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Abstract

Background: The main form of Facio-Scapulo-Humeral muscular Dystrophy is linked to copy number reduction of
the 4q D474 macrosatellite (FSHD1). In 5 % of cases, FSHD phenotype appears in the absence of D474 reduction
(FSHD2). In 70-80 % of these patients, variants of the SMCHDT gene segregate with 4gA haplotypes and D474

hypomethylation.

Case presentation: We report a family presenting with neuromuscular symptoms reminiscent of FSHD but without
D474 copy reduction. We characterized the 4935 region using molecular combing, searched for mutation in the
SMCHD1 gene and determined D474 methylation level by sodium bisulfite sequencing. We further investigated the
impact of the SMCHD1 mutation at the protein level and on the NMD-dependent degradation of transcript.

In muscle, we observe moderate but significant reduction in D4Z4 methylation, not correlated with DUX4-fl
expression. Exome sequencing revealed a heterozygous insertion of 7 bp in exon 37 of the SMCHDT gene
producing a loss of frame with premature stop codon 4 amino acids after the insertion (c.4614-4615insTATAATA).

Both wild-type and mutated transcripts are detected.

Conclusion: The truncated protein is absent and the full-length protein level is similar in patients and controls
indicating that in this family, FSHD is not associated with SMCHD1 haploinsufficiency.

Keywords: Facio-Scapulo-Humeral Dystrophy, DNA methylation, SMCHD1, DNA combing, Haploinsufficiency, DUX4

Background

FSHD is one of the most common hereditary neuromus-
cular disorders, affecting between 1 in 8300 to 1 in
20,000 people in different Western populations [1, 2].
The disease is marked by clinical variability in disease
onset and penetrance. The clinical phenotype is charac-
terized by the progressive involvement of specific facial,
scapulohumeral and anterior foreleg muscles. Muscle
weakening is frequently asymmetric and can spread to
the pelvic girdle, abdominal and anterior lower leg
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muscles in most severe cases [3]. At the genetic level,
this disease is transmitted as an autosomal trait. In
around 95 % of patients, FSHD is associated with a re-
duction in the number of copies of a 3.3 kb tandem
macrosatellite element, D474 on one of the two 4q35 al-
leles. In the unaffected population, D474 arrays com-
prises 11 to 150 units while the number of copies ranges
between 1 to 10 in FSHD patients [4]. In most cases, the
D474 contraction is pathogenic if it segregates in cis
with a specific distal polymorphic sequence on 4q35,
termed 4qA, which is present in ~50 % of the chromo-
somes 4 in the human population [4]. In 5-10 % of fam-
ilies with a typical FSHD phenotype, there is no linkage
to D4Z4 shortening and this type of FSHD is referred to
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as type 2 (FSHD2; OMIM 158901). Approximately 80 %
of FSHD2 individuals carry a mutation in the epigenetic
modifier, Structural Maintenance of Chromosomes Flex-
ible Hinge Domain Containing 1 gene (SMCHDI) on
chromosome 18 [5] often associated with hypomethyla-
tion of the D474 element, mainly in the proximal end of
the D474 repeat (Fsel restriction site <25 % [5]; DR1 se-
quence [6], <30 %; 5P proximal sequence <55 % [7]).
Several groups have identified variants in the SMCHDI
gene that include alteration of splice sites, insertions, de-
letions, or missense and nonsenses [8—13].

The SMCHDI1 gene encodes a 226KDa protein con-
taining a GHKL-type ATPase domain and a hinge do-
main. The SMCHD1 protein belongs to the “Structural
Maintenance of Chromosomes” family, which includes
seven members (SMC1A, 1B-6). In mice, this protein
binds to the PRC2 polycomb complex and colocalizes
with trimethylH3K27 or associates with Dnmt3B for X
chromosome inactivation and variegation of gene ex-
pression [14-16]. In FSHD, SMCHDI1 loss of function,
dominant negative effect or haploinsufficiency might be
associated with D474 hypomethylation, chromatin relax-
ation and ectopic expression of the long form of the
DUX4 transcript (DUX4-fl) encoded by the last D474
repeat and the flanking 4qA region [17].

