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ABSTRACT

4E-Transporter binds eIF4E via its consensus se-
quence YXXXXL�, shared with eIF4G, and is a nucle-
ocytoplasmic shuttling protein found enriched in P-
(rocessing) bodies. 4E-T inhibits general protein syn-
thesis by reducing available eIF4E levels. Recently,
we showed that 4E-T bound to mRNA however re-
presses its translation in an eIF4E-independent man-
ner, and contributes to silencing of mRNAs targeted
by miRNAs. Here, we address further the mechanism
of translational repression by 4E-T by first identify-
ing and delineating the interacting sites of its ma-
jor partners by mass spectrometry and western blot-
ting, including DDX6, UNR, unrip, PAT1B, LSM14A
and CNOT4. Furthermore, we document novel bind-
ing between 4E-T partners including UNR-CNOT4 and
unrip-LSM14A, altogether suggesting 4E-T nucleates
a complex network of RNA-binding protein interac-
tions. In functional assays, we demonstrate that joint
deletion of two short conserved motifs that bind
UNR and DDX6 relieves repression of 4E-T-bound
mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis.
We also show that the DDX6-4E-T interaction medi-
ates miRNA-dependent translational repression and
de novo P-body assembly, implying that translational
repression and formation of new P-bodies are cou-
pled processes. Altogether these findings consider-
ably extend our understanding of the role of 4E-T in
gene regulation, important in development and neu-
rogenesis.

INTRODUCTION

4E-Transporter (EIF4ENIF1) is a large conserved meta-
zoan protein, which first came into prominence as a factor
that binds eIF4E, the translation initiation factor with high
affinity for the m7G cap structure of eukaryotic mRNAs (1).
During translation initiation, eIF4E interacts with eIF4G,
a large scaffold protein that also binds the eIF4A RNA he-
licase, and eIF3 associated with the 40S ribosomal subunit.
This interaction network links the 5′ end of mRNA with
the small ribosomal subunit and, with the unwinding activ-
ity provided by eIF4A, enables scanning of the 5′ untrans-
lated region (UTR) and recognition of the initiator AUG
(2). In addition to recruiting eIF4A to the 5′ cap, eIF4E
has recently been shown to also stimulate its activity in a
cap-independent manner (3). eIF4E levels, particularly im-
portant for translation of mRNAs with structured 5′ UTR,
are typically limiting for initiation, but are deregulated in
cancer, senescence and autism (4–6).

One of the significant ways this ribosome relay is regu-
lated is by controlling the eIF4E-eIF4G interaction medi-
ated by the consensus motif YX4L� in eIF4G. This mo-
tif, present in additional eIF4E-binding proteins, including
the small 4E-BP (eIF4E-binding) protein family and 4E-
Transporter (4E-T), competitively prevents the productive
binding of eIF4E to eIF4G, hence reducing protein synthe-
sis (5). Recent studies extended our understanding of this
competition by demonstrating that 4E-BPs, 4E-T and re-
lated proteins all possess a nearby eIF4E-binding site down-
stream of YX4L�. Notably, this second, non-canonical site
is absent from eIF4G, and allows 4E-BPs and 4E-T to effi-
ciently displace eIF4E from eIF4F (7–9).

4E-T proteins and the related Drosophila protein Cup
are also understood to control access of ribosomes to the
5′ cap of specific mRNAs by interacting with 3′ UTR-
RNA-binding proteins (reviewed in (4,6)). For example,
Drosophila Cup represses oskar and nanos mRNAs in oo-
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genesis by bridging Bruno and Smaug respectively which
recognize sequences within their 3′ UTRs and eIF4E, thus
precluding eIF4G recruitment of the small ribosomal sub-
unit (10–12). In C. elegans, the 4E-T homologue IFET-1
(Spn2) interacts with OMA1/2 RNA-binding proteins to
inhibit mei-1 and zif-1 mRNAs in oocytes (13,14). Indeed,
IFET-1 functions as a broad-based co-repressor through-
out germline development, and promotes large germline
RNP granule condensation (15). Finally, we previously
showed that in Xenopus oocytes, 4E-T is a component of the
large CPEB translation repressor RNP complex that also
contains Xp54/DDX6 RNA helicase, PAT1 and LSM14
proteins (16).

Levels of 4E-T/Cup proteins are particularly high in
germ cells and early development when translational con-
trol predominates in gene regulation (6). Mutations in
Eif4enif1, likely resulting in nonsense-mediated decay of
4E-T mRNA, have recently been detected in a family with
premature ovarian failure (17). Interestingly, in a large
RNAi screen in mouse oocytes, 4E-T was found to be essen-
tial for the breakdown of the nuclear envelope and resump-
tion of meiosis (18). Furthermore, murine 4E-T determines
the genesis of neurons from precursors by translationally
repressing a proneurogenic transcription program (19), as
part of a complex including Smaug2 (20), reminiscent of
Drosophila Cup-Smaug interactions (12).

In addition to down-regulating protein synthesis, mam-
malian 4E-T has been shown to enhance decay of specific
mRNAs such as those bearing 3′ UTR AU-rich elements
(ARE) or microRNA-binding sites, in an eIF4E-dependent
manner (21–23).

The name given to 4E-T reflects its characterized nu-
cleocytoplasmic shuttling activity, via identified NLS and
NES sequences (1). At steady state, mammalian 4E-T
is found enriched in cytoplasmic Processing Bodies (P-
bodies), and its overexpression enhances eIF4E concentra-
tion therein (7,21,24–26). P-bodies are understood to par-
ticipate in mRNA storage as well as decay, and contain
many RNA-binding proteins including DDX6, PAT1 and
LSM14, phosphohydrolases such as the Dcp1/2 decapping
enzyme, the 5′-3′ exonuclease Xrn1, and the translation ini-
tiation factor eIF4E, with ribosomes and other transla-
tion factors being excluded from these granules (27,28). Re-
cently, we have identified C-terminal sequences in human
4E-T that promote its localization in P-bodies and these are
conserved in Drosophila and C. elegans 4E-T proteins, but
not in Drosophila Cup (26).

We and others have investigated how 4E-T proteins reg-
ulate expression of mRNAs to which they are bound, in
the tether function assay, mimicking their normal recruit-
ment to the 3′ UTR. Human 4E-T repressed bound re-
porter mRNA translation, rather than resulting in its de-
cay, and unexpectedly, did so even when mutated to pre-
vent interaction with eIF4E (26). Similar results were ob-
tained for tethered Drosophila Cup in S2 cells (29). On the
other hand, overexpression of (untethered) 4E-T reduces
protein synthesis globally, in an eIF4E-dependent manner
(21,26,30). Thus 4E-T exerts both eIF4E-dependent and
eIF4E-independent effects on translation. We also demon-
strated that 4E-T participates in microRNA-mediated si-
lencing and co-precipitates several subunits of the CCR4-

NOT complex (26), a key downstream effector of miRISC
(reviewed in (31)). Interestingly, CNOT1 binds to and stim-
ulates the DDX6 RNA helicase ATPase activity, thus me-
diating microRNA-mediated silencing (31–34). Moreover,
as DDX6 is a well-characterized and direct partner of 4E-
T (16,35,36), this network of interactions may underlie
miRISC repression of translation initiation.

