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Abstract
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate

linear mixed-effects model, including all the correlations between the random effects when

the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we sug-

gest more general expressions of the model’s parameters estimators. These estimators

can be used in the framework of the multivariate longitudinal data analysis as well as in the

more general context of the analysis of multivariate multilevel data. By using a likelihood

ratio test, we test the significance of the correlations between the random effects of two

dependent variables of the model, in order to investigate whether or not it is useful to model

these dependent variables jointly. Simulation studies are done to assess both the parame-

ter recovery performance of the EM estimators and the power of the test. Using two empiri-

cal data sets which are of longitudinal multivariate type and multivariate multilevel type,

respectively, the usefulness of the test is illustrated.

Introduction
In statistical studies, one often needs to analyze data with nested sources of variability: e.g.,
pupils in classes, employees in companies, repeated measurements in subjects, etc. [1] referred
to these type of data as grouped data which are also named multilevel data, hierarchical data or
nested data in the literature [2–4]. In the analysis of such data, it is usually illuminating to take
account of the variability associated with each level of nesting. There is variability, e.g., between
pupils but also between classes. The measurements related to a specific subject (level of nesting)
can be correlated, while observations from different subjects are usually independent, and one
may draw wrong conclusions if either of these sources of variability is ignored [5]. A series of
works in statistical literature focus on the analysis of univariate multilevel data (or univariate
grouped data) where a single outcome of interest is analyzed [6–11]. Such analyses are gener-
ally simple to deal with due to the availability of many software packages conceived to perform
them [12–14]. In practice, many scientific questions of interest require to focus on multiple
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outcomes, all arising from the same multilevel study, leading to the so-called multivariate mul-
tilevel data. For example, to answer some questions of interest, [15] analyzed hearing threshold
data (in the Baltimore Longitudinal Study on Aging) [16] which consisted in the longitudinal
recording of 22 variables. [17] also studied the joint evolution of HIV RNA and CD4+ T lym-
phocytes in a cohort of HIV-1 infected patients treated with highly active antiretroviral treat-
ment, by jointly analyzing both markers. [18] used multivariate multilevel regression analysis
to investigate individual level determinants of self rated health and happiness, as well as the
extent of community level covariation in health and happiness. [19] also used multivariate
multilevel analysis to jointly model three commonly used indicators of fear of crime which are:
feeling unsafe alone at home after dark, feeling unsafe walking alone after dark and worry
about becoming a victim of crime. A variety of works were devoted to joint modeling during
the last few decades (see e.g., [20–24]).

These analyses often require a specification of the joint density of all outcomes or, at least,
the correlation structure of the data and therefore can lead to the parsimony and/or computa-
tion (optimization) problems as well as to numerical difficulties in statistical inference, when
the dimension of these outcomes increases. Many analysis strategies were proposed in the sta-
tistical literature to circumvent these problems. These strategies generally consist in reducing
the dimensionality of the multivariate vector of outcomes and/or in using a small number of
latent variables to model correlations within these data. Joint analysis of multivariate multilevel
data then requires a trade-off between the increase of the computational complexity and the
gain in information.

In this work, we focus on the multivariate linear mixed-effects model, including all the cor-
relations between the random effects along with the independent marginal (dimensional)
residuals. The correlations between two dependent variables are then those from the random
effects related to these dependent variables. The class of mixed-effects models considered here
assumes that both the random effects and the errors (residuals) follow Gaussian distributions.
These models are intended for the analysis of multivariate multilevel data in which the depen-
dent variables are continuous.

We use the EM algorithm to estimate the parameters of the model but here, we have two
novelties: 1) we suggest a general expression of EM-based estimators which can help in analyz-
ing multivariate longitudinal data as well as the multivariate multilevel data, not of the longitu-
dinal type, and 2) we test the significance of the correlations between the random effects of two
dependent variables, using the likelihood ratio test which allows to decide if some dependent
variables are significantly correlated or not. By using this bivariate correlation test, the novelty
here is the illustration, through empirical data, of some of the consequences of performing sep-
arate analyses when a joint analysis is required. Two dependent variables which are found to be
uncorrelated after this test will be analyzed with two independent models (or analyzed sepa-
rately). This strategy may be considered as a way toward the obtaining of a more parsimonious
model in high dimension without losing much information. It may also be used in a joint
modeling selection procedure.