We identified a family in which the proband carries a
7-nucleotide insertion in exon 37 of the SMCHDI gene.
We determined the segregation of the mutation in the
family, its functional consequence at the mRNA and
protein levels in peripheral blood mononuclear cells
(PBMCs), fibroblasts and muscle together with associ-
ation with D4Z4 methylation and DUX4 expression.

Methods

Sample collection

Individuals were clinically assessed by neurologists with
expertise in neuromuscular diseases who defined the
presence or total absence of clinical signs and evaluated
the involvement of the typical groups of muscle usually
affected in the disease (facial, shoulder and pelvic girdle,
upper and lower limbs and abdominal muscles). Based
on the recent CCEF classification of FSHD patients, the
proband was classified in category A2 (upper and lower
facial weakness, upper limb impairment and winged
scapula) [18]. Research was approved by a local ethic
committee. Patients and relatives have provided written
informed consent for the use of the blood samples, tis-
sues and DNA for medical research. Written informed
consent was obtained from the patient for publication of
this Case report and any accompanying images. A copy
of the written consent is available for review by the Edi-
tor of this journal. Research was performed in accord-
ance with the Declaration of Helsinki.
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Cell culture

Skin biopsy was obtained using standard procedures.
Primary fibroblasts were obtained by placing the skin bi-
opsy in a culture dish containing DMEM medium sup-
plemented with 4.5 g/L of glucose, 2 mM glutamin, 10 %
fetal calf serum (FCS) and 1 % Penicillin/Streptomycin
for 15 days. At subconfluence, primary cells were col-
lected by addition of 0.25 % trypsin and 1 mM EDTA,
resuspended in fresh DMEM medium, plated and incu-
bated at 37 °C in 5 % COs,.

DNA, RNA and protein extraction

Total DNA was extracted from peripheral blood mono-
nuclear cells (PBMCs) using the Qiagen DNeasy Blood
& Tissue Kit, following manufacturer’s instructions.
Total RNA was extracted from peripheral blood with
Trizol-Chloroform (Life Technologies) following manu-
facturer’s instructions. After DNAse treatment
(Ambion), total RNA was converted to cDNA using the
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems) with random primers (Life Technologies).
Whole protein extracts were obtained from cells dis-
rupted in 200 pL extraction buffer (Tris-HCl pH8
100 mM, 10 % SDS, 10 mM EDTA, 10 % glycerol, prote-
ase inhibitors).

Western blotting

Proteins were separated by electrophoresis and trans-
ferred onto a PVDF membrane following the protocol
recommended by the supplier for the Life Technologies
NuPAGE system for Bis/Tris 4-12 % gels. After transfer,
PVDF membranes were blocked for 1 h in 5 % (w/v)
non-fat dry milk in PBS-T (0.1 % Tween-20 in PBS) and
incubated for 90 min with either Lamin B (Abcam,
EPR9701), N-terminal SMCHD1 (Sigma, HPA039441) or
C-terminal SMCHD1 (Abcam, ab31865). After 4 washes
in PBS-T, membranes were incubated for 90 min with
anti-mouse IgG secondary antibody coupled to HRP
(1/20 000; ThermoFisher). Signals were revealed using
enhanced chemiluminescence (Immobilion Western,
Milipore) using a ChemiDoc XRS system (Bio-Rad).

Molecular combing

Experiments were performed as described by Nguyen et
al, [19] on peripheral blood mononuclear cells (PBMCs)
embedded in agarose plugs. After purification, DNA was
diluted in MES buffer and combed on coverslips. A set
of probes specific for either the genomic organization of
the 4q or 10q subtelomeric regions is used allowing bar
coding of the two regions and measurement of the
D4Z4 array (Additional file 1: Figure S1). After
hybridization, the entire coverslip is scanned by an auto-
mated fluorescence microscope and image analysis is
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performed using the Combilog software. Only intact
D474 signals are kept for analysis.