Here, we extend our analysis of the repression mech-
anism mediated by 4E-T. Using a combination of co-
immunoprecipitation and mass spectrometry experiments
in HEK293 cells we first identify major 4E-T interacting
proteins, including DDX6, UNR, LSM14A and PAT1B,
and map their binding sites. We show in the tether func-
tion assay that deletion of both DDX6 and UNR binding
sites in 4E-T prevents its repression activity. More gener-
ally, we show that the 4E-T-DDX6 interaction also mediates
miRNA translational silencing and de novo P-body assem-
bly. Altogether, our data suggest that translational repres-
sion, including that mediated by microRNA, and P-body
formation are coupled processes.

MATERIALS AND METHODS

Plasmids

NHA-tagged GFP and human 4E-T plasmids, wild-type
and �CHD, were described in (26). NHA-4E-T deletion
constructs, missing motif I-III, singly and in combination
with loss of CHD, were obtained using chimeric PCR and
primers with complementary ends. The deletion boundaries
(I (131–161), CHD (208–245), II (291–316) and III (331–
346)), were chosen on the basis of conservation, predicted
secondary structure, and where possible started and/or
ended at nearby proline residues.

All FLAG-tagged plasmids were constructed with the
N-terminal 3x-CMV(E7533) 7.1 vector (Sigma Aldrich).
cDNAs encoding human 4E-T (26), UNR and unrip (37)
and DDX6 (gift from Reinhard Luhrmann) were subcloned
with appropriate oligos using standard PCR techniques
into the NotI/BamHI sites of 3x-CMV. The 4E-T deletion
constructs, missing motif I-III and the CHD, were obtained
by standard PCR using the NHA-deletion plasmids as tem-
plates. The 4E-T truncated fragment constructs were ob-
tained using the wild-type 4E-T as template, except in the
case of 4E-T1-300 and 4E-T 1–440 when the template was
the NLS mutant of 4E-T described in (26). FLAG-UNR�C
(UNR1-744) was obtained using standard PCR techniques.

Complementing siRNA-resistant HA-tagged DDX6
plasmids, wild type and mutants in helicase motifs required
for ATP hydrolysis (catal1-4) and CNOT1 binding (mif3),
were a gift from Witek Filipowicz, and described previously
(33). RL-Hmga2, wt and mutant, and Caf1catal/Pan2catal
plasmids were also gifts of Witek Filipowicz, and described
previously (33).

HEK293 cell culture and transfection

Human embryonic kidney HEK293T cells were maintained
in DMEM supplemented with 10% fetal calf serum. Knock-
down of protein in HEK293T cells was carried out us-
ing a 2-hit siRNA transfection protocol. On day 1, cells
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were seeded in either 35 mm 6-well plates (tether func-
tion assay) or 10 cm plates (immunoprecipitation) at a den-
sity of 2×105 cell/ml and immediately transfected with the
siRNA. Transfection of siRNA was performed as described
for DNA transfection (26), using Lipofectamine 2000, ac-
cording to manufacturer’s instructions. Typically, 3 or 15
�g of siRNA were used per sample in 35 mm and 10 cm
plates respectively. On day 2, the medium was replaced and
a total of 1 or 5 �g (for 35 mm and 10 cm plates respec-
tively) of the appropriate plasmid DNA was mixed with the
siRNA and transfection was repeated. Cells were harvested
on day 4. The efficiency of knockdown by RNAi was as-
sessed by Western blotting. The sequences of the siRNAs,
5′-3′, were as follows: unrip 1:1 mix of AAACUGUUACG-
CAUAUAUGAC[dT][dT] and AACUUAUGGACGAU-
CUAUUGC[dT][dT] (38); UNR Santa Cruz, sc-76809,
DDX6 GGAACUAUGAAGACUUAAA[dT][dT] and �-
globin GGUGAAUGUGGAAGAAGU[dT][dT (39).

Mass spectrometry

HEK293T cells were plated onto 10 cm plates at 3 × 105

cells/ml and Lipofectamine 2000-transfected with either
FLAG-4E-T or empty vector plasmids 24 h after plating.
After a further 24 h, cells were harvested and the tagged
proteins purified with 80 �l anti-M2 affinity gel accord-
ing to manufacturer’s instructions (Sigma-Aldrich). Bound
proteins were eluted using 200 �l of 300 �g/ml FLAG pep-
tide (Sigma), and separated briefly by SDS-PAGE. Each
lane was sliced into four to six slices, and tryptic pep-
tides obtained by in-gel digestion were identified using
GELC/MS/MS mass spectrometry in the Cambridge Cen-
tre for Proteomics. Peptide analysis was carried out with
Thermo Scientific Protein Center release 3.9 and UniPro-
tHuman Jan13. GO analysis of approx. 200 genes (Sup-
plementary Table S1) was performed with http://amigo.
geneontology.org/rte.

Immunoprecipitation and western blot analysis

Immunoprecipitation to assess binding of specific co-
factors of -tagged proteins was performed with lysates from
transfected cells grown in 10 cm plates. Following the man-
ufacturer’s recommended conditions, lysates prepared from
HEK293T cells were incubated with anti-M2 beads (Sigma-
Aldrich), and after washing, bound proteins were eluted
with SDS loading buffer. When indicated, the transfected
lysates were supplemented with RNAse A (Life Technolo-
gies) at 40 �g/ml final concentration during the immuno-
precipitation binding step.

Western blotting analysis was performed with 15% SDS-
PAGE. The following antibodies were used in ECL, rabbit
anti-4E-T (Abcam), DDX6 (Bethyl labs), UNR (gift from
Anne Willis; Novus), unrip (gift from Richard Jackson;
(37)), LSM14A (Millipore), PAT1B, (40; Bethyl), CNOT4
(Abcam), XRN1 (gift from Jens Lykke Andersen), actin
(Sigma); mouse anti-FLAG (Sigma), mouse anti-eIF4E1
(Santa Cruz); rat anti-HA (Roche), tubulin (Abcam), goat
anti-4E-T (Abcam); chicken anti-eIF4E2 (7).

Tether function assay

The 4E-T tether function assay was described in detail in
(26). Briefly, HEK293 cells were typically co-transfected
with NHA-plasmids (control GFP and 4E-T) and two lu-
ciferase reporter plasmids encoding Renilla luciferase-Box
B and the control firefly luciferase mRNAs. After 36–48 h,
lysates were prepared and luciferase activities determined
using the Dual luciferase system. All reported experiments
were repeated at least three times, and in the case of the
shown experiments, the average and standard deviation of
the Renilla to firefly luciferase ratio is of three technical
replicates. Levels of reporter mRNA in the tether function
assay were quantitated by qRT-PCR, as described previ-
ously (26). Samples were also analysed by western blotting,
as above.

miRNA reporter assay

For 4E-T knockdown and rescue experiments with miRNA
reporters, and based on similar assays with DDX6 (33), 300
000 HeLa cells per well of a six-well plate were first trans-
fected with 3 �g of siRNA using 3 �l of Lipofectamine
2000 (Thermo Fisher Scientific). The 4E-T siRNA was [5′-
CAGUCGAGUGGAGUGUACAUUGUdTdT; Thermo
Scientific], and the control �-globin siRNA is specified
above. A second transfection was performed 48 h later, us-
ing 80 000 cells per well of a 24-well plate and 0.75 �l of
Lipofectamine 2000. The second transfection mixtures con-
tained 0.25 ng of pSF3 CMV-RL-Hmga2-wt or -mut; 20 ng
of Firefly luciferase firefly luciferase, 150 ng of plasmids en-
coding PAN2catal and CAF1catal, 100 ng of plasmid en-
coding either HA-GFP, or HA-4E-T (wt or mutant forms;
all siRNA-resistant), and 1 �g of either 4E-T-specific or
control siRNA. Cells were lysed 48 h after the second trans-
fection and luciferase activities determined by the Dual lu-
ciferase assay. The levels of GFP and 4E-T (wt and mutants)
proteins were monitored by western blotting.