The paper is organized as follows. In Section 2, contributions of previous works are briefly
presented. We also present in this section the EM-based estimators of the parameters of the
multivariate linear mixed model. Simulations studies are done in Section 3 where we also dis-
cuss the power of the likelihood ratio test which allows to test the significance of the correlation
between two response variables. Two illustrations on empirical data are also done in Section 3.
The first, concerning bivariate two-level data, is about a study on the effects of school differ-
ences on pupils’ progress in Dutch language and arithmetics in the Netherlands. The second
illustration concerns a longitudinal study on the immune response to malaria of infants in
Benin.
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Materials and Methods

Previous works
In this Section, we briefly recall the framework of the multivariate multilevel analysis (see for
instance, [25, 26]). We can basically distinguish two main approaches to model such data:
those which specify the joint distribution of all outcomes without the use of latent structures,
and the models using latent structures. We denote by y1,…, ym them dependent vectors of

interest, and y ¼ ðy>1 ; � � � ; y>mÞ>.
Modeling methods without latent structures. The first approach which is that of the

modeling without latent structures comprises three sub-approaches consisting in a) direct
specification of the correlation structure of y, b) analysis without explicit modeling of the corre-
lation structure of y and c) conditional models.

In the case of direct specification of Cov(y), [27] and [28] factorized the covariance matrix
of y by using the Kronecker product in order to have more parsimonious models in the context
of fully balanced data. With the same idea of having a parsimonious structure, [29] specified
the intra-outcome and inter-outcome correlations, respectively, as follows:

CorrðykðtÞ; ykðsÞÞ ¼ exp ðajs� tjykÞ and CorrðykðtÞ; yk0 ðsÞÞ ¼ exp ððajs� tj þ 1Þykk0 Þ, with t
and s indicating the time, and k and k0 indicating the dimension. Although these models are
useful, they are often too restrictive and may not be realistic in many applications, especially
when the data, for example, in the longitudinal studies are unbalanced (i.e. the number of avail-
able measurements per subject and the time points at which the measurements were taken
often differ from one subject to another). Another class of joint models, specifying directly the
joint distribution of y, and whose application is often not straightforward, due to unbalanced
data structures is the so-called copula model [30, 31]. Denoting by Fi, i = 1,…,m the cumula-
tive distribution function of the ith component of y, yi, a copula model is defined by anm-
dimensional cumulative distribution function C(u1,…, um) with uniform marginals such that
F(y1,…, ym) = C(u1,…, um) with (U1,…, Um) = (F1(y1),…, Fm(ym)), where F is the joint cumu-
lative distribution of y. That is, the joint distribution of y can be written in terms of its marginal
distributions and a copula which describes the dependence structure between its components.
While the construction of copulas is mathematically elegant, parameters estimation is often
not feasible, especially in high-dimensional situations [26]. One of the rare applications of the
copula-based modeling in the multivariate multilevel data analysis framework was proposed by
[32], who studied the hemodynamic effect of a new antidepressant on the diastolic blood pres-
sure, the systolic blood pressure and the heart rate of 10 healthy volunteers. They separately
modeled, at first, each longitudinal series of response and used a copula to relate the marginal
distributions of these responses at each observation time. In a second step, at each observation
time, the conditional (on the past) distributions of each response were related using another
copula describing the relationship between the corresponding variables. One of the advantages
of this approach is that there is no need to use the same family of distributions for all response
variables. As [33] used ARIMA process to model the error structure of earnings in a longitudi-
nal data analysis context, time series models can also be used for modeling multivariate multi-
level data in order to describe the dynamic dependence between variables and perform
forecasting. The most commonly used multivariate time series model, the vector autoregressive
(VAR) model which is relatively easy to estimate, is found to be similar to the multivariate mul-
tiple linear regression [34] where the errors for different response variables on the same trial
are set to be correlated [35]. Other examples of VAR modeling include [36] and [37], but one
drawback of the model is that the number of parameters can become very large, potentially
leading to estimation problems [38].
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Regarding analysis without explicit specification of Cov(y), [6] proposed an extension of
generalized linear models to the analysis of longitudinal data, where they introduced a class of
estimating equations called generalized estimating equations (GEE). GEE estimation ensures
consistent estimates of the regression parameters without specifying the joint distribution of a
subject’s observations. That is, GEE replaces V½y� by the so-called working covariance matrix
W(α) which depends on an unknown vector α to estimate. The related working correlation
matrix, R(α), is also considered. Incorrect choice ofW(α) does not affect the consistency of the
regression parameters’ estimators [6]. [39] discussed the use of GEEs with multivariate discrete
variables, where focus was on the modeling of the marginal (dimensional) means of these vari-
ables and their pairwise associations. The extension of the GEE method to mixed continuous-
discrete responses was discussed by [40] and [41]. [42] also avoided the need of explicit model-
ing of the covariance structure of bivariate longitudinal responses by using SUR [5] and GEE.
As pointed out by [43], ambiguities concerning the definition of the working covariance matrix
can result in a breakdown of the GEE-based estimation. For example in the longitudinal data
analysis, if the true structure of correlation is equicorrelation, ðR�

