Em = W + E, into the work of the external force that
varies smoothly with time and the elastic energy stored in
the sample from which emerges these strong fluctuations.
The elastic solid, by storing potential energy and suddenly
releasing it through avalanches, acts as a complex filter that
drains intermittently the energy flux from the external load-
ing to the crack tip. This stick-slip dynamics is a direct con-
sequence of the disorder nature of the fracturing material.
The velocity signal v, (z), or equivalently the dissipa-
tion rate since &2 ~ vy, are natural candidates to disentan-
gle this complex dynamics. Their statistics is investigated in
Fig. 1(c) that shows the probability density function of Z.
The experiments of Barés et al. (2014) show two regimes
characterized by power law behaviors with the exponents
Np ~ 1.4 and Mg ~ 2.5 at small and large dissipation rates,
respectively. The presence of two distinct regimes reflects
the unique dynamics of cracks in disordered materials that
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Fig. 2 (a) Sketch of the experimental setup: Two PMMA plates are
sintered together, creating a weak plane for the fracture to propagate.
(b) Time spent by the front in the different regions of the fracture plane.
The dark lines correspond to long waiting times and thus low velocities
while the white domains correspond to micro-instabilities and so fast
velocities. (c¢) Distribution of local crack growth velocities. [Courtesy
of Milgy et al. (2006)]

is dominated by rare peaks of activity where the dissipa-
tion rate is exceptionally large, separated by almost silent
periods where the crack speed and so the dissipation rate is
much lower.

To identify the physical processes behind these puzzling
observations, it is fruitful to observe crack motion at the
local scale, where the front interacts with the material mi-
crostructure. Figure 2(a) shows an experimental setup de-
signed by Malgy and Schmittbuhl (2001) to explore the local
dynamics of crack fronts in disordered solids. In this sys-
tem, the crack front is confined at the weak interface be-
tween two transparent PMMA plates where toughness het-
erogeneities have been introduced by sandblasting one of
the two plates before sintering them together. The complex
evolution of the crack recorded at the micrometer scale us-
ing a fast camera is illustrated in Fig. 2(b) that shows in grey
scale the time spent by the front in the different regions of
the fracture plane. The intermittency evidenced at the large
scale in Fig. 1(b) is also obvious at the local scale: The
black lines visible in Fig. 2(b) that correspond to long wait-

Depinning regime
Fit: g ~ 1.9

—

=,

Z 10 oo

= N

Na T Yooy,

_ %y
4 %

Fig. 3 (a) Sketch of the experimental setup: A thin rigid cantilever
is detached from a thick PDMS specimen. The interface where the
crack propagates is patterned with randomly distributed obstacles of
controlled strength and size. (b) Intermittent dynamics of the crack
front in the fracture plane. The dark regions correspond to long wait-
ing times and thus a low velocity while the bright regions correspond to
avalanches and so fast velocities. (c) Distribution of local crack growth
velocities.

ing time indicate front configurations that have remained
trapped by the strongest material heterogeneities. The white
regions on the contrary are reminiscent of micro-instabilities
during which the front goes rapidly from one stable config-
uration to another. The coexistence of two antagonistic be-
haviors is clearly evidenced in the statistics of local crack
velocity shown in Fig. 2(c). Their probability density shows
two distinct regimes where the small v < (v) provides the
time spent by the front before escaping from a pinned con-
figuration while the large v > (v) characterizes the front dy-
namics during the so-called avalanches right after depin-
ning and before it gets pinned again in another configura-
tion. Interestingly, the power law behavior observed at the
local scale in the depinning regime is characterized by the
exponent 1, ~ 2.5 also measured at the global scale in the
experiments of Barés et al. (2014) presented in Fig. 1. How
do fluctuations resulting from the pinning of the front by het-
erogeneities introduced at small scale produce speed varia-
tions measurable at the sample scale? This survival of the
power law statistics with exponent 1y ~ 2.5 has been ex-
plained by Tallakstad et al. (2013): The central limit theorem
that generally ensures Gaussian fluctuations of global veloc-
ities as e.g. for front imibibitions (Clotet et al., 2014) breaks
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down here since for large exponents 1, > 2, the variance of
the local crack speed probability diverges.

Does this imply that cracks systematically display such
strong velocity fluctuations at all scales? Not necessarily, be-
cause for weak heterogeneities under some specific loading
conditions detailed in Roux et al. (2003) and Barés et al.
(2013), the dynamics of the crack recovers a continuum like

motion as expected for a coarse-grained homogeneous medium.

Interestingly, even in presence of a strong intermittency
in the dynamics of the crack, another statistical behavior
can be observed. Figure 3(a) depicts an experimental setup
where a crack is driven between a transparent PDMS block
and a stiff thin plate patterned with randomly located defects
of controlled strength and density. This system is inspired
from the experiments of Dalmas et al. (2009), Xia et al.
(2012) and Chopin et al. (2015) where cracks are pinned
by designed obstacles. Similary to Malgy et al. (1992)’s ob-
servations [Fig. 2], the front dynamics is also very intermit-
tent, as illustrated by the map of Fig. 3(b) of the front wait-
ing times. However, the scaling behavior of the probability
density of local crack speed is characterized by an exponent
Ng =~ 1.9 significantly lower. We will see in the next section
devoted to models of crack propagation that this difference
reveals two different failure growth mechanisms.

2.2 Models of crack propagation in disordered materials

Two types of models have been proposed to describe crack
growth in disordered materials. In the first approach, dam-
age processes taking place at the crack tip vicinity are as-
sumed to be localized in a process zone of size £,, small
with respect to the heterogeneity size &, as illustrated in
Fig. 4(a). This assumption justifies the description of failure
processes at a continuum scale through the basic concept of
Linear Elastic Fracture Mechanics (LEFM): During crack
growth, the rate of elastic energy released compensates the
rate of energy dissipated through fracture. Thus, fracture is
described as a transfert of the mechanical energy consisting
of the elastic energy stored into the loaded specimen and the
work of the external force, into fracture energy that consists
of the energy dissipated within the crack tip process zone
to make the crack propagates. The second type of models
takes into account the discrete nature of failure processes by
describing crack growth as a succession of discrete failure
events in a network of fuses, bonds or beams. Failure takes
place when the stress applied locally exceeds a resistance
threshold that is randomly distributed among the constitutive
elements (Herrmann and Roux, 1990). Contrary to LEFM
based model that ensures proper energy conservation dur-
ing failure, this approach does not rely on thermodynamics
principles, and so does not provide any interpretation of the
process of crack growth in terms of fracture energy. How-
ever, it allows the exploration of complex crack geometries

and fracture patterns as the one presented in Fig. 4(b) where
crack growth proceeds through the nucleation, growth and
coalescence of damage cavities. Both approaches are com-
plementary and apply to different crack propagation prob-
lems, as illustrated in the following. Interestingly, a clear
connection between both approaches were recently made,
as it was shown that discrete models could recover LEFM
predictions when investigated at a scale much larger than
the process zone size £, (Gjerden et al., 2013).

Continuous models of crack propagation in heteroge-
neous media builds on two ingredients: The accurate de-
scription of the stress field at the vicinity of a distorted crack
front (Lazarus, 2011) and the description of the material mi-
crostructure at a mesoscale though a heterogeneous field of
fracture energy. The first one provides the distribution of
crack driving force along the front, prerequisite to predict
its evolution within a medium with heterogeneous failure
properties. This distribution can generally be obtained ex-
plicitly for small front perturbations with respect to straight-
ness, even though larger front perturbations through second
order extensions could recently be explored using this ap-
proach (Vasoya et al., 2015).