HeLa cell culture and transfection for immunofluorescence

HeLa cells were first transfected at the time of their plat-
ing with 1.5 �g siRNA (MWG Biotech) per 35 mm diam-
eter dish using Lullaby (OZ Biosciences, France), and split
in three 15 h later. Twenty four hours after siRNA delivery,
cells were transfected with 1 �g of plasmid DNA using Gen-
jet (TEBU). Sixty four hours after plating, cells were fixed
for immunofluorescence or harvested for protein prepara-
tion. The sequence of the siRNA targeting the 3′ UTR re-
gion of 4E-T mRNA was 5′-3′: UGGUCUUUCUUUUU-
UGUAAdTdT.

Immunofluorescence

Cells grown on glass coverslips were fixed in methanol for 3
min at −20◦C. After rehydration, cells were incubated with
the primary antibody for 1 h, rinsed with PBS, incubated
with the fluorochrome-conjugated secondary antibody for
1 hour, and rinsed with PBS, all steps being performed at
room temperature. Slides were mounted in Citifluor (Citi-
fluor, UK). Microscopy was performed on a Leica DMR
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microscope (Leica) using a 63 × 1.32 oil immersion objec-
tive. Photographs were taken using a Micromax CCD cam-
era 13 (Princeton Instruments) driven by Metamorph soft-
ware. Images were processed with ImageJ. To quantitate P-
bodies, we used the plugin Spot Detector of the open bioim-
age informatics platform Icy (http://icy.bioimageanalysis.
org; (41)). Primary antibodies were goat 4E-T and rabbit
EDC3 (Abcam), rabbit DDX6 (Novus), mouse FLAG M2
(Sigma). Secondary antibodies were purchased from Jack-
son ImmunoResearch Laboratories.

Protein extraction and western blot analysis

Cytoplasmic proteins were extracted from HeLa cells and
analyzed by western blotting as described in (35). Primary
antibodies included goat 4E-T (Abcam), mouse FLAG M2
(Sigma) and rabbit ribosomal S6 protein (Cell Signaling
Technology). Secondary antibodies were purchased from
Jackson ImmunoResearch Laboratories.

RESULTS

Proteomic analysis reveals the major interacting factors of
4E-T to be DDX6, UNR and unrip

To initiate the analysis of how 4E-T represses transla-
tion, we determined its protein partners using mass spec-
trometry, reasoning that these interacting proteins could
offer clues to its mechanism of action. FLAG-4E-T or
FLAG alone were expressed in HEK293T cells, the re-
sulting lysates were incubated with M2-Sepharose beads,
and bound proteins were eluted with FLAG peptide, sub-
sequently analysed by mass spectrometry (Figure 1A). In
two independent experiments, approximately two hundred
proteins represented by 2 or more unique peptides co-
immunoprecipitated specifically with FLAG-4E-T (Supple-
mentary Table S1). GO analysis showed that about 20% of
these belong to the mRNA metabolic process category and
30% to the poly(A) RNA-binding function class (P-values
= 1−26 and 4−42 respectively). According to the average pro-
tein probability scores (PP av, ProteinCenter), the consis-
tent top-scoring proteins binding to 4E-T were the cold-
shock domain protein UNR (CSDE1), its interacting part-
ner unrip (also known as STRAP or serine threonine kinase
receptor-associated protein) and p54/rck/DDX6 RNA he-
licase (Figure 1B and Supplementary Table S1). 4E-T also
co-immunoprecipitated several P-body proteins in addition
to DDX6 including PAT1B and LSM14 proteins, and more
weakly, EDC3, judging by peptide number and protein cov-
erage scores. As predicted, FLAG-4E-T also bound eIF4E1
and eIF4E2, two cap-binding proteins known to interact
with 4E-T (1,7).

Previously, Xenopus 4E-T was shown to co-
immunoprecipitate and co-fractionate with Xp54/DDX6,
PAT1a and LSM14/RAP55, as well eIF4E1b, an ovary-
specific cap-binding protein (16,39,42), demonstrating
conserved interactions between 4E-T, these P-body com-
ponents and cap-binding proteins. However, the binding
of human 4E-T to UNR and unrip was not anticipated.
UNR, a 95 kDa protein with five RNA-binding cold shock
domains performs diverse roles in RNA metabolism, and
UNR-deficient mice display embryonic lethality (reviewed

(43,44)). Unrip, also essential in mice, is a 38 kDa WD40
protein which tightly interacts in the cytoplasm with
UNR (37) and LARP6 (45), and with the SMN/Gemin
complex (38,46) required for snRNP biogenesis, in yet to be
determined functions (reviewed (47)). Neither protein has
to our knowledge been reported to be enriched in P-bodies
(see (38,46,48)).

To verify the mass spectrometry interactions, we used
western blotting following co-immunoprecipitation from
FLAG-4E-T expressing cell lysates, treated or not with
RNAse A. As shown in Figure 1C, FLAG-4E-T but not
the control FLAG-beads interact with the two eIF4E cap-
binding proteins, and with UNR, unrip, DDX6 as well as
PAT1B and LSM14A, but not actin nor XRN1 exonucle-
ase. Several of these interactions were subsequently con-
firmed in reverse immunoprecipitations (see Figure 4B for
FLAG-UNR, -unrip and -DDX6). All these interactions
were RNA-independent, as they resisted RNase treatment
(Figure 1D). Furthermore, the novel 4E-T-UNR RNA-
independent interaction was confirmed with endogenous
proteins, using both 4E-T and UNR antibodies for im-
munoprecipitation (Supplementary Figure S1).

We were also interested to assess the binding of CCR4-
NOT complex subunits to 4E-T. Previously we showed that
GFP-4E-T can interact with FLAG-CNOT1 and FLAG-
CNOT7, though binding of these endogenous CNOT sub-
units was undetectable by western blotting (26). In this
study, low levels of CNOT7, CNOT8 and CNOT11 sub-
unit peptides were detected by mass spectrometry (one of
each in Experiment 1, data not shown). CNOT4, an evo-
lutionarily conserved E3 ubiquitin ligase (49), was of par-
ticular interest as a recent study identified yeast NOT4 as
a translational repressor (50). Interestingly, we found that
endogenous CNOT4 binds FLAG-4E-T efficiently, also in
an RNA-independent manner (Figure 1C).

Identifying the binding sites of DDX6 and UNR

The human 4E-T protein is predicted to be largely dis-
ordered and to contain low complexity regions, accord-
ing to http://anchor.enzim.hu and http://www.ncbi.nlm.nih.
gov/Structure/cdd/cdd.shtml. When tethered to mRNA,
both Drosophila Cup and human 4E-T repress translation,
without requirement for the N-terminal eIF4E-binding site
or the C-terminal P-body localization sequences (26,29). We
thus turned to the examination of internal sequences con-
served in the vertebrate and Drosophila 4E-T/Cup proteins.
This revealed a set of four short conserved sequences which
we named I-III and CHD ((I (131–161), CHD (208–245), II
(291–316) and III (331–346)); Figure 2A and B).