Exome sequencing and PCR
Exome capture with Agilent SureSelect All Exon kit V5
followed by paired-end sequencing with HiSeq2000 was
applied to DNA samples from patients II.1 and L.1. Se-
quencing was performed by IntegraGen SA (Evry,
France). Other muscular gene variants were selected
from a restricted list of 45 genes currently used for
neuromuscular disease diagnosis. All variants, listed in
Additional file 2: Table S1, had a genetic status in pro-
band and mother consistent with disease age of appear-
ance and/or severity, and a frequency lower than 5 %
when present in dbSNP database. In silico predictions
were performed with HSF3.0 [20] and UMD predictor
[21]. Finally, presence of variants was assessed in
HGMD, LOVD and ClinVar (Additional file 2: Table S2).
All primers were designed using the Primer3 software
(http://frodo.wimit.edu/) and checked by BLAST against
the human genome to ensure specificity and SNPcheck
(https://secure.ngrl.org.uk/SNPCheck/snpcheck.htm;jses-
sionid=8E9E8C73969EB4D2) to avoid allele drop-out.
Primers used for SMCHDI1 exon 37 amplification and
Sanger sequencing are the following: forward 5- TGC-
CTG-TGG-AAC-ACT-CAA-AC-3’ and reverse 5-GCT-
GAC-TTC-CCA-ATT-TAG-TGC-3. Reactions (95 °C for
20 s, 59 °C for 40 s and 72 °C for 1 min and 40 s) were run
for 35 cycles. PCR products were purified by Exonuclease I
(New England Biolabs) and Rapid Alkaline Phosphatase
(Roche Biochemicals) digestion, subjected to Big Dye Ter-
minator v3.1 sequencing reaction (Applied Biosystems) and
analyzed by 3130x] Genetic Analyzer (Applied Biosystems)
following manufacturer’s instructions.

Sodium bisulfite sequencing

For bisulfite modification, 2 pg of genomic DNA was
denaturated for 30 min at 37 °C in NaOH 0.4 N and in-
cubated overnight in a solution of sodium bisulfite 3 M
pH5 and hydroquinone 10 mM using a previously de-
scribed protocol [22]. Converted DNA was amplified
using primer sets already reported [6, 7]. Amplification
was carried out using the High Fidelity Taq polymerase
(Roche) following manufacturers’ instructions. PCR
products were purified using the Wizard SV gel and
PCR Purification system (Promega) and cloned using the
pGEM*-T Easy Vector cloning kit (Promega). After over-
night incubation at 37 °C with antibiotic selection, at
least ten randomly selected clones were PCR amplified
for each sample using T7 and Sp6 primers and
sequenced using by Sanger’s method (Eurofins MWG
Operon, Ebersberg, Germany) with either Sp6 or T7
primers. Sequences were analyzed using the BiIQ
Analyzer software [23] and the average methylation
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score was calculated as the number of methylated CpGs
for the total number of CpGs in the reference sequence.

RT-PCR and data analysis

The XNP transcript was amplified for all cDNA samples
in order to check for genomic contamination using the
following primers: forward 5- AGG-AAA-GGC-AGG-
TGC-AAA-GC-3' and reverse 5- CGG-AGC-TTA-
AAC-TCA-TGG-AGG-3. SMCHDI1 transcript was amp-
lified for all cDNA samples with forward 5- AAT-GTT-
CGC-TCA-GTT-GCC-AG-3' and reverse 5- AGG-
ACT-ACT-TTC-TGC-CAG-CA-3 primers for 35 cycles
(95 °C for 30 s, 58 °C for 1 min and 72 °C for 2 min).
PCR products from sample II.1 and controls were sub-
cloned in the pGEM"-T Easy Vector cloning kit follow-
ing manufacturer’s instructions (Promega) and Sanger
sequenced with Sp6 and T7 forward specific primers.
DUX4 expression was analyzed as described [24].

NMDI14 treatment and qPCR analysis

Skin fibroblasts from proband and healthy controls were
grown at 37 °C and 5%CO, in DMEM medium supple-
mented with 15 % fetal bovine serum and 1 % antibiotics
(Thermo Fisher). NMDil4 (Merck Millipore) was dis-
solved and diluted in dimethylsulfoxide (DMSO) to a
48 mM final concentration. NMDI14 treatment on fibro-
blasts was performed at a 50 pM final concentration for
2 h and RNA was extracted by Trizol-Chloroform (Invi-
trogen) following manufacturer’s instructions. ATF3
positive control as well as NMDI14 treatment conditions
were chosen based on previous report [25]. SMCHDI
expression was quantified by RT-QPCR using the 480
Light Cycler real-time quantitative PCR (Roche) and
SYBR Green mix (Light Cycler 480 Master Mix, Roche).
Primer sequences were picked in order to amplify simul-
taneously WT and mutated allele transcripts, while se-
quence similarity did not allow performing allele specific
amplification. Differences in gene expression levels were
determined as previously described [26].