Following this line, Rice (1985)’s formula derived for
a semi-infinite planar crack embedded in an infinite elas-
tic medium have been extensively used for investigating the
dynamics of cracks in heterogeneous media (Gao and Rice,
1989; Schmittbuhl et al., 1995; Bonamy et al., 2008). It pro-
vides the elastic energy release rate distribution

Gt) _ |,

fO_f(Z7t) 1 +°°f(2,[)—f(Z,l‘) ~
G 2 +EPV[w e e

)2

2

as a function of the crack front geometry f(z) defined from a
reference straight configuration fy (see Fig 4(a)).! The struc-

tural length ¥ = is positive for stable macro-

0

dGo/dfy
scopic loading conditions for which the unperturbed elastic
energy release rate Gy decays with the unperturbed crack
position under fixed loading. This formula actually applies
also for a crack lying at the interface between a rigid sub-
strate and an incompressible material (Pindra et al., 2008),
so it can be safely applied to the two experimental situations
presented previously. Note that formula similar to Eq. (2),
but involving different kernels in the integral, can be derived
for more specific fracture geometries, e.g. to take into ac-
count the finite thickness of the specimen (Legrand et al.,
2011).

Equation (2) reflects that the local driving force on the
front depends not only on the distance of the crack line to the
reference position, but also on the full crack front configu-
ration through the integral term embedding the long-range

! The principal value PV [ in Eq. (2) ensures the convergence of the
integral.
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Broken zone

Broken zone

Fig. 4 Brittle vs quasi-brittle failure of heterogeneous materials. (a) For brittle failure, the process zone size ), is much smaller than the char-
acteristic microstructural length scale & of the material. The crack growth process is well described by the motion of a sharp interface f(z,t)
separating the broken from the unbroken domain of the fracture plane. (b) For quasi-brittle failure, £,,, > & so crack propagation is dominated by

the processes of damage nucleation, growth and percolation.

interaction kernel ~ 1/z%. It means that a geometrical per-
turbation localized along the front affects the crack driving
force everywhere else, but with a strength that decays as the
inverse of the square of the distance. Such a non-local be-
havior is reminiscent of the underlying perturbations of the
elastic field in the bulk ahead of the crack front: A local
geometrical perturbation of the crack front produces an ex-
tended perturbation of the elastic field ahead of the crack in
the still intact region of the material that ultimately modifies
the elastic energy release rate everywhere along the front.
To capture the essence of this non-local behavior, it is help-
ful to consider the Fourier transform of the integral term in
Eq. (2) that follows —|k|8f(k) where f(k) is the Fourier
transform of the front perturbations. Under this form, the
elastic restoring force that applies on the front appears to be
inversely proportional to the perturbation wavelength 1/k so
the smaller the wavelength, the stiffer the crack front.

The derivation of an evolution equation for the crack
front builds on the perturbation of the Griffith’s equilibrium
condition G[f(z,t)] = G¢[f(z,1), f(z,t)] that should be sat-
isfied everywhere along the front at any time. Note that the
variations of the fracture energy with the crack speed f =

d
8—{ are also taken into account. We then follow the approach

described previously where the elastic energy release rate
has been expanded to the linear order in the crack front per-
turbation, and develop the fracture energy distribution along
the front as

Ge(z,t F(z,0) —v
(1) _ l+5gc(z,x:f(z,t))+f7( ) =V, 3)
G Vo
The first term in this development describes the normal-
G -G
ized toughness variations gc(z,x) = M from

_ C
a reference value G = (G¢(2,X,Vm))x defined as the aver-

age toughness within the fracture plane for the crack speed
vm = (f(z,1))z. Note that we do not linearized this term
along f(z,1) — (f(z,t))z;, as it would limit our calculation
to small front perturbations with respect to the heterogene-
ity size £. The second term in Eq. (3) takes into account the
variations of fracture energy that generally increases with

crack speed. This variation is approximated by a linear rela-
tion with coefficient G, = d(G. (x,z,f)>z,x/df|vm. For prac-
tical purposes, we introduce the velocity vo = G./G. that is
a characteristic constant of the material that may depend on
the average crack speed vy,.

The insertion of Egs. (2) and (3) into the Griffith’s equi-
librium condition G(z,7) = G¢(z,t) gives the following crack
evolution equation

f_Vm:
Vo <z

dZ—6gc(z, f)-
“)

fomf 1 [t G0~ f(z1)
v G2

It relies on the assumption of small toughness variations

(88c(z,x)?), , < 1 that justifies the linear development of
G with the front perturbation in Eq. (2). It also assumes lin-
ear variations of Go(f) — Go(fo) and G¢(f) — Gc(v) within
the range of crack length and speed investigated.

This equation of motion captures many features of the
statistics of crack growth observed experimentally. In par-
ticular, it describes accurately the mechanism of collective
pinning of the front by an assembly of obstacles at the origin
of the giant fluctuations evidenced in Fig. 1(b). As a result, it
has been used to interpret several experimental observations
like the power law distribution of failure bursts measured at
the local scale from spatio-temporal diagrams like the one
of Figs. 2(a) and 3(a) (Bonamy et al., 2008), the scale in-
variant roughness of the front characterized by a roughness
exponent § ~ 0.4 (Santucci et al., 2010) or the fine temporal
structure of global avalanches and their asymmetry (Laurson
et al., 2010). Here, we would like to focus on the distribu-
tion P(v) as predicted from this equation that can help us to
interpret the experimental results presented in Section 2.1.

The equation of motion (4) can be solved numericaly
for values of the parameters . and vy in agreement with
the experimental conditions. The predicted distribution of
local velocity is shown in Fig. 5. Similarly to the experimen-
tal observations, it also shows two different regimes with
a pinning regime at v < (v) corresponding to pinned crack
configurations characterized by a power law with exponent
np =~ 1.6 and a depinning regime for v > (v) characterized
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by 1, =~ 2.0. Note that the slopes of the distribution repre-
sented in Fig. 5 are actually ny — 1 and 71, — 1, since the
velocities have been defined here from the waiting times of
the crack front following the procedure proposed by Tallak-
stad et al. (2011). The correspondance between the theoret-
ically predicted and the experimentally measured exponents
of Figs. 2(c) and 3(c) is not clear.

To disentangle the scaling behavior of the velocity distri-
bution, it is useful to explore the dynamics of the crack in a
simpler situation. Consider the relaxation of crack front as it
recovers a straight configuration after depinning from a sin-
gle obstacle. This problem can be addressed by considering
the motion Equation (4) but with a homogeneous toughness
field g. = 0. The initial front geometry at the onset of depin-
ning corresponds to the solution
=S4 2) 3l (- 2)mp-3])
of the classical problem of a front at equilibrium in a frac-
ture plane containing an isolated obstacle of width 24 and
toughness contrast C = (G¢ — G.) /G, where G > G, is the
toughness of the obstacle (Chopin et al., 2011; Vasoya et al.,
2013). The resolution of the relaxation dynamics provides
the velocity field

; 1
f(z,1) =Cvo {1 = (arctan (dvj_tz> + arctan (dvo_lz))]

(6)

for small defects d < .Z compared to the structural length
introduced in Eq. (2). First, it provides a simple physical in-
terpretation of the characteristic velocity vg introduced in the
crack front evolution equation since it sets the initial velocity
f(z,0) = Cvy at the onset of depinning. Second, it predicts a
front relaxation in f ~ 1/t after a short transient ¢ >> d /vy.
One deduces from it the scaling behavior of the velocity dis-
tribution P(v) ~ 1/v? during the micro-instability produced
by the depinning of the front from a single obstacle.