Motifs I and III, while highly conserved between human
4E-T and Drosophila Cup, did not resemble to our knowl-
edge any interaction sequences previously characterized in
P-body components. On the other hand, motif II, including
the sequence FDF, was similar to EDC3, PAT1 and LSM14
protein sequences that interact with DDX6 (51,52). The
CHD or Cup homology domain, approximately 25 amino
acids long, is the longest most highly conserved sequence
common to human 4E-T and Drosophila Cup, also present
in C. elegans IFET-1, but lacks obvious sequence features
(26). Given their length and being parts of largely disor-
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Figure 1. Mass spectrometry of proteins co-immunoprecipitating with FLAG-4E-T. (A) Silver-stained gel of input and bound samples obtained in
HEK293T cells transfected with FLAG and FLAG-4E-T. Lysates were immunoprecipitated using FLAG-M2-agarose beads and bound proteins eluted
with FLAG peptide and analysed by SDS-PAGE. (B) Mass spectrometry of immunoprecipitated proteins obtained in two separate experiments (see Mate-
rials and Methods). Unique peptide number and % coverage of the top scoring and related proteins is indicated. (C) Verification of co-immunoprecipitating
proteins by Western blot analysis, with indicated antibodies (corresponding to proteins listed in B with grey background). Lysates were treated or not with
RNAse A prior to immunoprecipitation. M indicates lanes with molecular weight proteins standards. (D) Agarose gel of Ethidium bromide-stained lysate
RNA, before and after RNAse treatment.

dered proteins these sequences potentially represent short
linear motifs or SliM (53), mediating protein-protein inter-
actions. Notably too, the N-terminal region of 4E-T pro-
teins extending to just downstream of the CHD is enriched
in charged amino acids, particularly striking in vertebrate
homologues. Indeed, >60% of the residues between motif
I and the CHD in human 4E-T comprise Arg, Lys, Glu or
Asp, with many in an alternating acidic/basic configuration
(Figure 2A). Such ampholyte sequences tend to adopt elon-
gated coil-like conformations, due to the charged residues
preference to be solvated (reviewed in (54)).

The four motifs in 4E-T were deleted from the full-length
FLAG-tagged protein, singly, and in combination (motifs
I–III) with the CHD sequence. The effect of deleting these
motifs was then tested in co-immunoprecipitation assays.

Strikingly, deletion of motif I suppressed binding of both
UNR and unrip to 4E-T, whereas deletion of the CHD se-
quence prevented binding of DDX6 (Figure 2C). However,
deletions of CHD and motif I did not alter the interactions
of 4E-T with eIF4E1/2, PAT1B, LSM14A or CNOT4, in-
dicating that they did not result in large scale misfolding
(Figure 2C). Furthermore, loss of motifs II and III had
no discernible effect on any of the tested co-factors. We
concluded that motif I specifically binds UNR/unrip and
that the CHD interacts with DDX6. Some residual DDX6
was retained on FLAG-4E-T�CHD beads, as was also the
case for a minor fraction of UNR on FLAG-4E-T�I beads.
While the latter is RNA-mediated, since RNase treatment
resulted in full loss of UNR binding, this was not the case
for DDX6 (Figure 2C). In the light of documented interac-
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Figure 2. Identifying the binding proteins of motifs I and CHD. (A) ClustalW2 alignment of 4E-T and 4E-T related sequences: human (NM 001164501), X.
laevis (NM 001093241), Drosophila Cup (CG11181; NM 078769) and 4E-T (CG32016; NM 166798). The alignment spans residues 152–342 in the human
protein; we did not find significant conservation in regions 100–152 and 343–694 in these four proteins. (B) Schematic cartoon of human 4E-T, indicating
the four conserved motifs I through III and CHD. (C) Anti-FLAG immunoprecipitation of untreated and RNAse A-treated lysates from HEK293T cells
transfected with FLAG alone, FLAG-4E-T and FLAG-4E-T constructs missing individual motifs I-III and the CHD, or deletion constructs missing
combinations of CHD with motif I, or II, or III. Input and bound samples were analysed by Western blotting with indicated antibodies.
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tions between DDX6, PAT1 and LSM14 proteins (51,52),
it was important to assess whether DDX6, in addition to
binding the CHD, may interact with 4E-T indirectly via
these P-body components.

Mapping 4E-T interactions with PAT1B and LSM14A

To determine PAT1B and LSM14A interaction sites, we
introduced the �CHD deletion into the previously char-
acterized P-body localization defective mutants 4E-T�C
(�694−716(1−845)) and 4E-T1-694 (Figure 3A; (26). As
expected, DDX6 binding was markedly decreased by the
CHD deletion, but not UNR, unrip or eIF4E. PAT1B fails
to bind 4E-T�CHD1-694, but interacts with all other pro-
tein mutants, placing its interaction site between amino
acids 717 and 845 (Figure 3B). Yet, the same residual bind-
ing of DDX6 to 4E-T�CHD was observed in the absence
of PAT1B binding. As LSM14A binding was unaffected
in these three protein mutants, we then assessed its bind-
ing to truncated fragments of FLAG-4E-T. LSM14A fails
to bind the 1–440 fragment, but binds the 1–900 and 441–
985 fragments. These and the observations above indicate
its interaction site lies between amino acids 441 and 694.
As expected, DDX6, UNR and unrip bind to N-terminal
4E-T fragments spanning residues 1–440, but fail to asso-
ciate with the C-terminal fragment 441–985 (Figure 3C).
(We note that binding of UNR and unrip to 4E-T1-193
is specific but partial, possibly reflecting incomplete fold-
ing of motif I in this truncation). In contrast, LSM14A
and PAT1B bound the C-terminal fragment 441–985 but
none of the N-terminal 4E-T fragments (Figure 3C and
D). Thus, DDX6 does not appear to stably bind 4E-T via
PAT1B or LSM14A, and reciprocally, neither PAT1B nor
LSM14A stably interact with 4E-T via DDX6 (Figure 3C
and D). Furthermore, these observations suggest that the
residual binding of DDX6 to 4E-T�CHD, rather than re-
sulting from PAT1B/LSM14A-4E-T interactions, may re-
flect a second minor DDX6 site in the N-terminal half of
4E-T. Alternatively, as 4E-T can self-associate (55), it may
result from DDX6 bound by endogenous 4E-T and retained
by FLAG-4E-T.

4E-T binds UNR rather than unrip

We next examined whether both UNR and unrip bind 4E-
T individually or whether one protein bridges the interac-
tion of the other, given their high affinity association (37).
First, we took advantage of a recent study showing that un-
rip interacts with the sequence VLRLPRGPDNTRGF in
LARP6, and that a similar C-terminal peptide is present
in UNR (744VLRQPRGPDNSMGF), downstream of the
cold-shock domains (45). We truncated UNR (767 amino
acids long) at residue 744 to generate FLAG-UNR�C, and
analyzed its binding to unrip and other proteins (Figure
4B). Indeed, as anticipated, FLAG-UNR�C fails to im-
munoprecipitate unrip, but 4E-T binding is not altered, sug-
gesting that the 4E-T-UNR interaction is direct. In con-
trast, FLAG-unrip interacts very weakly with 4E-T, though
this may be mediated by UNR. To test this further, we used
siRNAs to deplete UNR or unrip in cells transfected with
FLAG-4E-T, as well as control and DDX6 siRNA. Con-

firming the UNR truncation assay, siRNA-mediated deple-
tion of UNR prevented 4E-T interaction with unrip, while
depleting unrip did not affect 4E-T-UNR binding (Figure
4C and D).