Case presentation

Clinical description and molecular diagnosis

The proband (II1) is a 68-years old woman who pre-
sented first signs of FSHD at the age of 56 (Fig. 1a) with
lower limb weakness, stepping and frequent falls. FSHD
was confirmed at the age of 61. First clinical examin-
ation confirmed facial involvement with asymmetrical
smile and asymmetrical weakness of orbiculis occuli. In
addition, the proband displayed shoulder girdle involve-
ment and scapula alata (Fig. 1b), abdominal, pelvic gir-
dle, hyperlordosis, lower limb muscles weakness, foot
dorsiflexion defect and stepping. At the molecular level,
analysis was first done first by Southern blotting (data
not shown) and further confirmed by Molecular
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Combing on peripheral blood DNA (Additional file 1:
Figure S1 and Additional file 3: Figure S2) [19]. She car-
ries 12 repeated units (RU) associated to a qA haplotype
on one 4q chromosome and 20 repeated D4Z4 units as-
sociated to a qB haplotype on the other allele and 13
and 21 repeated units, both associated to a qB haplotype
on the 10q chromosomes (Fig. 2).

The 12 RU-4qA allele has been transmitted by her
mother (I1), also affected. In this second patient, first
signs appeared at the age of 45. She showed stepping
at the age of 56 and became wheelchair-dependent at
the age of 74. She was diagnosed at the age of 81
and displayed asymmetrical facial and upper limb
weakening. The 12 RU-4qA allele has been transmit-
ted to her son (II2; age 65) who is not affected. Inter-
estingly, her unaffected daughter (II3; age 62) carries
a complex pattern with 3 different 4q35 alleles with
one qA allele with 6 RU and two other alleles with
more than 11 D474 units (23 RU-gB, likely inherited
from the father; 20 RU-qA) suggesting respectively
post and pre-zygotic mosaicism (Fig. 2). Despite the
presence of a short 6 RU allele she did not show any
sign of FSHD at the time of collection.
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DNA methylation analysis by sodium bisulfite sequencing
and DUX4 expression

The level of D474 methylation was analyzed by sodium
bisulfite sequencing on peripheral blood DNA for the
index case (II1) and the different members of the family
at four different positions along the D4Z4 repeat (Fig. 3a)
following same method and thresholds (below 35 % of
methylated CpGs for the DR1 sequence and 55 % for the
5 region) as reported by us and others, respectively
(Fig. 3b) [6, 7].

In affected members (I1 and II1), hypomethylation
in the DR1 (12.1 % and 11.3 % respectively) and 5’
(52 % and 35.5 % respectively) sequences segregates
with the symptoms whereas unaffected member dis-
play higher methylation level (DR1: 44.4 % and 46 %;
5, 67 % and 62 % for II2 and II3, respectively)
(Figs. 1a and 3b). In all cases (affected or unaffected),
we did not observe any significant hypomethylation
for the Mid and 3’ regions (Fig. 3b). For the Mid re-
gion, the methylation level was 62.6 % (II2) and
69.2 % (I13) for unaffected members and 62.6 % (II1)
and 56.5 % (I1) for affected members. For the 3’
region, the methylation level was 61.8 % (II2) and
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Fig. 1 Clinical diagnosis and pedigree. a Pedigree of the family. For each individual year of birth is indicated together with the presence of SNP
or mutation of the SMCHDT gene and D474 methylation level (%) at D4Z4 the DR1 (left) and 5’ (right) proximal regions. Individuals 11 and 111
carry the c4614_4615insTATAATA heterozygous SMCHD1 mutation and display a low methylation levels compared to 112 and 113. b Presentation
of a typical FSHD phenotype in the proband (II1) with characteristic asymmetrical scapulo humeral weakness and facial involvement
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Fig. 2 Molecular diagnosis by DNA Combing. Combed DNA from the different family members using specific probes and bar code for the 4q
and 10q regions. The chromosome, haplotype and D474 array size estimation (in kb) is indicated for each allele. The bar-code used to distinguish
the three different alleles is based on a combination of three different colors and different DNA probes encompassing the distal regions up to
the telomeric sequence [19]. The 3-color barcode comprises 2 probes detected in blue for the proximal region common to chromosomes 4 and
10, one 6 kb probe (red), which hybridizes the telomere, and a red probe that hybridizes the gA-specific 3-satellite region, with a variable length
(1-5 kb). The gB-specific probe, immediately adjacent to D474, is detected in blue (Additional file 1: Figure S1)

63.1 % (II3) for unaffected members and 62.7 % (II1)
and 61.9 % (I1) for affected members.