i Þjk ¼ r, and that the working

structure is autoregressive, (Ri)jk = α|j−k|, there is no solution for â when −1/2� ρ< −1/3 [43].
This can be viewed as the major drawback of the GEE method since it can lead to the misspeci-
fication of within-subject associations in the context of longitudinal data analysis, for instance.
Examples of procedures which bypass the need to explicitly model the underlying covariance
structure of y include [42, 44, 45]. These procedures, generally, consist in regressing each com-
ponent of y on relevant covariates of interest, followed by combination of these regression coef-
ficients into a single global estimate of the covariates effect [25].

One way to avoid the direct specification of the joint distribution of y is to factorize it, lead-
ing to the so-called conditional models [46]. For two responses, the joint density f(y1, y2) can
be written as follows:

f ðy1; y2Þ ¼ f ðy1jy2Þf ðy2Þ ¼ f ðy2jy1Þf ðy1Þ ð1Þ

The choice of the conditioning response is of course arbitrary and requires very careful reflec-
tion about plausible associations between components of y. For example, in the specification of
a conditional model such as f(y1|y2), y2 plays the role of covariate and different choices can lead
to completely opposite results and conclusions [47]. In a clinical trial, for example, none of
these factorizations will be of interest due to the conditioning on a post-randomization out-
come which may partially attenuate the treatment effect on the other [26]. Another drawback
of conditional models is that they do not directly lead to marginal inferences. Suppose that sci-
entific interest would be in a comparison of the rate of longitudinal change in average of y1 and
y2. The factorization f(y1, y2) = f(y1|y2)f(y2) directly allows for inferences about the marginal
evolution of y2, but the marginal expectation of y1 requires computation of E½y1� ¼ E½E½y1jy2��,
which, depending on the actual models, may be far from straightforward [26].

Modeling methods using latent structures. The second approach regarding models using
latent structures can also be split in two sub-approaches including the strategy based on the
reduction of the dimensionality of y and the mixed-effect models. The general idea of reducing
the dimension of y is to use principal-component type analysis, or a summary function, to first
reduce the dimensionality of y and then, use standard univariate multilevel models for the anal-
ysis of the principal factors or the retained summaries of y [48–52]. Although it is useful, sim-
ple to understand and easy to compute, this strategy of dimension reduction has some
drawbacks such as the loss of information as discussed by [25] and [26]. [25] used this
approach and retained the first principal-component only which explains 31% of the total vari-
ation in their data. They found out that the summary function does not have any physical
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significance and the inference results cannot be interpreted in terms of the effect of the covari-
ates on the original (response) variables. They also found that the method fails to explore the
association of the components of y along time, in the case of longitudinal studies. Furthermore,
the method is not applicable in situations where all the components of y are not measured at
the same time point [25], although a possible extension might be the use of functional principal
components [53].

Regarding the mixed-effect models, [15], [54], [55], [56] and [57] proposed the use of ran-
dom-effects models for multivariate longitudinal data. They pointed out that the main disad-
vantage of joining separate mixed models by allowing their model-specific random effects to be
correlated is the increase of the dimension of the total vector of random effects with the num-
ber of outcomes, leading to computational problems. To circumvent these problems, [15]
noted that all parameters in the joint model can be estimated by fitting all the bivariate models,
based on