We also note that there is no evidence in these pull-down
experiments of an affinity between DDX6 and UNR or un-
rip, though FLAG-DDX6 as predicted from previous work
(35,39,51,52) co-immunoprecipitates LSM14A and PAT1B,
as well as 4E-T. Moreover, depletion of DDX6 does not af-
fect FLAG-4E-T binding to UNR, and depletion of UNR
or unrip does not disrupt FLAG-4E-T interaction with
DDX6 (Figure 4B–D). Last, endogenous UNR and DDX6
proteins do not interact (Supplementary Figure S1). We
concluded that UNR binds 4E-T directly, while unrip inter-
acts with 4E-T through UNR, and furthermore that there is
no detectable binding between DDX6 and UNR, in agree-
ment with the recent DDX6 proteome study (35).

Multiple interactions between 4E-T interacting proteins:
unrip-LSM14A and UNR-CNOT4

In light of the various possible interactions between 4E-
T and DDX6, LSM14A and PAT1B, we next examined
binding between UNR and unrip and other 4E-T inter-
acting proteins. Unexpectedly, FLAG-unrip, in addition to
binding UNR, also co-precipitates LSM14A (Figure 4B).
This interaction is not a consequence of unrip binding to
UNR, binding in turn to 4E-T, as FLAG-UNR does not co-
precipitate LSM14A (Figure 4B). Moreover, FLAG-UNR
binds CNOT4 (Figure 4B). This interaction, unlike that of
unrip, is independent of the C-terminal sequence as evi-
denced in UNR�C, suggesting that UNR could bind si-
multaneously unrip and CNOT4. Interestingly, FLAG-4E-
T�I, which does not precipitate UNR nor unrip, never-
theless binds to both LSM14A and CNOT4, apparently as
well as the full-length protein (Figure 2). Indeed, primary
LSM14A binding was mapped to residues 441–694 of 4E-T,
rather than motif I, while CNOT4 binding to 4E-T requires
its C-terminal 694–985 sequences (Figure 3; Supplementary
Figure S2).

Collectively these biochemical observations indicate
firstly, the location on 4E-T of UNR/unrip, DDX6,
LSM14A, PAT1B and CNOT4 binding sites. Secondly,
these observations highlight an additional network of inde-
pendent interactions between several of these binding pro-
teins, including DDX6-PAT1B, DDX6-LSM14A, unrip-
LSM14A and UNR-CNOT4 (summarized in Figure 4E
and Supplementary Figure S3)), with such a network likely
contributing to the stability of the complex between 4E-T,
RNA-binding proteins, eIF4E and mRNA.

Motif I and the CHD mediate 4E-T repressor activity

To address the possible role of the four conserved motifs in
4E-T mediated translational repression, we used the tether
function assay which is particularly powerful in identify-
ing functionally relevant domain(s) in regulatory proteins,
including human 4E-T and the related Drosophila protein
Cup (26,29). In this assay, 4E-T or the control GFP protein,
tagged with both a lambda N peptide and an HA epitope,
were co-expressed with Renilla luciferase mRNA bearing 3′
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Figure 3. Mapping the binding sites of 4E-T interaction partners PAT1B and LSM14A. (A) Schematic cartoon of FLAG-tagged proteins immunopre-
cipitated in experiments shown in panels B-D. Region A is 694–716, conserved in 4E-T proteins, part of the P- body localization sequences (26). (B)
4E-T P-body localization defective 4E-T constructs were combined with deletion of CHD. 4E-T�C refers to a deletion/truncation mutant of 4E-T: 4E-
T�694−716(1−845), defective in P-body localization, while 4E-T1-694 is not only P-body localization defective but also dominant negative for endogenous
P-bodies (26). Anti-FLAG immunoprecipitations were carried out with FLAG alone, or FLAG-4E-T proteins. Input and bound samples were analysed by
Western blot analysis with indicated antibodies. (C and D) HEK293T cells were transfected with FLAG-4E-T protein plasmids. Anti-FLAG immunopre-
cipitations were carried out using full-length FLAG-4E-T, and truncated versions, -4E-T1-193, -1-300, -1-440, -1-900 and -441-985 (C), and FLAG-GFP,
FLAG-4E-T, -4E-T1-193, -1-300, -1-440, -441-985, -�CHD, -�CHD�C and −�CHD 1-694. * indicates unrelated protein (D). Input and bound samples
were analysed by Western blotting with indicated antibodies.

UTR Box B hairpins and a control firefly luciferase mRNA.
Following transfection, lysates were prepared and the rela-
tive luciferase activities determined (Figure 5A). Previously,
we showed that untethered, HA-tagged 4E-T and GFP did
not influence luciferase expression relative to NHA-GFP,
and that the 3′ UTR box B hairpins were required for re-
pression by NHA-4E-T (26).

The full-length NHA-tagged 4E-T protein repressed nor-
malized Rluc activity relative to NHA-GFP ((26); Figure
5B). Motifs I-III were deleted from NHA-4E-T, singly, and
in combination with the CHD. Interestingly, while deletion
of motifs I, II and III individually did not have any signif-
icant effect, deletion of the single CHD partially relieved
repression (Figure 5B). However, the combined deletion of
motif I and the CHD led to complete loss of repression (Fig-

ure 5B). This effect was specific as it was not seen with II
and CHD or III and CHD double deletions, despite simi-
lar levels of expression (Figure 5C). In other words, delet-
ing the CHD consistently led to partial relief of repres-
sion, with full relief specifically resulting from the additional
deletion of motif I. Importantly, as shown previously (26),
repression by tethered 4E-T is at level of translation, not
mRNA levels, as determined by qRT-PCR, and lack of re-
pression by 4E-T�I�CHD is not due to reporter mRNA
stabilization relative to WT 4E-T (Figure 5D. Furthermore,
4E-T represses translation of bound mRNA in a poly(A)-
independent manner (Supplementary Figure S4), indirectly
supporting the conclusion that tethered 4E-T does not re-
sult in decay of bound mRNA. Again, the wild-type and
mutant 4E-T proteins were expressed at comparable levels
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Figure 4. 4E-T interacts with UNR, which in turn binds unrip. (A) Cartoon of UNR and unrip proteins, indicating their domains and the C-terminal unrip-
binding site in UNR. (B) Anti-FLAG immunoprecipitations were carried out using FLAG-tagged GFP, -UNR, -UNR�C, -unrip and -DDX6. UNR�C
is a C-terminally truncated version of UNR predicted not to interact with unrip. UT, untransfected cells. (C and D) HEK293T were co-transfected with
siRNA against �-globin (control), DDX6, UNR or unrip as indicated, and with FLAG-4E-T, or not transfected (UT). Input and bound samples were
analysed by western blot with indicated antibodies. (E) Schematic cartoon of interaction sites of 4E-T-binding proteins. Region A is 694–716, conserved in
4E-T proteins, part of the P- body localization sequences (26). Interactions shown in this study: solid line––interactions displayed by deletion and truncated
fragments of 4E-T, as well as by FLAG-tagged UNR, -unrip and -DDX6. Brackets indicate regions of interactions with indicated proteins displayed by
truncated fragments of 4E-T. Dotted grey line, interactions shown by FLAG-tagged UNR, -unrip and -DDX6. Arrows indicate bait identity. Interactions
solved structurally in other studies: the canonical and non-canonical 4E-T-eIF4E binding sites (8) and 4E-T-DDX6-CNOT1 (36).

(Figure 5E and Supplementary Figure S4). Finally, wild-
type 4E-T protein and 4E-T�I�CHD proteins were indis-
tinguishable in terms of cellular distribution, both being cy-
toplasmic and enriched in P-bodies (see below). In conclu-
sion, we propose therefore that the CHD, aided by motif I,
mediates the repression of reporter mRNA by tethered 4E-
T.