In addition, we analyzed the D4Z4 methylation pattern
in DNA from primary fibroblasts and quadriceps muscle
biopsy for the index case and observed that hypomethy-
lation is more pronounced for the DR1 and 5’ regions in
these two tissues compared to blood (DR1: 11.3 %, 4.7 %
and 1.8 %; 5, 35.5 %, 11.5 %, 30.3 % in blood, muscle and
fibroblasts, respectively) (Fig. 3c). These data fits with
previous reports by us and others with a percentage of
methylated CpG below 35 % for the DR1 sequence and
55 % for 5’ [6, 7].

Exome sequencing and pedigree segregation

Exome sequencing was performed for I1 and II1. We
identified a heterozygous insertion of 7 nucleotides in
exon 37 of the SMCHDI gene (c.4614 4615 insTA-
TAATA) (Additional file 3: Figure S2). In order to con-
firm this variation and analyze segregation in unaffected
members of the family (II2 and II3), we performed direct
Sanger sequencing of exon 37 in all the pedigree and we

determined that «¢.4614 4615 insTATAATA co-
segregates with clinical signs of FSHD (Additional file 3:
Figure S2).

In order to search for other muscular gene variants,
which may contribute to the neuromuscular or FSHD
phenotype, we selected variants among a list of 45 genes
screened in the diagnosis of neuromuscular disorders
(Additional file 2: Table S1). Interestingly, we found a
novel missense heterozygous mutation in the 77N gene
(c.8168 A > C; p.D2723A). By in silico analysis [20, 21],
the mutation is predicted as pathogenic with a potential
skipping of exon 35 and a Asp2723Ala substitution.
Other gene variants, their relative genetic status and in
silico predictions are detailed in Additional file 2: Tables
S1 and S2.

Transcripts and protein analysis

By RT-PCR (Fig. 4a) we were able to detect the DUX4-f]
pathogenic transcript in cultured primary fibroblasts
from the proband while the transcript was undetectable
in the muscle biopsy. SMCHDI RT-PCR of exons 36 to
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Fig. 3 DNA methylation analysis in peripheral blood and tissues. a Four regions within D474 were amplified by PCR after sodium bisulfite
treatment of genomic DNA. Amplicons were cloned and at least 10 individual clones were analyzed by Sanger sequencing. Each clone is
representative of a molecule of DNA of the initial sample. The position of the four sets or primers used is indicated with black lines below
schematic D4Z4. b Histogram bars represent the percentage of methylated (black) or unmethylated (white) CpG for each position in the DR1 (31
CpGs), 5" (21 CpGs), Mid (31 CpGs), and 3" (14 CpGs) regions in genomic DNA from PBMCs for each individual. ¢ DNA methylation analysis in
genomic DNA from a quadriceps muscle biopsy and primary fibroblasts from the 1 index case

38, in II1, revealed co-expression of the wild-type allele
and of the allele carrying the insertion (r.4614 4615
insTATAATA) indicating the absence of splicing defect
(Fig. 4b). Moreover, results show moderate reduction in
the expression of the mutated allele compared to wild-
type in the 3 tissues available; PBMCs, muscle fibers and
fibroblasts (Fig. 4b).

By Western blotting, we also demonstrate that the ex-
pression of SMCHDI is not restricted to muscle but also
detectable in fibroblasts and PBMCs of control cells
(Fig. 4c). However, while we looked for presence of a
truncated protein (p.A1539Yfs*4) with a predicted size of
1543 residues and an expected weight of 173.57 kDa, we
could not detect it by western blotting with an antibody
directed against the N-terminal part of the protein either
in fibroblasts or PBMC from the II1 index case. In order
to determine whether the SMCHD1 mutated allele was

degraded by non-sense mediated mRNA decay (NMD),
we treated fibroblasts from the index case and controls
for 2 h with 50 uM NMDil4 inhibitor, following previ-
ous publication [25]. Expression of the ATF3 gene was
used as a positive control of NMD inhibition [25]. Using
different primers, we observed rescue of expression for
SMCHDI1 and ATF3 transcripts after inhibition of NMD
activity in fibroblasts (Fig. 4d). However, we did not ob-
serve any significant difference in the increased level of
SMCHDI1 transcripts between proband and healthy con-
trol cells suggesting that the transcript carrying the 7 nt
insertion is not preferentially degraded by NMD.