Avalanches observed during the propagation of a crack
through a disordered interfaces result from the depinning
from several obstacles. However, our numerical resolutions
show that the scaling of the velocity distribution remains
similar and follows P(v) ~ 1/v? irrespective of the avalanche
size and so the number of obstacles involved in the depin-
ning process.

An interpretation of the scaling behavior of the local ve-
locity distribution is now in order. In the direct simulations
of the crack growth equation, the power law statistics P(v) ~
1/v? observed in the depinning regime is the signature of the
relaxation mechanisms when the front detaches from obsta-
cles. This is consistent with the observation of a similar scal-
ing in the experiments of Fig. 3 where a crack propagates at
the disordered interface between a PDMS block and a rigid
substrate. Indeed, for that particular experimental setup, the

process zone size is of the order of a few tenth of nanome-
ters (Ciccotti and Creton, 2015), much lower than the pat-
terned heterogeneities introduced at the micrometer scale,
guaranteeing that the hypothesis of brittle crack growth il-
lustrated in Fig. 4 is satisfied.

The agreement between the LEFM based model and the
experiments of Fig. 3 raises the question of the origin of the
large exponent 14 ~ 2.5 characterizing the depinning regime
in the experiments on PMMA presented in Fig. 2. This de-
viation to the LEFM prediction can be understood by in-
vestigating the local crack front dynamics using a discrete
model of fracture that goes beyond brittle fracture. Gjerden
et al. (2014) investigated the propagation of a crack through
a weak disordered interface separating two blocks connected
by an array of parallel brittle fibers. When the force applied
to one of the fiber exceeds its failure threshold, the fiber
breaks and tensile forces are redistributed through the intact
region of the interface assuming that blocks behave elasti-
cally. This redistribution mechanism produces cascades of
failure events, qualitatively similar to the avalanche dynam-
ics described by the LEFM based model of Eq. (4). For a
weakly disordered interface, the simulation even recovers
quantitatively the predictions of the depinning models and
in particular the value of the roughness exponent § ~ 0.4
predicted from the LEFM. But a more interesting regime

~ 1 takes place for strongly disordered interfaces. Indeed, in that

regime, the front dynamics is not governed by the compe-
tition between the elasticity of the crack line and the dis-
order, but instead by the coalescence of regions of broken
fiber located ahead of the crack with the advancing crack it-
self. Interestingly, this transition from brittle to quasi-brittle
crack growth reflects also on the velocity probability den-
sity: When the process of damage coalescence dominates, as
illustrated in Fig. 4(b), the velocity distribution follows an-
other scaling behavior P(v) ~ v~ ™ with g ~ 2.5 as shown
in Fig. 5(b). This finding is in excellent agreement with Malgy
etal. (1992)’s experimental observations shown in Fig. 2(c).

The comparison between coalescence model and experi-
ments suggests that crack growth between two sintered PMMA
plates as performed in Mélgy et al. (1992)’s experiments is
dominated by damage coalescence. This point would cer-
tainly deserve further experimental investigations.

The existence of two distinct scaling regimes with expo-
nent 1g 2~ 2.0 for brittle failure and ng ~ 2.5 for quasi-brittle
crack growth also invites a discussion of Barés et al. (2013)’s
experimental results presented in Fig. 1(c). Here, a scaling
law with ng ~ 2.5 was reported in the depinning regime.
Since such scaling actually does survive to upscaling (Tal-
lakstad et al., 2011), it is tempting to interpret this observa-
tion in terms of microscopic failure mechanism, and conjec-
ture that microcracking does take place at a scale compara-
ble to the grain size & ~ 500 um of the sintered materials
used in these experiments.
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Fig. 5 Distribution of local crack speeds as predicted from (a) a
LEFM based model that describes brittle crack propapation in a dis-
ordered material (see Eq. (4)); (b) a fiber bundle model that describes
crack propagation as a damage percolation process [Courtesy of Gjer-
den et al. (2014)]. In both cases, the velocity distribution shows two
regimes: The low velocity or pinning regime is reminiscent of zones
of the front that are trapped by material heterogeneities while the
large velocity or depinning regime describes the crack dynamics within
avalanches. Note that the exponents involved in the depinning regimes
are different in both models and capture well the difference also ob-
served in the experiments (see Fig. 2(c) and 3(c)).

Many questions remain open. First, we have mainly fo-
cused on the depinning regime, and proposed an interpre-
tation for the scaling behavior of the velocity distribution in
terms of local crack growth mechanism. What about the pin-
ning regime? The observation of a scaling behavior with an
exponent 1, ~ 1.4 in Barés et al. (2013)’s experiment, close
to the LEFM prediction 1, ~ 1.6 shown in Fig. 5(a), is in-
dication that the velocity distribution in the pinning regime
might be robust through the transition from brittle to quasi-
brittle crack growth.

To conclude, we illustrated in this part how the statis-
tics of crack growth fluctuations observed either at the lo-
cal scale or at the global one can be used as a probe to in-
vestigate the nature of microscale failure mechanisms. This
opens interesting perspectives for the monitoring of struc-
tures from a statistical treatment of acoustic signals emitted
during their progressive fracture and damage. We now move
to the study of fracture surfaces statistics that also provide

10 10 10" 10°

ox/d

Fig. 6 (a) Fracture profile in a thin panel of expanded polystyrene
made of beads of size d ~ 2 mm. (b) Logarithmic representation of
the height-height correlation fonction of the fracture profiles. At scales
larger than the bead size d, crack roughness is self-affine with an expo-
nent H = 0.48 £0.05.

a rich information on elementary mechanisms involved in
crack growth.

3 Statistics of fluctuations in the trajectory of cracks

Fracture surfaces can be considered as the Holy Grail for
models of crack propagation in disordered materials, as they
have been extensively used as a benchmark to compare and
discriminate competing approaches (Bouchaud et al., 1993;
Hansen and Schmittbuhl, 2003; Ponson et al., 2006¢; Nukala
et al., 2010). Here, we would like to illustrate how to take
advantage of the dialogue between theory and experiment to
identify basic crack growth mechanisms from the statistics
of fracture surfaces. And propose fracture surface geometry
as a paradigm for understanding failure phenomena in dis-
ordered materials.

3.1 Crack path in thin sheets

To isolate the basic mechanisms underlying crack path se-
lection in heterogeneous media, it is instructive to consider
first crack growth in 2D thin sheets. By thin sheets, we mean
structures with a small thickness compared to their width
and length, but also smaller than or comparable to the char-
acteristic microstructural feature of the material.

Figures 6(a) and 7(a) show fracture profiles in a panel of
expanded polystyrene made of d ~ 2 mm size beads and in
a paper sheet, respectively. After digitizing the crack paths
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Fig. 7 (a) Fracture profile in a sheet of drawing paper. (b) Logarith-
mic representation of the height-height correlation of fracture profiles
in three different types of paper. The fracture roughness shows a self-
affine behavior characterized by an exponent H = 0.67 4 0.05 that
varies weakly from one type of paper to another.

h(x), their geometry can be characterized through their height-
height correlation function

Ah(8x) = ([h(x+ 8x) — h(x)]2)¥/%. )

where Ah is the height difference between two points along
the crack path h(x) separated by the distance dx along the
average crack line x. A#h is also averaged over several sam-
ples of the same material broken under the same loading
conditions to obtain a smooth variation with dx. Figures 6(b)
and 7(b) show the crack correlation functions thus obtained
for three types of paper sheet and for the polystyrene panel.
They both follow a power law Ah ~ 8x which is reminis-
cent of self-affine properties. However, the value of the char-
acteristic exponent, also referred to as the Hurst exponent,
differs significantly with H = 0.48 £ 0.05 in polystyrene
panels and H = 0.67 £ 0.05 in paper sheets.