f ðys; ytÞ ¼
Z Z

f ðysjgsÞf ðytjgtÞf ðgs; gtÞdgsdgt

for allm(m − 1)/2 pairs (ys, yt), 1� s< t�m, resulting from the main multivariate model.
Estimators for the main parameters are obtained by averaging over the results from fitting the
m(m − 1)/2 pairwise models. They then showed that the pseudo-likelihood theory can be used
to derive the asymptotic distribution of these estimators, and used SAS procedures for mixed
models [14] based on the Newton-Raphson algorithm to fit their models, following the
approach in [17]. In some multilevel studies, focus is not to directly model y, but a few number
of latent variables which cannot be quantified directly (e.g., depression and anxiety), but
through measurements of y. In such situations, analysis may be conducted in two steps: the
first produces the obtaining of the latent variables and the second proceeds to the joint analysis
of these latent variables. For example, [58] proposed a latent factor linear mixed model to cap-
ture the joint trend over time of latent variables. the authors reduced, indeed, the high-dimen-
sional responses to low-dimensional latent factors by the factor analysis model, and then used
the multivariate linear mixed model to study the longitudinal trends of these latent factors,
where the estimates have been done using the EM algorithm. To deal with missing values in
multivariate longitudinal analysis using multivariate linear mixed-effects model, [59] proposed
multiple imputations using Markov chain Monte Carlo, where they used EM algorithm for the
parameters estimation. Here, the authors sped up the EM algorithm by analytically integrating
the random effects out of the likelihood function, avoiding to treat them as missing data. [60]
used EM based modeling to estimate the parameters of the multivariate linear mixed model
under a SAS macro program encoded in IML.

Although the EM algorithm is known to be slow, one of the biggest advantages of this
method is that it is not computationally expensive, even with a large number of response vari-
ables. In this context, our contribution is the writing of the EM-based estimators in a more gen-
eral form than those used in [58, 59] and [60]. The expressions of the EM-based estimators
used in this paper can easily perform any analysis in the framework of the multivariate multi-
level data analysis using multivariate linear mixed-effects model.

Another technique somewhat close to those discussed in [58] is the structural equations-
based techniques. For example, [61] developed linear structural equations with latent variables

approach. Considering y ¼ ðy>1 ; y>2 Þ>, this approach can be expressed as follows: yi = μi + Gi ηi;
i = 1, 2 and βη1 = γη2, where ηi, i = 1, 2 are the latent variables, β(m ×m) and γ(m × n) are coef-
ficient matrices governing the linear relations of all variables involved in them structural equa-
tions. Gi, i = 1, 2 are known matrices. The parameters of the model may be estimated by
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gradient and quasi-Newton methods, or a Gauss-Newton algorithm that obtains least-squares,
generalized least-squares, or maximum likelihood estimates. One modeling strategy which
fuses together mixed-effects model and VAR model in order to analyze multivariate multilevel
data is the so-called multilevel-VAR method. For example, [62] used the multilevel-VAR
model in the context of network inference in psychopathology, where they used the population
standard deviation of the person-specific random effects to construct a network representing
individual variability. Examples of multilevel-VAR modeling include [63] and [38].

State space models [64] which are useful to investigate the dynamical properties of latent
variables can also be used to analyze multivariate multilevel data. For example, [65] introduced
an extension of the basic state space model which is flexible and general in the sense of it is
applicable to any time series for multiple systems.

Methods for estimating the connectivity maps containing heterogeneity may also be applied
to analyze multivariate multilevel data. [66] presented the Group Iterative Multiple Model Esti-
mation (GIMME) approach, which addresses the issue of heterogeneity (the need for individ-
ual-level maps) in effective connectivity mapping while capitalizing on shared information to
arrive at group inferences. Unlike mixed-effects models, GIMME allows for the structure of the
connectivity maps to be unique across individuals [66].

One can also use a nonparametric function f to handle the relationship between the compo-
nents of y and the covariates [67–69]. This strategy requires also to have sufficient data per sub-
ject, in the case of multivariate longitudinal data. Other estimation strategies implemented
under softwares and discussed by [70] can perhaps be extended to the multivariate analysis
case, when necessary.

Let us finally point out that the software packages which can easily and accurately analyze
(jointly) the data of multivariate multilevel type are extremely rare, and one arranges the data
and manipulates packages primarily designed for fitting univariate models to handle their
analysis. The SabreR [71] package, under the R software [72], which has been devoted to
jointly fitting up to three mixed-effects models, with random intercepts only, has been
recently removed from the depot. These facts prove by themselves that the analysis of multi-
variate multilevel data in a single framework is a challenging task. Bayesian-based
approaches can be implemented using packages like R2WinBUGS [73] under the R software,
and are useful but very time consuming and require a good expertise from the user who can
easily be discouraged.