Discussion

We describe here the identification of a new mutation
corresponding to the insertion of 7 nucleotides in the
exon 37 of the SMCHDI gene (c4614_4615
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Fig. 4 DUX4 expression and characterization of the SMCHDT mutation by RT-PCR and western blotting. a Expression of the DUX4 gene in total
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performed without reverse transcriptase (-). The 82microglobulin gene was used as a standard of amplification. b Analysis of the SMCHD1
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concentration of 50 uM NMDi14 or mock treated with DMSO. SMCHD1 transcripts were amplified by RT-QPCR in the different conditions. The ATF3
gene was used as a positive control [25]. Samples were amplified in triplicates

insTATAATA) in a family with FSHD. The proband (II1)
and her mother (I1), both showing clinical signs of
ESHD, carry this SMCHDI1 mutation, together with an
12 RU D4Z4 array associated with a qA haplotype.
SMCHDI insertion is not present in the other unaffected
members of the family (II2 and II3), whereas the 12 RU
D474 qA allele is carried by the brother (I12). Interest-
ingly, the unaffected daughter (II3) carries three different
4q alleles, two with more than 11 repeats and one with
6 RU and a qA haplotype suggesting a complex 4q mo-
saicism. Nevertheless, she did not show any sign of
FSHD at the time of collection.

We analyzed CpG by CpG the D474 methylation level
at four different positions using previously described
primers (DR1; 5, Mid and 3’) [6, 7]. As observed in other
cases, methylation level is variable along the repetitive se-
quence and hypomethylation is clustered at the 5 end
(DR1, <35 % of methylated CpGs and 5; < 55 % of methyl-
ated CpGs) of the repeat in the affected members of the
family (I1 and II1). Interestingly, hypomethylation is more
pronounced in muscle and fibroblasts than in blood.
Altogether, these data suggest that in this family, FSHD is
genetically associated with SMCHDI1 mutation and D474
hypomethylation, rather than D474 copy number.

Both wild-type and mutated transcripts were detected
by RT-PCR. The 7 bp insertion is predicted to activate

an exonic cryptic acceptor site, however such altered
splicing was not evident in cells available from the pa-
tient. At the protein level, the insertion would cause a
frameshift with the presence of premature stop codon 4
amino acids after the insertion. In western blot, the
truncated protein was undetectable and the quantity of
SMCHDI1 protein was comparable between the patient
and controls thus making haploinsufficiency improbable.
The SMCHDI mutation has been transmitted from the
mother to one daughter and segregates with the pres-
ence of the symptoms. No transmission has been ob-
served in the second daughter and brother who are not
affected. Interestingly, we analyzed if other muscular
gene variants might contribute to the FSHD phenotype
in this family. Rare or unreported variants with a genetic
status in proband and mother consistent with the age of
disease appearance and/or severity are detailed in Add-
itional file 2: Table S1. In particular, we describe a never
reported heterozygous missense mutation in the TTN
gene (c.8168 A >C; p.D2723A) which might act as a
phenotype modifier.

In 80 % of the FSHD2 patients, the pathology has been
associated with mutation in the SMCHDI1 gene. Most of
the variations described so far are single base deletions,
insertions, missense or nonsense mutations and splice
site variants [8—13]. Larger insertions such as the one
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described here are rare and a single case of insertion of
7 nucleotides in exon 42 has been reported so far
(LOVD SMCHDI1 variant database). Interestingly, the
different variations are mainly clustered in exons 9-12
and exons 25-37, proximal to the two functional do-
mains, the “Histidine Kinase-like ATPase domain”
encompassing exons 2-8 and the “Flexible Hinge do-
main” from exon 41 to exon 45, but not within these do-
mains [8, 9, 11]. Only 4 mutations have been identified
within these functional domains, three in the ATPase
domain and one in the flexible Hinge domain [8, 9, 11].
The variation reported here corresponds to a duplication
of a short TATAATA sequence within exon 37, proximal
to the hinge domain. This insertion induces a frameshift
and the appearance of stop codon 4 amino acids after
the insertion. We demonstrate that this insertion leads
to the production of a mutated transcript detectable in
muscle, fibroblasts and PBMCs in patients but does not
correlate with a detectable modification in the SMCHD1
protein level when probed with antibodies directed ei-
ther against the ATPase or Hinge domains or the ap-
pearance of a shorter isoform (1543 amino acids long) as
expected for a truncating mutation in both fibroblasts
and PBMCs suggesting that the truncated protein might
be degraded. However, treating patient’s fibroblasts with
an NMD inhibitor did not show specific rescue of the
mutated transcript.