ATP hydrolysis by DDX6 contributes to 4E-T mediated re-
pression

We next addressed the role of the CHD-binding protein,
DDX6, in 4E-T translational repression in a combined
depletion/deletion tether function assay (Figure 6A). Here,
the repressive effect of tethered 4E-T and 4E-T�I was tested
in cells submitted to DDX6 RNAi (Figure 6B). �-globin
siRNA was used as control, and siRNA-mediated DDX6
depletion was shown to be effective by western blotting
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Figure 5. Deletion of both motif I and CHD is required to alleviate translational repression by tethered 4E-T. (A) Schematic cartoon of the tether function
assay, indicating the luciferase reporter mRNAs, and the �N-HA-tagged (NHA) 4E-T and control GFP proteins. (B) The tether function assay with NHA-
GFP and NHA-4E-T proteins, full-length (WT) and deletion versions missing the four conserved motifs individually or deletion combinations of motif
I-III with CHD (***P < 0.001, *P <0.05, ns not significant, two tailed t test; relative to WT (n = 5–6)). (D) HEK293T cells were transfected with NHA-
GFP, -4E-T and -4E-T�I�CHD plasmids and the luciferase mRNA reporter plasmids. The activities of Renilla and firefly luciferases were determined by
luminometry (black bars), and the levels of their mRNAs (grey bars) by qRT-PCR. (C and E) Western blots of NHA-tagged proteins from experiments
shown in (B) and (D) with indicated antibodies.

(Figure 6C). While depletion of DDX6 only modestly re-
lieves repression by NHA-4E-T, it completely suppressed
repression by NHA-4E-T�I (Figure 6B). Therefore, mu-
tation of the CHD or depletion of its ligand DDX6 have
the same effect of alleviating repression by tethered 4E-T�I
(Figures 5B and 6B). We made several attempts to similarly
combine UNR and unrip depletion to tethering of NHA-
4E-T�CHD, but observed that depleting UNR reduced cell
proliferation and adherence, as noted previously by others
(56,57), preventing firm conclusions regarding its role (data
not shown; see Discussion).

To test the role of DDX6 ATPase activity in repression,
we then performed complementation assays with siRNA-
resistant wild-type or mutant DDX6 plasmids, bearing mu-
tations in helicase motifs involved in ATP binding and/or
hydrolysis (33). Cells were depleted or not of DDX6, and

NHA-GFP and globin siRNA were again used as controls.
Western blotting verified that the expression of DDX6 plas-
mid was equivalent, approximating the level of endogenous
DDX6 in control cells (Figure 6C). Importantly, repres-
sion by tethered NHA-4E-T and NHA-4E-T�I was fully
restored by expressing exogenous wild-type DDX6 (Figure
6B). In contrast, the ATPase-defective DDX6 mutants were
inefficient in restoring repression by NHA-4E-T�I (catal 3,
or DEAD→DQAD, Figure 6C; and catal 1, 2 and 4 data
not shown). Interestingly, the normally weak ATPase ac-
tivity of DDX6 is enhanced by CNOT1 (33). Indeed, the
DDX6 mif3 mutant (R386E), which is unable to interact
with the CNOT1 MIF4G domain (32–34), was also ineffi-
cient in restoring repression (Figure 6B). Of note, the catal3
and mif3 mutations did not impair DDX6 binding to 4E-
T (Figure 6D). We therefore concluded that the control of
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Figure 6. Catalytically active DDX6 mediates 4E-T translational repression. (A) Schematic cartoon indicating the components of the combined
deletion/depletion tether function assay. (B) Tether function assays were carried out with NHA-tagged GFP, full-length 4E-T (WT) or 4E-T lacking
motif I,(�I) in HEK293T cells co-transfected with control �-globin siRNA, or siRNA against DDX6, and with DDX6 siRNA-resistant plasmids (WT),
the catalytically inactive version catal3 and the mutated version mif3, which does not interact with CNOT1. Lysates were analysed by Dual luciferase
luminometry. (**P < 0.005, ns not significant, two tailed t test; (n = 4)). (C) Western blot of lysates from transfected cells in (B) analysed with indicated
antibodies. (D) HEK293T cells were co-transfected with FLAG-GFP or FLAG-4E-T plasmids and with HA-tagged WT and mutant (catal3 and mif3)
DDX6. FLAG immunoprecipitations were analysed by Western blotting with FLAG and HA antibodies as indicated.

DDX6 ATPase activity by CNOT1 contributes to repres-
sion by tethered 4E-T.

The 4E-T-DDX6 interaction mediates microRNA-mediated
silencing

To extend the analysis of 4E-T motifs in its regulation of
translation, we next turned to a reporter assay based on
the 3′ UTR of Hmga2 mRNA which contains seven let-7
sites, as we and others have previously shown the involve-
ment of 4E-T in miRNA silencing (23,26). The assay was
adapted from a recent study of DDX6, demonstrating the
importance of its ATPase activity and binding to CNOT1
in miRNA-mediated translational repression (Figure 7A;

(33)).
Complementation assays were used to test whether 4E-T

interactions with UNR and DDX6, or more precisely, its
motif I and the CHD, is required for repression of reporter
mRNA responding to miRNAs; a mutant reporter with nu-
cleotide substitutions in the let-7 seed regions was used as
a control (Hmga2 mut). Following depletion of the endoge-
nous 4E-T by RNAi, cells were transfected with plasmids
expressing siRNA-resistant 4E-T, either wild-type or miss-
ing motif I, CHD, or both motif I and the CHD, RL-Hmga2
and FL control plasmids as well as PAN2catal and CAF1catal.
Co-transfection with dominant-negative catalytic mutants
of PAN2 and CAF1 permits the detection of miRNA effects
at the level of translation, rather than deadenylation ((33)
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Figure 7. Importance of the DDX6-4E-T interaction for miRNA-
mediated repression. (A) Schematic cartoon depicting the components of
the miRNA reporter assay. (B) HeLa cells were treated with control (�-
globin) or 4E-T siRNA, and transfected with HA-4E-T (wt and dele-
tion forms), RL-Hmga2 (wt or let-7 binding site) mutant and control FL
plasmids. Assays were performed in the presence of the dominant nega-
tive PAN2catal and CAF1catal to eliminate effects resulting from mRNA
deadenylation (33). Lysates were analysed by Dual luciferase luminome-
try. (***P < 0.001, *P <0.05, ns not significant, two tailed t test; (n =
3–4)). (C) Western blotting of transfected samples.

and references therein). Depletion of 4E-T partially relieved
repression of RL-Hmga2 reporter mRNA by let-7 miRNA,
as previously reported for a reporter mRNA bearing syn-
thetic let-7 binding sites (26). Overexpressed wild-type 4E-T
reversed this relief, and relative to WT 4E-T, the three mu-
tant 4E-T proteins were less efficient in repression, though
all were similarly expressed (Figure 7B and C). Compar-
ing the mutant proteins, deletion of the CHD had the most
significant effect, relative to loss of motif I, and there was
no statistically significant difference between relief of re-
pression by �CHD and �I�CHD proteins. We conclude
therefore that 4E-T mediates miRNA-translational repres-
sion primarily via its binding of DDX6 by the CHD, with a
minor contribution by motif I.