This finding indicates two dramatically different fracture
behaviors. Cracks in poystyrene panels with H ~ 1/2 follow
trajectories close to a directed random walk: At any time
during failure, the crack has the same probability to propa-
gate upward as downward, irrespective of the prior propaga-
tion direction. As clear from Fig. 6(b) where the axes have
been normalized by the bead size, the random walk behav-
ior starts at a scale 8x ~ d up to a cutoff length éx ~ 100d.
Since the self-affine crack geometry reflects the random mi-
crostructure of the material, the elementary microstructural
feature sets the lower bound of the scale invariant regime.
The upper bound has a different origin: It emerges from the
finite size of the specimen, as shown by studying the ef-
fect of the sample dimensions on the fracture surface scaling
properties (Ponson et al., 2007).

For fractures in paper sheets that display exponents H ~
0.7 larger than 1/2, trajectories are persistent random walks.
Crack deflections towards the upper #'(x) > 0 (resp. lower
K (x) < 0) direction will be more likely followed by a posi-
tive (resp. negative) subsequent deflection. The lower bound
of the self-affine regime is less clear for paper sheets than
for polystyrene panels, and we will explain this observation
later. The upper bound however, as for polystyrene panels,
can be shown to emerge from the finite size of the specimen.

To make sense to these observations, the geometry of
cracks in brittle materials with disordered fracture properties
is explored theoretically. The model proposed here relies on
the assumption that the crack follows the direction in which
the shear component of the loading cancels out (Gol’dstein
and Salganik, 1974). Using this so-called principle of local
symmetry actually amounts to assume that the process zone
size £, is much smaller than the size of the microstructural
features at the origin of the crack deflection, so that LEFM
can be safely applied. We will see that this hypothesis plays
a central role in the interpretation of the two roughening be-
haviors observed experimentally. From the principle of lo-
cal symmetry and the expression of the local stress intensity
factors in tension k;{h(x)} and shear k;;{h(x)} for slightly
perturbed crack trajectory, one derives the following path
equation

dh 1

_ *OKH(E) o h(x)
dx JE/—mx/x—idx %)

+n(x) ®)

that is valid in the limit of small crack deflections 4’ (x) < 1.
Note that contrary to Katzav et al. (2007), the material elas-
tic heterogeneities are not taken into account, resulting in a
simplified version of the path equation that they derived. The
term 1) (x) is a quenched noise that describes the effect of the
toughness variations and anisotropy resulting from the dis-
ordered material microstructure. Its value change randomly
over —1p < 11 < Mo each time the crack propagates over a
distance of the order of the characteritic microstructural size.
The lengths %} ~ (T /K;)? and % ~ A1/K; involved in the
path equation (8) relates to the values of the coefficients K,
T and Aj in the Williams’ development of the stress field in
the tip vicinity of the unperturbed straight crack. In particu-
lar, the T-stress, negative in the experiments described here,
controls the stability of the crack trajectory (Cotterell and
Rice, 1980). The calculation of these lengths for the actual
fracture tests shown in Fig. 6(a) and 7(b) gives .4} ~ % ~
100d for the polystyrene panels and £ ~ % ~ 10 cm
for the paper sheets: They are of the order of the speci-
men in-plane dimension and much larger than the character-
istic size of the microstructural features. Under these con-
ditions, the first two terms in the path equation that scale
as ~ 1/v/ A and ~ 1/.% become negligible. The approx-
imated path equation di/dx ~ 1n(x) thus obtained is char-
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acteristic of a directed random walk. It predicts self-affine
crack profiles with an exponent H = 1/2.

This theoretical analysis of the crack paths in 2D disor-
dered brittle solids captures the observations made in Fig. 6
for polystyrene panels, namely uncorrelated crack deflec-
tions reflected by the random walk exponent H ~ 0.5. This
agreement lies in the peculiar failure mechanism of expanded
polystyrene: As the crack meanders through its poorly con-

solidated granular structure, the actual dissipative failure mech-

anisms taking place in the crack tip vicinity are confined in a
process zone of size £, much smaller than the size d of the
polystyrene beads. Therefore, the crack deflection mecha-
nism in this material is fairly well described under the as-
sumption of a brittle crack growth as supposed in the model.

The behavior of cracks in paper sheets with H > 1/2
indicate another roughening mechanism. Here, the charac-
teristic scale of the microstructure, namely fibers of length
d ~ 0.1 — 1 mm (Ververis et al., 2004), compares with the
characteristic scale of damage processes. A closer look at
the failure mechanisms in paper indeed reveal that macro-
scopic cracks propagate through the nucleation and growth
of mm scale microcracks that subsequently coalesce with it.
This discontinuous growth process results in jumps of the
crack tip from one position to another that can be evidenced
using a fast camera or through the acoustic bursts emitted
during failure (Stojanova et al., 2013).

These local failure mechanisms reflect on the crack rough-
ness at the large scale. As shown by Ben-Dayan et al. (2006),
crack propagation by damage nucleation and coalescence
produces persistent self-affine crack trajectories character-
ized by a Hurst exponent larger than 1/2, equal to H ~
0.65 in their specific model. Roughly speaking, the positive
correlations that build along the crack path emerges from
the attraction exerted by the microcrack on the main crack
through the following mechanism: As the level of tensile
stress is maximum along the current crack propagation di-
rection, microcracks are likely to nucleate in this direction.
Once damage nucleation takes place, microcrack and crack
attract each other, so the main crack is now more likely to
propagate in its current propagation direction. Such a rough-
ening mechanism was also observed through simulations of
crack propagation by damage growth and coalescence in
ductile materials (Srivastava et al., 2014). The roughness ex-
ponent H ~ 0.55 characterizing the fracture surfaces in their
simulations is lower than the one found by Ben-Dayan et al.
(2006), however significantly larger than 1/2 to indicate per-
sistency in the crack trajectory.

The link between failure mechanisms and roughness prop-
erties in thin sheets is clear from the experiments and the
models: Brittle crack growth in the limit of large specimens
leads to uncorrelated random fracture profiles (H ~ 0.5) while
crack propagation through damage nucleation results in pos-
itive correlations between successive crack growth incre-

ments (H > 1/2). The comparison between two length scales,
namely the characteristic size d of the elementary microstruc-
tural feature and the characteristic size £,, of the damage

processes, is proposed as a criterion to distinguish both mech-
anisms. We now move to the study of the fracture surfaces of

fully three-dimensional materials that does reveal the com-

peting roughening mechanisms evidenced in thin sheets, but

involves a different selection process between them.

3.2 Roughness of two-dimensional fracture surfaces

We now consider fracture in specimens with a large dimen-
sion along the crack front direction compared to the charac-
teristic microstructural size of the material. In that situation,
the crack leaves behind it a 2D fracture map as the ones
shown in Fig. 8. Three materials are considered, namely
an aluminum alloy, a mortar and a ceramic, with a priori
three different failure behaviors to elicit roughness proper-
ties common to a large range of materials. The topography
h(z,x) of the fracture surface of each of these materials is
measured through an adapted profilometric technique as de-
tailed by Pouchou et al. (2002), Morel et al. (2008) and Pon-
son et al. (2006a), respectively.