Conclusion

In this study, we demonstrate that insertion of a
TATAATA DNA motif within the exon 37 of SMCHD1
leads to the production of a mutant transcript detectable
in the different tissues analyzed that is not specifically
degraded by NMD. However, at the protein level, we did
not observe a clear decrease in the protein level, which
was comparable between affected and control individ-
uals. SMCHDI1 mutation, together with methylation level
at D474 segregates in the affected members of the fam-
ily thus representing the strongest genetic candidates for
ESHD in this family. Nevertheless, for the proband, the
DUX4-fl transcript, which is only amplified in approxi-
mately 50 % of the muscle biopsies tested [26, 27] is not
present at a detectable level in muscle biopsy. Surpris-
ingly, however, DUX4-fl transcript is present in primary
fibroblasts.

In this family, SMCHDI haploinsufficiency is associ-
ated with D4Z4 hypomethylation. However, how this
haploinsufficiency triggers disease onset remains to be
established. Although speculative, we cannot exclude a
phenotype modifier effect by other muscle gene variants,
like the TTN heterozygous p.D2723A variant. In
addition, besides its role in D4Z4 methylation, SMCHD1
might contribute to the 4435 higher-order chromatin
conformation and long-range regulation of other cis-
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acting genes such as FRGI [28], FATI [29, 30] or
SORBS2 [31] or activate DUX4-FI production and subse-
quent target activation [32, 33] at early stages [26, 32].

Additional files

Additional file 1: Figure S1. Schematic representation of the bar code
used for molecular combing analyses. A. The 4gA and 4gB haplotypes
correspond to different genomic elements. Chromosome 4A and 10
share the distal region as well as a 42 kb region upstream of the D474
repeat array, including the p13E-11 sequence used as a probe for
Southern blot. Further upstream sequences, starting with the inverted
D474 repeat array, are specific to either 4q or 10q. The bar-code used to
distinguish the three different alleles is based on a combination of three
different colors and different DNA probes encompassing the distal regions
up to the telomeric sequence [19]. The 3-color barcode was previously
described and comprises 2 probes detected in blue, which hybridize the
proximal region common to chromosomes 4 and 10, one 6 kb probe
detected in red, which hybridizes in the (TTAGGG)n telomeric extremities,
and a probe labeled in red that hybridizes the gA-specific 3-satellite region,
with a variable length (1-5 kb). The gB-specific probe, immediately adjacent
to D474, is detected in blue. (TIFF 1521 kb)

Additional file 2: Table S1. Genetic variants in gene associated with
neuromuscular disorders in the proband (P) and her mother (M). Table
S2. In silico prediction of the different genetic variants and mode of
inheritance in neuromuscular disorders (AD, autosomal dominant; AR,
autosomal récessive ; XLR, X-linked Recessive). (DOCX 110 kb)

Additional file 3: Figure S2. A. Schematic representation of the
SMCHD1 gene. B. Analysis of the SMCHD1 mutation segregation among
family members. 11 and Il carry the same heterozygous insertion
(c4614_4615 insTATAATA). C. Analysis of the heterozygous duplication of
7 nucleotides in exon 37 of SMCHDT at the mRNA level after cloning and
sequencing of the two SMCHD!1 alleles from II1. D. Predictive analysis for
a putative ORF within the r4614_4615 insTATAATA cDNA. Top: wild type
ORF; bottom: predicted ORF terminating by a premature termination
codon (p.A1539Yfs*4) in exon 37. Nucleotide positions are given using
the SMCHD1 NM_015295 reference sequence. (TIFF 1521 kb)
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