The 4E-T-DDX6 interaction is required for P-body assembly

Previously we showed that of several P-body components,
DDX6, 4E-T and LSM14A are required for de novo P-body
assembly in all tested conditions (35), and moreover that
assembly depends on DDX6 ATPase activity (39). Indeed,
mutating the DDX6 pocket which interacts with LSM14A,
PAT1B and EDC3, as well as 4E-T, as shown recently (36),
strongly reduced P-body assembly (Mut1 mutant in (35)).
To test specifically the importance of 4E-T-DDX6 inter-
actions in P-body assembly, we next assessed the effect of
deleting or mutating the DDX6-binding CHD motif in 4E-
T.

Hela cells were depleted of endogenous 4E-T by using a
siRNA targeting the 3′ UTR of 4E-T mRNA (Figure 8D).
After 24h cells were transfected with different FLAG-4E-T
plasmids, either wild-type or mutated, and analyzed by im-
munofluorescence with DDX6 antibody 40 hours after the
second transfection. As previously described, 4E-T knock-
down disassembles P-bodies in control cells ((35); Figure
8A and B, Supplementary Figure S5). The wild-type 4E-
T protein localizes to P-bodies in control cells and allows
full complementation of P-body assembly following deple-
tion of the endogenous protein (Figure 8A, Supplementary
Figure S5). We next tested the mutated 4E-T�CHD pro-
tein in which the DDX6-binding CHD region is deleted.
Interestingly, while 4E-T�CHD also localized to P-bodies
in control cells, it failed to properly restore P-bodies after
4E-T silencing (Figure 8A, B, C, Supplementary Figures
S5 and S6). Shown in box plots (Figure 8B) are the num-
ber of P-bodies per cell in the experiment presented in Fig-
ure 8A, indicating that less than half of P-bodies were de-
tected in this condition. To confirm that P-body assembly
was defective, and not just DDX6 recruitment to otherwise
intact P-bodies, we also used EDC3 as a second P-body
marker (Supplementary Figure S5), and observed a sim-
ilarly reduced number of P-bodies. These results strongly
suggest that DDX6 binding to 4E-T plays an important
role in P-body assembly. This was confirmed by transfect-
ing cells with the 4E-T WF-AA plasmid whose mutation
in the CHD domain prevents binding of 4E-T to DDX6
(36). Here again, the tagged protein localizes to P-bodies in
control cells but was unable to replace the endogenous pro-
tein (Supplementary Figure S6). The relative P-body num-
ber per cell amounted respectively to 41% and 32% after
4E-T�CHD and 4E-T WF-AA transfection as compared
to wild-type 4E-T (Figure 8C).

Since motif I also contributes to mRNA repression by
4E-T, we asked whether it plays a role in P-body assem-
bly. This is not the case since transfection of 4E-T�I pro-
tein induced 99% P-body assembly as compared to wild
type 4E-T (Figure 8C, Supplementary Figure S6A). In addi-
tion, the double deletion of motif I and CHD domain (4E-
T�I�CHD) induced poor complementation for P-body as-
sembly, similarly to 4E-T�CHD and 4E-TWF-AA (32%,
41% and 32% relative to 4E-T, respectively), and did not
show any additive effect of motif I for this process. Of note,
the recombinant proteins were expressed at similar levels
(Supplementary Figure S6B). Altogether, while all FLAG-
4E-T proteins localize to P-bodies, only the ones with a
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Figure 8. Complementation assay for P-body assembly. (A). HeLa cells were successively transfected with no siRNA (upper panels) or siRNA targeting
the 4E-T 3′ UTR (lower panels), and 24 h later with no plasmid DNA (control) or FLAG-4E-T plasmid DNA as indicated. After 64 h, cells were analyzed
by immunofluorescence using DDX6, 4E-T or FLAG antibodies. Bar, 10 �m. (B) Box plots showing the number of P-bodies per cell in the experiment
presented in (A). (C) Number of P-bodies before and after complementation with indicated FLAG-4E-T proteins. P-bodies were counted in independent
experiments (n = 2–5, 30–60 cells were counted in each repeat) and expressed as a percentage of P-bodies assembled using wild-type FLAG-4E-T. (D)
Protein extracts from cells transfected or not with siRNA were analyzed by Western blotting with indicated antibodies.
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DDX6-binding interface were fully functional for P-body
assembly.

DISCUSSION

Our study extensively characterizes the complex network of
multiple interactions between 4E-T and its binding factors,
and demonstrates the importance of the DDX6-4E-T inter-
action in both translational repression and in P-body as-
sembly.

4E-T as hub in a complex network of RNA-binding proteins

Mass spectrometry of proteins co-immunoprecipitating
with human 4E-T led to the identification of DDX6,
UNR/unrip and several P-body proteins involved in
mRNA decay and translational repression, including
PAT1B and LSM14A, in addition to the cap-binding
proteins eIF4E1 and eIF4E2. Previously we showed
that in Xenopus oocytes, 4E-T and Xp54/DDX6 co-
immunoprecipitate with each other alongside PAT1A,
RAP55B (LSM14B) and eIF4E1b, so these are con-
served interactions (7,16,39). However our new evidence
for UNR/unrip binding to human 4E-T was unex-
pected. We anticipate these interactions to be conserved
in Drosophila with Me31B/DDX6, UNR and possibly
wmd (wing morphogenesis defect)/unrip. Indeed, Cup co-
immunoprecipitates with Me31B/DDX6 (29). Moreover,
yeast two hybrid screens indicate that Drosophila 4E-T also
binds Me31B, as well as UNR (58). However, C. elegans
does not possess UNR (43) nor unrip genes, according to
database searches.

Subsequent mapping of these protein binding sites led to
the conclusions summarized in Figure 4 and Supplemen-
tary Figure S3. First, DDX6 interacts with the CHD mo-
tif shared by vertebrate, fly and worm 4E-T homologues, in
agreement with recent in vitro and in vivo data (23,36). Sec-
ondly, motif I in human 4E-T binds UNR, which in turn
interacts with unrip. Motif I is conserved in vertebrate and
fly proteins, but, interestingly, is absent in C. elegans IFET-
1, accompanied by the lack of UNR/unrip proteins. Third,
LSM14A binds 4E-T sequences spanning residues 440–694
while PAT1B interacts with residues 717–845, and CNOT4
with sequences downstream of residue 694.

We also evidence novel additional interactions between
4E-T co-factors including UNR-CNOT4, presumed to be
mutually exclusive with 4E-T-CNOT4 binding, as deleting
the UNR-binding site in 4E-T does not reduce 4E-T inter-
action with CNOT4. Intriguingly, 4E-T-CCR4-NOT com-
plex binding is enhanced when the eIF4E-binding site in 4E-
T is mutated, as shown for FLAG-CNOT1, FLAG-CNOT7
and endogenous CNOT4 subunits, correlating with in-
creased decay of tethered reporter mRNA ((26); this study,
Supplementary Figure S2). As a RING E3 ligase, one pro-
posed role for NOT4 is ubiquitination of stalled peptides
(reviewed in (59)). Notably, yeast NOT4 and Dhh1/DDX6
are required for translational repression of transcripts that
cause transient ribosome stalling (50). Unlike in yeast,
CNOT4 is not a core subunit of the CCR4-NOT com-
plex in human cells. Indeed, metazoan CNOT4 lacks the
high affinity residues required to bind CNOT1 (49), explain-

ing its weaker in vivo association (60). In view of the well-
characterized interaction between DDX6 and CNOT1 (32–
34,61), 4E-T may serve as an intermediary link between
CNOT1 and CNOT4 subunits.