Model and notations
The model discussed here is the multivariate linear mixed-effects model (or the multivariate
linear multilevel model), including all the correlations between the random effects, but the
marginal residual terms are assumed to be uncorrelated. For a more general multivariate linear
mixed-effects model, the dependent variables are assumed to be correlated, conditional on the
random-effects. That is, the marginal residual terms are correlated. In this paper, as in many
other works (see for example, [59, 60, 74] and [58]), we assume that conditional on the ran-
dom-effects, the dependent variables are uncorrelated. In the context of using EM algorithm in
estimating the model parameters, this assumption allows to derive the EM-based estimators
for the residual variance parameters. If the dimensional residual terms are assumed to be corre-
lated, the EM-based estimators of theirs variance parameters are not easy to deal with and we
don’t treat this case here. This model assumes that both the random effects and the residuals
follow Gaussian distribution, and is intended for the analysis of multivariate multilevel data in
which the dependent variables are continuous. For the sake of simplicity we focus on the bivar-
iate case (m = 2) in most of the paper, but the generalization to higher dimensions (m> 2) is
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straightforward. The model is as follows:

y1 ¼ X1b1 þ Z1g1 þ ε1

y2 ¼ X2b2 þ Z2g2 þ ε2
ð2Þ

g ¼
g1

g2

 !
� N 0;Γ ¼

G1 G12

G>
12 G2

 ! !
; ð3Þ

ε ¼
ε1

ε2

 !
� N 0;S ¼

S1 0

0 S2

 ! !
; g ? ε ð4Þ

For k 2 {1, 2}, βk and γk denote respectively the fixed effects and the random effects vector
of covariates, while εk is the residual component. Xk is a matrix of covariates and Zk a covari-
ates-based design matrix. dim(Xk) = Nk × pk and dim(Zk) = Nk × qk, where Nk is the total num-
ber of observations in the dimension k of the model. pk and qk are, respectively, the number of
fixed effect related covariates and the number of random effect related covariates in the dimen-
sion k of the model. If Nk is a constant N for any k, the index k will be removed and N will
denote the total number of observations in all dimensions of the model. The bold symbols rep-
resent parameters of multiple dimensions (i.e. S1 concerns dimension 1 of the model while S
concerns both dimensions).

Another way to easily understand the model is to express it using the levels of the covariate
related to the random-effects. This expression (subject-based version) of the model is, gener-
ally, used in the framework of longitudinal data analysis, and lead to EM-based estimators
(expressions) which are a particular case of the estimators expressions obtained in Eqs (17),
(18) and (19) (for example, see [60]). Denoting by n the total number of subjects involved in
the longitudinal study, the model can be expressed as follows:

denoting by i a subject, for i = 1,…, n

y1i ¼ X1ib1 þ Z1ig1i þ ε1i

y2i ¼ X2ib2 þ Z2ig2i þ ε2i
ð5Þ

with

gi ¼
g1i

g2i

 !
� N 0; �Γ ¼

�G1
�G12

�G>
12

�G2

0@ 1A0@ 1A ð6Þ

and

εi ¼
ε1i

ε2i

 !
� N 0; �S ¼

s2
1IN1i

0

0 s2
2IN2i

0@ 1A0@ 1A ð7Þ

N1i and N2i are the dimensions of y1i and y2i, respectively. Here, we assume that the marginal
residuals are homoscedastic (V½εki� ¼ s2

kINki
; k ¼ 1; 2), but the residual covariance matrices can

be of full form as in Eq (4). In order to make clear the relation between the model described by
Eqs (2), (3) and (4), and its version expressed by Eqs (5), (6) and (7), we propose below a
detailed example.

Detailed example. We place ourselves in the case of longitudinal data where we observe
two response variables y1 and y2 which are respectively the weight (kg) and the size (cm) of
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infants according to the score (V2) of the quality of their food as well as the quality score (V1)
of their mothers’ food. Infants are n = 3 girls (sex = F) and boys (sex = M) who are monitored
over time. The dataset is presented by Table 1.

Suppose that the model at each of two dimensions has one random intercept by subject
(infant) and one random slope by subject in the direction of the infant’s age (in months). For
example, considering an identifiability constraint covering the sex variable whose level F is the
reference, the bivariate linear mixed model can be written as follows:

y1 ¼ ð1 V1 sex ¼ MÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼X1

b1 þ Z1g1 þ ε1

y2 ¼ ð1 V2 sex ¼ MÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼X2

b2 þ Z2g2 þ ε2

ð8Þ

where, explicitly

X1 ¼

1 63:76 0

1 100:88 1

1 60:98 0

1 93:24 1

1 101:95 1

1 99:24 1

1 88:38 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;X2 ¼

1 38:16 0

1 41:46 1

1 41:37 0

1 48:76 1

1 44:79 1

1 48:17 1

1 44:79 0

1 47:91 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ð9Þ

Z1 ¼

1 0 0 0 0 0

0 0 1 4 0 0

1 6 0 0 0 0

0 0 0 0 1 0

0 0 1 7 0 0

0 0 1 10 0 0

0 0 0 0 1 9

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;Z2 ¼

1 0 0 0 0 0

0 0 1 4 0 0

1 6 0 0 0 0

0 0 0 0 1 0

0 0 1 7 0 0

0 0 1 10 0 0

1 16 0 0 0 0

0 0 0 0 1 9

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ð10Þ

dim ðX1Þ ¼ 7� 3 and dim ðX2Þ ¼ 8� 3; dim ðZ1Þ ¼ 7� 6 and dim ðZ2Þ ¼ 8� 6

Table 1. Example of data.