The standard approach to characterize the geometry of
fracture surfaces is to compute their height-height correla-
tion function, as defined in Eq. (7), either along the propaga-
tion direction x or the perpendicular one z. A more complete
characterization consists in computing their 2D correlation
function Ah(0x) = ([h(x + Ox) — h(x)]2>,l/2 that allows for
the description of their anistropic scaling properties (Ponson
et al., 2006b). Previous works have shown that fracture sur-
faces are self-affine, namely that their correlation function
follows a power law Ah ~ 8z° with an exponent ¢ ~ 0.75
that was conjectured to be universal (Bouchaud et al., 1990;
Malgy et al., 1992). However, more recently, another rough-
ness behavior was reported on brittle rocks with a lower
roughness exponent § ~ 0.45 (Boffa et al., 1998; Ponson
et al., 2006a). Following the work of Santucci et al. (2007),
we would like here to take a step back from the scaling
properties of fracture surfaces and investigate the underlying
statistics of height fluctuations to reveal the range of length
scales over which roughness shows meaningful correlations.

Figure 8 shows the distribution Py, of height variations
O0h = h(x + 8x) — h(x) where the sampling is done on all
admissible x and 6x such as r = |6x|. In other words, we
focus on the height variations at different scales 8r and treat
fracture surfaces as isotropic maps. An interesting property
of the family of distributions P, is that they follow a Gaus-
sian behavior at large length scales &r > & while they ex-
hibit fat tail statistics at small length scales 6r < £ as ev-
idenced from the comparison with parabolas characteristic
of Gaussian distributions in the semi-logarithmic represen-
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Fig. 8 Height maps h(x) of fracture surfaces of aluminum, mortar and ceramic. Their distributions of height variations computed at different scales
&r = |x| show a Gaussian behavior at large scales 6r > & against fat tail behavior at small scales 6r < & where & is a material dependant length

scale measured in Fig. 9. [Courtesy of Vernede et al. (2015)]

tation of Fig. 8. To measure the crossover length scale £ be-
tween fat tail and Gaussian statistics, we introduce the fol-
lowing operator

0(x) = 3 1og ((8h(x 5% ax/—c) ~ ©

It transforms the original height map A(x) into a map ®(x)
of the local roughness level that is defined from an aver-
age of the height variations over a circle of radius € cen-
tered in x.> The fields @ computed for the three fracture
surfaces considered are shown in Fig. 9. The patterns that
emerge on the fracture surface through this transformation
correspond to steep cliffs and reveal complex correlations of
the height variations. Their characteristic size is reminiscent
of the length scale & evidenced from the variations of P,
with &r. Indeed, first write the height variation computed
at a scale 6r as the sum of several height variations com-
puted at a finer scale £ < §r,% and then use the central limit
theorem: If the fluctuations at the scale € are uncorrelated,
then Pg,. is a Gaussian. Conversely, if the distribution Py,
is non-Gaussian, this indicates spatial correlations of height

2 The constant £ involved in Eq. (9) is chosen such that the average
of w(x) over all x is zero.

3 The actual decomposition of the height variation computed as a
scale Or into the sum of heigth variations computed at a finer scale € =
Or/n where n is an integer writes as 0h(x, 0X) = h(x+ 8x) — h(x) =

n k n
Zh(x—O— ;(SX) —h(x+

L= Y snixt Fox, 0%
=1 k=1 n n

variations at a scale 8r or smaller. As a result, the crossover
length identified from the transition from fat tail to Gaussian
statistics does correspond to the correlation length of the w-
maps, and we note both length scales & in the following.

The correlations of @ are studied through the function
C(6r) = (0(x)®(x+ 6X))y |5x—s- shown in Fig. 9 as a func-
tion of the distance &r for different values of €; C(6r) is
in fact independent of € whenever € < 8r. For the three
materials considered, we observe two regimes: At small §r,
o shows strong spatial correlations which decay logarith-
mically as C(6r) ~ —log(ér/&) and extrapolates to zero
for 6r = £. For larger distances, these correlations are zero
within statistical noise. & corresponds to the characteristic
size of the patterns of the w-fields shown in Fig. 9.

The presence of two separate ranges of length scales
with distinct statistical properties on the fracture surfaces of
these materials is clear: At small 6r < &, the height fluc-
tuations are strongly correlated and display non-Gaussian
statistics while at large 6r > &, the roughness follows a
Gaussian behavior with no spatial correlation of the w-field.
We would like now to come back on the self-affine proper-
ties of the fracture surface and determine the value of the
roughness exponent in these both regimes.

Figure 10 shows the correlation function Ah(Sr) of the
three fracture surfaces following the definition of Eq. (7) af-
ter averaging over all the possible directions such that §r =
|6x|. The two ranges of length scales determined previously
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are indicated by two different colors. They do show two
different scaling behaviors: At small 6r < &, the correla-
tion function follows Ak ~ 8r% with a roughness exponent
¢ ~0.7540.05, irrespective of the material considered. At
larger 6r > &, the roughness is characterized by a lower ex-
ponent § = 0.45 £ 0.05 here also robust and independent on
the material. As a result, the presence of two regimes ev-
idenced in the statistics of height fluctuations is also clear
from the self-affine properties of the height fracture maps
that show a persistent behavior { > 1/2 at small 6r < &
and an anti-persistent one § < 1/2 at large 6r > &. The fol-
lowing section addresses the physical origin of these two
regimes.

3.3 Roughness statistics as a paradigm for crack growth
phenomena?

The analysis of Section 3.1 of the fracture profiles in 2D
thin specimens gives indication on the mechanisms underly-
ing the roughness properties observed for 3D solids. In 2D
solids, persistency (H > 1/2) of fracture profiles is reminis-
cent of crack growth governed by damage coalescence pro-
cesses while pure random walk behavior H = 1/2 results
from brittle fracture. Theoretical analyses of crack propa-
gation in brittle media reveals that the major difference of
3D situations compared to 2D lies in the effective elasticity
of the crack line that opposes to out-of-plane crack excur-
sions (Larralde and Ball, 1995; Ramanathan et al., 1997,
Movchan et al., 1998). This effect was argued to explain
the anti-persistent roughness ({ ~ 0.45) reported in porous
brittle rocks (Ponson et al., 2006a; Bonamy et al., 2006a)
and the logarithmic ({ = 0) height correlations reported for



12

Laurent Ponson

phase-separated glasses (Dalmas et al., 2008). Therefore, the
anti-persistent roughness regime § ~ 0.45 observed at large
scale 6r > & on the three materials considered here is inter-
preted as the result of brittle crack growth. At these length
scales, the material can indeed be identified as a coarse-

grained equivalent linear elastic medium and LEFM can safely

be applied.

A quantitative understanding of the small scale 6r < &
roughness regime is still missing. However, Vernede et al.
(2015) characterized the geometry of the patterns present on
the w-maps of Fig. 9 and showed that they display remark-
ably robust features, like e.g. a fractal geometry with dimen-
sion D = 1.70 £0.05 irrespective of the material consid-
ered, suggesting a common underlying mechanism. Inspired
by Ravi-Chandar and Yang (1997) and Guerra et al. (2012)
who characterized the geometry of the marks left by micro-
cracks on PMMA fracture surfaces, Vernede et al. (2015)
conjectured that the steep cliffs evidenced in the @-maps of
aluminum, mortar and ceramics are the footprints of damage
coalescence. The particularity of PMMA compared to these
three materials is that microcracking processes take place at
amuch larger scale than the microstructural features, leaving
on fracture surfaces conic marks characteristic of the inter-
action between two microcracks in a homogeneous material.
On the contrary, the interplay between material disorder and
damage coalescence may result in the complex entangled
lines evidenced in the w-fields of Fig. 9 for aluminum, mor-
tar and ceramics.