Altogether then, 4E-T networks a complex set of interac-
tions with several RNA-binding proteins (DDX6, PAT1B,
LSM14A, UNR), the cap-binding eIF4E proteins and un-
rip. Our current list is no doubt incomplete and only reports
stable interactions; transient ones with additional proteins
including TTP have been documented (23). Plausibly, these
multiple interactions serve to crosslink 4E-T complexes to
form higher order assemblies, such as RNP granules.

The roles of the CHD/DDX6 and motif I/UNR in 4E-T me-
diated translational repression

We provide evidence that the CHD and I motifs together
repress translation of mRNAs bound by 4E-T. The CHD
motif mediates DDX6 binding, and the ATPase activity of
DDX6 and its interaction with CNOT1 are required for its
repressive function. However, the role of DDX6 in 4E-T
mediated repression could only be revealed when motif I
was deleted from 4E-T. Indeed, in agreement with our work,
depleting Drosophila Me31B/DDX6 did not relieve repres-
sion of reporter mRNA by tethered Cup (29). Motif I binds
UNR/unrip; which are major interacting factors of 4E-T.
In addition to mediating repression in the tether function
assay, the CHD, here with a reduced contribution of motif
I, also contributes to translational repression of a miRNA
reporter mRNA by 4E-T.

In yeast, DDX6/Dhh1 has been characterized both as a
repressor of translation, and as an enhancer of decapping
(62,63). We currently understand metazoan DDX6 to act
principally as a translational repressor, the conclusion be-
ing supported by genetic ablation approaches in Drosophila
oocytes (64), tether function assays in Xenopus oocytes
(65), and depletion and reporter studies in mammalian cells
(33,66,67).

Recent structural and functional studies have high-
lighted the critical role of DDX6 in microRNA-mediated
repression, by interacting with the MIF4G domain of
CNOT1, a key effector of miRNA functions downstream
of GW182/TNRC6 proteins (32–34,61). 4E-T also con-
tributes to miRNA-mediated repression, as its depletion
alleviates silencing of let-7 target mRNAs, albeit mod-
estly (this study, (23,26,61)). Our evidence for the 4E-T-
DDX6-CNOT1 interaction being important for transla-
tional repression further highlights the possible role of 4E-
T in miRNA repression. The 4E-T-DDX6-CNOT1 axis
was also implicated in translational repression in Xenopus
oocytes, using tethered CNOT1 impaired for both DDX6
and 4E-T binding (30). As CNOT1 participates in sev-
eral specific gene silencing pathways, for example via TTP
(68) and Nanos (69), the 4E-T–DDX6–CNOT1 interac-
tions may also regulate their target mRNAs. 4E-T protein
levels are considerably lower than those of DDX6 (70), and
from this simple perspective it would appear unlikely that it
could regulate a substantial population of mRNAs. How-
ever, in view of the potential of DDX6 to oligomerize on
mRNA (42), while multiple DDX6 molecules may associate
with an individual mRNA, just one complexed with 4E-T
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and CNOT1, we speculate, could impact mRNA transla-
tion.

Our mapping and functional data are supported by recent
structural evidence for the interaction of the CHD motif
of 4E-T with DDX6 (36). Interestingly, the CHD peptide
binds to the same DDX6 region as do PAT1, EDC3 and
LSM14, implying mutually exclusive interactions of these
proteins with DDX6 (51,52). Strikingly, only 4E-T, and
not PAT1 nor EDC3, can associate with DDX6 bound to
CNOT1 (36), suggestive of a possible temporal relay of in-
teractions mediating first translation repression (CNOT1–
DDX6–4E-T) followed by mRNA decapping and decay
(DDX6-PAT1/EDC3).

As stated above, we postulate that UNR is responsible
for motif I function. Supporting this possibility, UNR has
been shown to regulate translation (37,71–73), and mRNA
decay (73,74). In the case of Drosophila msl-2 mRNA, UNR
and the RNA-binding protein Sxl, interacting with separate
nearby msl-2 3′ UTR binding sites, prevent 43S ribosome
binding (73). Interestingly, UNR and Sxl do not interact
with each other, but rather mediate an intertwined cooper-
ative recognition of msl-2 RNA, forming a ternary complex
(75). During Drosophila dosage compensation, UNR facili-
tates the interaction of the RNA helicase MLE and the long
non-coding RNA roX2, but in this case UNR interacts with
MLE directly, stimulated by roX2 RNA (76). UNR and the
DDX6 helicase do not bind each but occupy nearby sites in
4E-T, rather than in regulated mRNA as in the case of msl-
2. Our data suggest that the two proteins may act redun-
dantly to repress translation, or to affect different stages of
translation. However, we cannot exclude alternative possi-
bilities for the role of motif I including: (i) that its deletion
from 4E-T prevents the binding of another co-repressor, yet
to be identified, (ii) that deletion of motif I disturbs the am-
pholyte property of this 4E-T region and impacts its associ-
ation with co-factors indirectly or (iii) that its deletion dis-
rupts a potentially stabilizing complex network of multiple
interactions important for translational repression.

Interestingly, according to Genome Browser and
UniProt, an alternatively spliced isoform of human 4E-T
(variant 2; Q9NRA8-2), 811 amino acids long, lacks both
exon 6 and 7. Significantly, as exon 6 encodes motif I and
exon 7 the CHD as well as the NLS, the skipped isoform is
predicted to be only cytoplasmic, not to repress translation
of associated mRNAs, but nevertheless bind eIF4E and
reduce its available levels. Indeed, isoform-specific qRT-
PCR in human tissue samples supports the existence of
this skipped variant (Supplementary Figure S7), providing
a potential example of alternative splicing of intrinsically
disordered regions ‘rewiring’ protein interactions (77,78),
and future studies addressing its expression and regulation
is of considerable interest.

The DDX6–4E-T interaction is also important for P-body as-
sembly

While mammalian P-bodies remain to be purified, they are
known from immunostaining and fluorescent protein tag-
ging to contain dozens of RNA-binding proteins, includ-
ing decay enzymes, translational repressors, one sole trans-
lation initiation factor, eIF4E and 4E-T; many of these be-

ing conserved in germline RNP granules. Silencing of sev-
eral of these P-body components, including GW182, LSM1,
DDX6, 4E-T, LSM14A, EDC4, CPEB1 and PAT1B (re-
viewed in (35)), leads to a reduced number of P-bodies or
their disappearance, indicating the participation of mul-
tiple proteins in P-body maintenance. A recent de novo
P-assembly study, based on the silencing approach cou-
pled with the induction of P-bodies in various conditions
concluded that in addition to DDX6 (39,79), 4E-T and
LSM14A were absolutely required for the formation of
full-size P-bodies, while PAT1B and EDC3 were dispens-
able (35). In the light of the subsequently solved structure
of DDX6 with the CHD peptide, these observations sug-
gest that of these four mutually exclusive DDX6 partners
(36,51,52), the association of either 4E-T or LSM14A to
the common interface on DDX6 leads to P-body assem-
bly. We substantiated this hypothesis here by reintroducing
4E-T proteins to silenced cells, and showed that preventing
DDX6 binding to 4E-T by deletion of the CHD or mutation
of critical binding residues substantially decreased P-body
assembly relative to full-length 4E-T. On the other hand,
motif I was dispensable for P-body formation, which is con-
sistent with the absence of UNR/unrip from P-bodies.

In conclusion, we provide three independent lines of
experimental evidence supporting the importance of the
DDX6-4E-T interaction in mRNA silencing. Our biochem-
ical mapping and functional assays demonstrate that the
DDX6-4E-T interaction mediates both translational re-
pression (in the tether function assay and miRNA reporter
assay) and de novo P-body assembly, suggesting that these
processes are intimately linked.
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