Response variables

subject age sex V1 V2 y1 y2
1 0 F 63.76 38.16 3.14 47.82

2 4 M 100.88 41.46 4.87 64.02

1 6 F 60.98 41.37 8.43 73.21

3 0 M 93.24 48.76 2.82 44.93

2 7 M 101.95 44.79 8.03 89.54

2 10 M 99.24 48.17 10.08 92.14

1 16 F NA 44.79 13.96 86.12

3 9 M 88.38 47.91 8.47 86.42

doi:10.1371/journal.pone.0159649.t001
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In the present example we have dim(X1) 6¼ dim(X2) and dim(Z1) 6¼ dim(Z2) due to the pres-
ence of the NA (Not Available) within the values of the variable V1. Removing information
related to this NA in the dimension 1 of the model does not affect its dimension 2.

Γ ¼
G1 G12

G>
12 G2

 !

with,

G1 ¼

Z21 rZZ1Z2 : : : :

rZZ1Z2 Z2
2 : : : :

: : Z21 rZZ1Z2 : :

: : rZZ1Z2 Z22 : :

: : : : Z2
1 rZZ1Z2

: : : : rZZ1Z2 Z22

0BBBBBBBBB@

1CCCCCCCCCA
ð11Þ

G2 ¼

t21 rtt1t2 : : : :

rtt1t2 t22 : : : :

: : t21 rtt1t2 : :

: : rtt1t2 t22 : :

: : : : t21 rtt1t2
: : : : rtt1t2 t22

0BBBBBBBBB@

1CCCCCCCCCA
ð12Þ

G12 ¼

rZ1t1
Z1t1 rZ1t2

Z1t2 : : : :

rZ2t1
Z2t1 rZ2t2

Z2t2 : : : :

: : rZ1t1
Z1t1 rZ1t2

Z1t2 : :

: : rZ2t1
Z2t1 rZ2t2

Z2t2 : :

: : : : rZ1t1
Z1t1 rZ1t2

Z1t2
: : : : rZ2t1

Z2t1 rZ2t2
Z2t2

0BBBBBBBBB@

1CCCCCCCCCA
ð13Þ

ρη, ρτ, ρη1 τ1, ρη1 τ2, ρη2 τ1, and ρη2 τ2 lie in [−1, 1]. All other parameters involved in Γ1, Γ2 and
Γ12 are positive real numbers.

Referring to the subject-based version of the model,

�G1 ¼
Z2
1 rZZ1Z2

rZZ1Z2 Z22

0@ 1A; �G2 ¼
t21 rtt1t2

rtt1t2 t22

 !
; �G12 ¼

rZ1t1
Z1t1 rZ1t2

Z1t2

rZ2t1
Z2t1 rZ2t2

Z2t2

0@ 1A;

Vðg1Þ ¼ �G1; Vðg2Þ ¼ �G2; and Covðg1; g2Þ ¼ �G12: ð14Þ

Then,

G1 ¼ diagð�G1; � � � ; �G1Þ; G2 ¼ diagð�G2; � � � ; �G2Þ; and G12 ¼ diagð�G12; � � � ; �G12Þ: ð15Þ
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EM estimation
Let θ be the vector of unknown parameters in β1, β2, Γ, S1, S2. The EM algorithm requires an
initial value of θ and some expressions (estimators) to update until convergence. In the next
two subsections we provide these estimators, their initial values and the stopping criterion.