What are the physical implications of the fracture sur-
face properties identified in this study? At first, the univer-
sal statistical structure of crack roughness evidenced in this
work recovers the traditional text-book picture of Fig. 11
of crack propagation phenomena: Dissipative failure mech-
anisms are confined at the crack tip vicinity in the so-called
process zone while LEFM applies at larger distances r > £,
from the crack tip where the material recovers a linear elastic
behavior and the stress field the theoretical predicted 1/+/r
singularity (Irwin, 1958). However, it goes beyond this clas-
sical description as the statistics of the fracture surfaces ev-
idenced at small scales does display universal features in-
dendendent of the material investigated. This is an important
observation that suggests that, at small scales too, a common
description of the crack growth process through damage co-
alescence does exist, and that this description does survive
to the material specific dissipative mechanisms taking place
within the process zone.

Do these observations find applications in fractography
for the post-mortem characterization of material failure? From
our observations, it is natural to interpret the length scale &
emerging from the fracture surface statistics as a measure
of the fracture process zone size £p,. The observation made
by Srivastava et al. (2014) of a linear relation between the
length scale & and the fracture toughness G, in simulations

Fracture
process zone

Fig. 11 Dissipative mechanisms during material failure are localized
at the crack tip vicinity in a process zone of characteristic size £p,.
The fracture surfaces of aluminum, mortar and ceramics reflects this
phenomenon as they display two distinct statistical behaviors at small
Or < & and large 6r > & length scales, reminiscent of damage coales-
cence and brittle crack growth, respectively.

of ductile crack growth in heterogeneous solids does support
this idea. Indeed, cohesive zone approach to fracture prob-
lems does predict a linear variation G¢ ~ £, of the toughness
with the process zone size (Barenblatt, 1962). Further inves-
tigations of the effect of damage on fracture roughness are
required. However, these observations are encouraging, and
we are closer than ever to confirm the conjecture proposed
30 years ago by Mandelbrot et al. (1984) regarding a link
between toughness and roughness.* If it was confirmed, the
statistical analysis of fracture surfaces could be an efficient
way to measure material toughness at different scales and
different locations in an already broken material. And also
to estimate post-mortem the load applied to a material or a
structure and help to determine the root cause of its failure.

4 Conclusions and perspectives

The statistical analysis of crack propagation in heteroge-
neous materials shows that the competition between mate-
rial disorder and elasticity results in scale invariant fluctu-
ations. This contrast with fracture patterns observed in ho-
mogeneous systems that often display a characteristic length
scale like e.g. in columnar joints (Goehring et al., 2009) or
in thin films (Marthelot et al., 2014). Therefore, the inter-
pretation of the exponents characterizing crack growth fluc-
tuations is key to make sense of these observations. In this
article, we propose a connection between these scaling be-
haviors and two elementary mechanisms underlying mate-
rial failure, namely brittle growth dominated by crack pin-
ning and quasi-brittle growth dominated by damage coales-
cence. A lesson to be learnt from the statistics of fracture
surfaces is that both mechanisms are generally present, but
at different length scales.

4 Note however that the idea of Mandelbrot et al. (1984) was to es-
tablish a correlation of the material toughness with the roughness ex-
ponent, and not with a crossover length scale between two self-affine
regimes as suggested by these recent studies.
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Another instructive finding is that the statistical prop-
erties of fluctuations emerging in the brittle regime are not
more universal than the one observed in the damage regime.
Since LEFM captures the main features of brittle failure for
a large range of materials, this suggests that another comple-
mentary theoretical framework that is still to be developed
can describe crack growth driven by damage coalescence.

What are the promising research directions along this
line? Failure results from the coalescence of an assembly of
microcracks growing in interaction. The related problem of
damage spreading and localization prior to the emergence
of a macroscopic crack has been studied within the frame of
damage mechanics. Future theoretical developments should
undoubtedly build on the basic concepts developed along

of numerical tools like molecular dynamics (Bitzek et al.,
2015), discrete element models (Kun et al., 2014), and con-
tinuum mechanics-based simulations for brittle (Bourdin et al.,
2000) and ductile failure (Needleman et al., 2012) allows
for a realistic description of microscale failure processes.
They have recently been helpful for interpreting the statisti-
cal properties of fluctuations in material failure and they are
powerful means of investigation of the effect of microscale
material features and processes on the failure behavior of
solids.

Understanding the interplay between damage and dis-
order during crack growth is indeed the next step in the
development of predictive models that bridge material mi-
crostructure to their failure behavior; and ultimately, that as-

these lines that can capture multiple cracks interaction (Kachanowists the design of materials with improved failure properties
2003) and localization phenomena (Pijaudier-Cabot and Bazant, — @ major challenge indeed.

1987). But first, theoretical tools of damage mechanics must
be adapted to heterogeneous media and include physically
motivated criterion for damage nucleation that has been less
developped. Then, these tools must be adapted to the spe-
cific loading conditions present at the vicinity of crack tip
within the process zone.

The other challenge is experimental. Statistics in the dy-
namics of cracks and their trajectory have been a preferred
direction of investigation due to the easy access to the in-
formation stored in the fracture surfaces and in the acoustic
emission recorded during fracture. These indirect observa-
tions have been interpreted from statistical models of frac-
ture following the approach described in this article. How-
ever, an easier way from the perspective of model valida-
tion and development, but more challenging from an exper-
imental point of view, is to perform direct observations of
failure mechanisms within the process zone. This requires
adapted experimental techniques so that these in situ inves-
tigations can be performed at the proper length scale, e.g. the
nanoscale in glass (Bonamy et al., 2006b) and the micron-
scale in polymers (Réthoré and Estevez, 2013). These obser-
vations limited to the free surface of the fracturing materials
can be combined with digital image correlation techniques
to measure the relevant mechanical fields (Hild et al., 2015;
Han et al., 2010). Along the same line, the recent use of to-
mographic images (Limodin et al., 2009; Maire and Withers,
2014) for fracture problems already show promising results.
An alternative approach is to scale up the dissipative fail-
ure processes by using model materials suitably designed
for mimicking failure processes involved in traditional ma-
terials, but at a more appropriate length scale for in-situ ob-
servations. Additive manufacturing techniques might be an
easy road for the fabrication of such systems (Dimas et al.,
2013).

In the quest for increasingly smaller length and time
scales of observation of failure processes, computational frac-
ture mechanics has a central role to play. The development

Acknowledgments The author would like to acknowl-
edge his colleagues Daniel Bonamy, Jean-Philippe Bouchaud,
Julien Chopin, Angelo Simone and Stephane Vernede for
their contributions to this work and thank Elisabeth Bouchaud
and Jean-Baptiste Leblond for their invaluable support.

References

Alava, M. J., P. K. Nukala, and S. Zapperi: 2006, ‘Statistical
models of fracture’. Adv. Phys. 55, 349-476.

Barenblatt, G. I.: 1962, ‘The mathematical theory of equi-
librium cracks in brittle fracture’. Adv. Appl. Mech. 7,
55-129.

Barés, J., L. Barbier, and D. Bonamy: 2013, ‘Crackling ver-
sus continuumlike dynamics in brittle failure’. Phys. Rev.
Lett. 111, 054301.

Barés, J., M. L. Hattali, D. Dalmas, and D. Bonamy: 2014,
‘Fluctuations of global energy release and crackling in
nominally brittle heterogeneous fracture’. Phys. Rev. Lett.
113, 264301.