EM-based estimators of parameters

Theorem 1. Suppose that y ¼ ðy>1 ; y>2 Þ> satisfies the model based on Eqs (2), (3) and (4) and θ
the vector of its unknown parameters while θold is the previous value of θ provided by the EM
algorithm. Let f(y,γ|θ) be the joint density function of y and γ given θ, and

QðyjyoldÞ ¼ E½ log f ðy; gjyÞjy; yold �. Let M be the mapping yold 7!MðyoldÞ ¼ ŷ such that:

MðyoldÞ ¼ arg max
y

QðyjyoldÞ ð16Þ

Then, the EM-based estimator of θ, i.e. ŷ, is expressed through:
for k 2 {1,…,m},

b̂k ¼ ðX>
k S

�1
k XkÞ�1X>

k S
�1
k ðyk � ZkE½gkjy; yold�Þ; ð17Þ

Γ̂ ¼ V½gjy; yold� þ E½gjy; yold �E½gjy; yold �>; ð18Þ

Ŝk ¼ ZkV½gkjy; yold �Z>
k þ ðyk � Xkbk � ZkE½gkjy; yold �Þðyk � Xkbk � ZkE½gkjy; yold�Þ>; ð19Þ

where,

E½gkjy; yold� ¼ Covðgk; yjyoldÞV½yjyold��1ðy � E½yjyold �Þ; ð20Þ

V½gkjy; yold � ¼ Γk � Covðgk; yjyoldÞV½yjyold ��1
Covðgk; yjyoldÞ> ð21Þ

and

V½yjyold � ¼
Z1G1Z

>
1 þ S1 Z1G12Z

>
2

Z2G
>
12Z

>
1 Z2G2Z

>
2 þ S2

 !
; Covðg; yjyoldÞ ¼

Z1G1 Z1G12

Z2G
>
12 Z2G2

 !>

; ð22Þ

Covðg1; yjyoldÞ ¼
Z1G1

Z2G
>
12

 !>

; Covðg2; yjyoldÞ ¼
Z1G12

Z2G2

 !>

: ð23Þ

proof. For k 2 {1,…,m}, b̂k, Ŝk and Γ̂ optimize the quantity:

QðyjyoldÞ ¼ E½ log f ðy; gjyÞjy; yold� ð24Þ

where f(y,γ|θ) is the joint density function of the observed data y and the random effect γ. In
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the case ofm = 2, we have:

f ðy; gjyÞ ¼ f ðyjg; yÞf ðgjyÞ
¼ f ðy1jg1; yÞf ðy2jg2; yÞf ðgjyÞ

¼ ð2pÞ�ðN1þN2þqÞ=2jS1j�1=2jS2j�1=2jΓj�1=2 exp f� 1

2
g>Γ�1g

� 1

2
ðy1 � X1b1 � Z1g1Þ>S�1

1 ðy1 � X1b1 � Z1g1Þ

� 1

2
ðy2 � X2b2 � Z2g2Þ>S�1

2 ðy2 � X2b2 � Z2g2Þg

ð25Þ

Since f is a multivariate Gaussian, using the dominated convergence theorem and the deriv-
ative under the integral sign, the differential of Q(θ|θold) yields:

dQðyjyoldÞ ¼ E½� 1

2
trfS�1

1 dS2 þ S�1
2 dS2 þ Γ�1dΓg

� 1

2
trf�2ðy1 � X1b1 � Z1g1Þ>S�1

1 X1db1

�S�1
1 ðy1 � X1b1 � Z1g1Þðy1 � X1b1 � Z1g1Þ>S�1

1 dS1g

� 1

2
trf�2ðy2 � X2b2 � Z2g2Þ>S�1

2 X2db2

�S�1
2 ðy2 � X2b2 � Z2g2Þðy2 � X2b2 � Z2g2Þ>S�1

2 dS2g

� 1

2
trf�g>Γ�1dΓΓ�1ggjy; yold�

ð26Þ

¼ � 1

2
trfS�1

1 dS2 þ S�1
2 dS2 þ Γ�1dΓg

þtrðy1 � X1b1 � Z1E½g1jy; yold�Þ>S�1
1 X1db1

þ 1

2
trfS�1

1 E½ðy1 � X1b1 � Z1g1Þ>ðy1 � X1b1 � Z1g1Þjy; yold�S�1
1 dS1g

þtrðy2 � X2b2 � Z2E½g2jy; yold�Þ>S�1
2 X2db2

þ 1

2
trfS�1

2 E½ðy2 � X2b2 � Z2g2Þ>ðy2 � X2b2 � Z2g2Þjy; yold�S�1
2 dS2g

þtr
1

2
fΓ�1

E½gg>jy; yold�Γ�1dΓg

ð27Þ

Partial derivatives of Q(θ|θold) yield:
for k 2 {1,…,m},

@QðyjyoldÞ
@bk

¼ ðyk � Xkbk � ZkE½gkjy; yold�Þ>S�1
k Xk;

@QðyjyoldÞ
@Sk

¼ � 1

2
S�1

k þ S�1
k E½ðyk � Xkbk � ZkgkÞ>ðyk � Xkbk � ZkgkÞjy; yold�S�1

k
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and

@QðyjyoldÞ
@Γ

¼ 1

2
Γ�1

E½gg>jy; yold�Γ�1 � Γ�1
� �

:

We then get EM-based estimators by setting these partial derivatives equal to zero.