Ben-Dayan, 1., E. Bouchbinder, and I. Procaccia: 2006,
‘Random and correlated roughening in slow fracture by
damage nucleation’. Phys. Rev. E 74, 146102.

Bitzek, E., J. R. Kermode, and P. Gumbsch: 2015, ‘Atomistic
aspects of fracture’. Int. J. Frac. 191, 13-30.

Boffa, J. M., C. Allain, and J. P. Hulin: 1998, ‘Experimen-
tal analysis of fracture rugosity in granular and compact
rocks’. Eur. Phys. J. Appl. Phys. 2, 281-289.

Bonamy, D. and E. Bouchaud: 2011, ‘Failure of heteroge-
neous materials: a dynamic phase transition?’. Phys. Rep.
498, 1-44.

Bonamy, D., L. Ponson, S. Prades, E. Bouchaud, and C.
Guillot: 2006a, ‘Scaling exponents for fracture surfaces
in homogeneous glass and glassy ceramics’. Phys. Rev.
Lett. 97, 135504.

Bonamy, D., S. Prades, C. L. Rountree, L. Ponson, D.
Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot:



14

Laurent Ponson

2006b, ‘Nanoscale damage during fracture in silica glass’.
Int. J. Frac. 140, 3—13.

Bonamy, D., S. Santucci, and L. Ponson: 2008, ‘Crackling
dynamics in material failure as the signature of a self-
organized dynamic phase transition’. Phys. Rev. Lett. 101,
045501.

Bouchaud, E., G. Lapasset, and J. Planes: 1990, ‘Fractal di-
mension of fractured surfaces: A universal value?’. Euro-
phys. Lett. 13, 73-79.

Bouchaud, J. P., E. Bouchaud, G. Lapasset, and J. Planes:
1993, ‘Models of fractal cracks’. Phys. Rev. Lett. 71,
2240-2243.

Bourdin, B., G. A. Francfort, and J. J. Marigo: 2000, ‘Nu-
merical experimnets in revisited brittle fracture’. J. Mech.
Phys. Solids 48, 797 — 826.

Chopin, J., E. Bouchaud, and L. Ponson, ‘Intermittent crack
dynamics through disordered interfaces with controlled
fracture properties’. (in preparation).

Chopin, J., A. Boudaoud, and M. Adda-Bedia: 2015,
‘Morhology and dynamics of a crack front propagating
in a model disordered material’. J. Mech. Phys. Solids 74,
38-48.

Chopin, J., A. Prevost, A. Boudaoud, and M. Adda-Bedia:
2011, ‘Crack front dynamics across a single heterogene-
ity’. Phys. Rev. Lett. 107, 144301.

Ciccotti, M. and C. Creton: 2015, ‘Fracture and adhesion of
soft materials: A review’. Prog. Poly. Sci. (in press).

Clotet, X., J. Ortin, and S. Santucci: 2014, ‘Disorder-
Induced Capillary Bursts Control Intermittency in Slow
Imbibition’. Phys. Rev. Lett. 113(074501).

Cotterell, B. and J. R. Rice: 1980, ‘Slightly curved or kinked
cracks’. Int. J. Frac. 16, 155-169.

Dalmas, D., E. Barthel, and D. Vandembroucq: 2009, ‘Crack
front pinning by design in planar heterogeneous inter-
faces’. J. Mech. Phys. Solids 57, 446-457.

Dalmas, D., A. Lelarge, and D. Vandembroucq: 2008,
‘Crack propagation through phase-separated glasses: Ef-
fect of the characteristic size of disorder’. Phys. Rev. Lett.
101, 255501.

Dimas, L. S., G. H. Bratzel, I. Eylon, and M. Buehler: 2013,
‘Tough composites inspired by mineralized natural mate-
rials: Computation, 3D printing, and testing’. Adv. Func.
Mat. 23, 4629 — 4638.

Gao, H. and J. R. Rice: 1989, ‘A first-order perturbation
analysis of crack trapping by arrays of obstacles’. J. Appl.
Mech. 56, 828-836.

Gjerden, K. G., A. Stormo, and A. Hansen: 2014, ‘Univer-
sality classes in constrained crack growth’. Phys. Rev.
Lett. 111, 135502.

Gjerden, K. G., A. Stormo, and A. Hansen: 2014, ‘Local
dynamics of a randomly pinned crack front: A numerical
study’. Frontiers in Physics 2, 66.

Goehring, L., L. Mahadevan, and S. W. Morris: 2009,
‘Nonequilibrium scale selection mechanism for columnar
jointing’. Proc. Nat. Acad. Sci. 106, 387 — 392.

Gol’dstein, R. V. and R. L. Salganik: 1974, ‘Brittle fracture
of solids with arbitrary cracks’. Int. J. Frac. 10, 507-523.

Guerra, C., J. Scheibert, D. Bonamy, and D. Dalmas: 2012,
‘Understanding fast macroscale fracture from microcrack
post mortem patterns’. Proc. Nat. Acad. Sci. 109, 390—
394.

Han, K., M. Ciccotti, and S. Roux: 2010, ‘Measuring
nanoscale stress intensity factors with an atomic force mi-
croscope’. EPL 89, 66003.

Hansen, A. and J. Schmittbuhl: 2003, ‘Origin of the univer-
sal roughness exponent of brittle fracture surfaces: stress
weighted percolation in the damage zone’. Phys. Rev.
Lett. 90, 045504.

Herrmann, H. and S. Roux: 1990, Statistical Models for the
Fracture of Disordered Media. Elsevier.

Hild, F., A. Bouterf, and S. Roux: 2015, ‘Damage measure-
ment via DIC’. Int. J. Frac. 191, 77-105.

Hossain, M. Z., C. J. Hsueh, B. Bourdin, and K. Bhat-
tacharya: 2014, ‘Effective toughness of heterogeneous
media’. J. Mech. Phys. Solids 71, 15-32.

Irwin, G. R.: 1958, ‘Fracture’. In: Handbuch der Physik,
Vol. 6. p. 551, Springer-Verlag.

Kachanov, M.: 2003, ‘On the problem of crack interactions
and crack coalescence’. Int. J. Frac. 120, 537-543.

Katzav, E., M. Adda-Bedia, and B. Derrida: 2007, ‘Frac-
ture surfaces of heterogeneous materials: A 2D solvable
model’. Eur. Phys. Lett. p. 46006.

Kun, F, I. Varga, S. Lennartz-Sassinek, and I. G. Main:
2014, ‘Rupture cascades in a discrete element model of a
porous sedimentary rock’. Phys. Rev. Lett. 112, 165501.

Larralde, H. and R. C. Ball: 1995, ‘The shape of slowly
growing cracks’. Europhys. Lett. 30, 87-92.

Laurson, L., S. Santucci, and S. Zapperi: 2010, ‘Avalanches
and clusters in planar crack front propagation’. Phys. Rev.
E 81, 046116.

Lazarus, V.: 2011, ‘Perturbation approaches of a planar
crack in linear elastic fracture mechanics: a review’. J.
Mech. Phys. Solids 59, 121-144.

Legrand, L., S. Patinet, J. B. Leblond, J. Frelat, V. Lazarus,
and D. Vandembroucq: 2011, ‘Coplanar perturbation of a
crack lying in the mid-plane of a plate’. Int. J. Frac. 170,
67-82.

Limodin, N., J. Réthoré, J. Buffiere, A. Gravouil, F. Hild,
and S. Roux: 2009, ‘Crack closure and stress intensity
factor measurements in nodular graphite cast iron using
3D correlation of lobaratory X ray microtomography im-
ages’. Acta Mater. 57,4090 — 4101.

Maire, E. and P. J. Withers: 2014, ‘Quantitative X-ray to-
mography’. Int. Mat. Rev. 59(1), 1-43.



Statistical aspects in crack growth phenomena: How the fluctuations reveal the failure mechanisms 15

Mailgy, K. J., A. Hansen, E. L. Hinrichsen, and S. Roux:
1992, ‘Experimental measurements of the roughness of
brittle cracks’. Phys. Rev. Lett. 68, 213-215.

Malgy, K. J., S. Santucci, J. Schmittbuhl, and R. Toussaint:
2006, ‘Local waiting time fluctuations along a randomly
pinned crack front’. Phys. Rev. Lett. 96, 045501.

Malgy, K. J. and J. Schmittbuhl: 2001, ‘Dynamical event
during slow crack propagation’. Phys. Rev. Lett. 87,
105502.

Mandelbrot, B. B., D. E. Passoja, and A. J. Paullay: 1984,
‘Fractal character of fracture surfaces of metals’. Nature
308, 721-722.

Marthelot, J., B. Roman, J. Bico, J. Teisseire, D. Dalmas,
and F. Melo: 2014, ‘Self-replicating cracks: A collabo-
rative fracture mode in thin films’. Phys. Rev. lett. 113,
085502.

Morel, S., D. Bonamy, L. Ponson, and E. Bouchaud: 2008,
‘Transient damage spreading and anomalous scaling in
mortar crack surfaces’. Phys. Rev. E78,016112.

Movchan, A. B., H. Gao, and J. R. Willis: 1998, ‘On pertur-
bations of plane cracks’. Int. J. Solids Struct. 35, 3419—
3453.

Needleman, A., V. Tvergaard, and E. Bouchaud: 2012, ‘Pre-
diction of ductile fracture surface roughness scaling’. J.
Appl. Mech. 79, 031015.

Nukala, P. K. V. V., P. Barai, S. Zapperi, M. Alava,
and S. Simunovic: 2010, ‘Fracture roughness in three-
dimensional beam lattice systems’. Phys. Rev. E 82,
026103.

Pijaudier-Cabot, G. and Z. P. Bazant: 1987, ‘Nonlocal dam-
age theory’. J. Eng. Mech. 113, 1512-1533.

Pindra, N., V. Lazarus, and J. B. Leblond: 2008, ‘The de-
formation of the front of a 3D interface crack propagating
quasistatically in a medium with random fracture proper-
ties’. J. Mech. Phys. Solids 56, 1269-1295.

Ponson, L., H. Auradou, P. Vié, and J. P. Hulin: 2006a,
‘Low self-affine exponents of fractured glass ceramics
surfaces’. Phys. Rev. Lett. 97, 125501.

Ponson, L., D. Bonamy, H. Auradou, G. Mourot, S.
Morel, E. Bouchaud, C. Guillot, and J. Hulin: 2006b,
‘Anisotropic self-affine properties of experimental frac-
ture surfaces’. Int. J. Frac. 140, 27-36.

Ponson, L., D. Bonamy, and E. Bouchaud: 2006c, ‘Two-
dimensional scaling properties of experimental fracture
surfaces’. Phys. Rev. Lett. 96, 035506.

Ponson, L., H. Auradou, M. Pessel, V. Lazarus, and J.-P.
Hulin: 2007, ‘Failure mechanisms and surface roughness
statistics of fractured Fontainebleau sandstone’. Phys.
Rev. E76,036108.

Pouchou, J. L., D. Boivin, P. Beauchéne, G. L. Besnerais,
and F. Vignon: 2002, ‘3D reconstruction of rough surfaces
by SEM stereo imaging’. Microchimica Acta 139, 135—
144.

Ramanathan, S., D. Ertas, and D. S. Fisher: 1997, ‘Qua-
sistatic crack propagation in heterogeneous media’. Phys.
Rev. Lett. 79, 873-876.

Ravi-Chandar, K. and B. Yang: 1997, ‘On the role of mi-
crocracks in the dynamic fracture of brittle materials’. J.
Mech. Phys. Solids 45, 535-563.

Réthoré, J. and R. Estevez: 2013, ‘Identification of a cohe-
sive zone model from digital images at the micron-scale’.
J. Mech. Phys. Solids 61, 1407—-1420.

Rice, J. R.: 1985, ‘First-order variation in elastic fields due
to variation in location of a planar crack front’. J. Appl.
Mech. 52, 571-579.

Roux, S., D. Vandembroucq, and F. Hild: 2003, ‘Effective
toughness of heterogeneous brittle materials’. Eur J.
Mech. A 22, 743-749.

Santucci, S., M. Grob, R. Toussaint, J. Schmittbuhl, A.
Hansen, and K. J. Malgy: 2010, ‘Fracture roughness scal-
ing: A case study on planar cracks’. EPL 92, 44001.

Santucci, S., K. J. Mélgy, A. Delaplace, J. Mathiesen, A.
Hansen, J. Bakke, J. Schmittbuhl, L. Vanel, and P. Ray:
2007, ‘Statistics of fracture surfaces’. Phys. Rev. E 75,
016104.

Schmittbuhl, J., S. Roux, J. P. Vilotte, and K. J. Malgy: 1995,
‘Interfacial crack pinning: effect of nonlocal interactions’.
Phys. Rev. Lett. 74, 1787-1790.

Srivastava, A., L. Ponson, S. Osovski, E. Bouchaud, V. Tver-
gaard, and A. Needleman: 2014, ‘Effect of inclusion den-
sity on ductile fracture toughness and roughness’. J.
Mech. Phys. Solids 63, 62—79.

Stojanova, M., S. Santucci, L. Vanel, and O. Ramos: 2013,
‘Statistical analysis of subcritical crack growth by acous-
tic emission vs direct imaging’. Phys. Rev. Lett.

Tallakstad, K. T., R. Toussaint, S. Santucci, and K. J. Malgy:
2013, ‘Non-Gaussian nature of fracture and the survival
of fat-tail exponents’. Phys. Rev. Lett. 110, 145501.

Tallakstad, K. T., R. Toussaint, S. Santucci, J. Schmittbuhl,
and K. J. Malgy: 2011, ‘Local dynamics of a randomly
pinned crack front during creep and forced propagation:
An experimental study’. Phys. Rev. E 83, 046108.

Vasoya, M., J.-B. Leblond, and L. Ponson: 2013, ‘A geomet-
rically nonlinear analysis of coplanar crack propagation
in some heterogeneous medium’. Int. J. Solids Struct. 50,
371-378.

Vasoya, M., A. B. Unni, J. B. Leblond, V. Lazarus, and L.
Ponson: 2015, ‘A theoretical and experimental study of
crack pinning by strong heterogeneities’. J. Mech. Phys.
Solids 89, 211-230.

Vernede, S., L. Ponson, and J.-P. Bouchaud: 2015, ‘Tur-
bulent fracture surfaces: A footprint of damage percola-
tion?’. Phys. Rev. Lett. 141, 215501.

Ververis, C., K. Georghiou, N. Christodoulakis, P. Santas,
and R. Santas: 2004, ‘Fiber dimensions, lignin and cellu-
lose content of various plant materials and their suitability



16 Laurent Ponson

for paper production’. Industrial Crops and Products 19,
245-254.

Xia, S., L. Ponson, G. Ravichandran, and K. Bhattacharya:
2012, ‘Toughening and asymmetry in peeling of hetero-
geneous adhesives’. Phys. Rev. Lett. 108, 196101.