E½gkjy; yold� and V½gkjy; yold� are straightforward to get since ðg>k ; y>Þ> is a multivariate
Gaussian.

Initialization and stopping criterion of the algorithm

Various ways exist for obtaining starting values for b̂k, Γ̂, Ŝk; for k ¼ 1; � � � ;m. Taking inspi-
ration from [75] and [60], we have separately fitted each dimension of the model by using the
lme4 package [76] under the R software and have used marginal estimated parameters to ini-

tialize b̂k and Ŝk. We then keep the expected random effects ~g ¼ Ê½gjy� to initialize Γ̂ by

1

n� 1

Xn
i¼1

~g i~g
>
i ð28Þ

The stopping criterion is related to the relative error of the components of θ as follows:

max
j

����� y
ðrÞ
j � yðrþ1Þ

j

yðrþ1Þ
j

����� < tol ð29Þ

where (r) is the iteration index and θj the jth component of θ. tol = 10−5 seems to work well in
practice.

Test of the significance of dCorðg1; g2Þ
After the calculation of Γ on dataset, we sometimes need to investigate if the correlation
between marginal random effects is statistically significant, by testingH0: Cor(γ1, γ2) = 0
against H1: Cor(γ1, γ2) 6¼ 0. The result of this test can help to decide if the bivariate analysis is
justified or not. We perform the likelihood ratio (LR) test to choose between H0 and H1. We
calculated S, the statistic of the likelihood ratio test.

S ¼ �2 log
Lðyjdata; H0Þ
Lðyjdata; H1Þ
� �

ð30Þ

where Lðyjdata; H0Þ and Lðyjdata; H1Þ are the likelihood of θ under H0 and H1, respectively.
Under suitable and standard conditions, S* χ2(df), asymptotically, under H0 [77]. With df the
difference in the number of parameters between Lðyjdata; H0Þ and Lðyjdata; H1Þ.

Results and Discussion

Simulation studies
In this section, simulation studies are used to investigate the computational properties of the
EM-based estimators. For the sake of simplicity, these simulation studies are conducted using
simulated bivariate longitudinal data sets. Through these studies, we pursue two objectives: the
first is to assess the accuracy of parameter estimates and the second is to analyze the power of
the likelihood ratio test performed via these EM-based estimators. In the following paragraph,
we explain how we choose the parameters that have been used to simulate the working longitu-
dinal data sets.
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The working data sets. We suppose that we are following up a sample of subjects where
the goal is to evaluate how the growth of the weight and the height of the individuals of this
population are jointly explained by the sex, the score of nutrition (Nscore) and the age. We ran-
domly choose through a uniform distribution the score of nutrition between 20 and 50, and the
age between 18 and 37, using the R software. All the analysis in this paper are done using the R
software. The subject’s sex is also randomly chosen. The model under which we simulate the
data sets is the following:

n indicating the total number of subjects, for i = 1,…, n

weighti ¼ ð1ni
; sexi;Nscorei; ageiÞb1 þ ð1ni

;NscoreiÞg1i þ ε1i

heighti ¼ ð1ni
; sexi;Nscorei; ageiÞb2 þ ð1ni

;NscoreiÞg2i þ ε2i
ð31Þ

with

gi ¼
g1i
g2i

 !
� N ð0; �ΓÞ; ε1i � N ð0; s2

1IniÞ; ε2i � N ð0; s2
2IniÞ; gi ? ε1i ? ε2i ð32Þ

The random effect related to the dependent variable ‘weight’ or ‘height’ is a vector composed
by one random intercept and one random slope in the direction of the covariate ‘Nscore’. The
total number of observations is denoted by N.

We randomly choose β1, β2, σ1 and σ2 whose values are in the first column of Table 2. �Γ is
also randomly chosen such that it is positive definite, with the following form:

�Γ ¼

Z21 rZZ1Z2 rZ1t1 rZ1t2
rZZ1Z2 Z2

2 rZ2t1 rZ2t2
rZ1t1 rZ2t1 t21 rtt1t2
rZ1t2 rZ2t2 rtt1t2 t22

0BBBB@
1CCCCA ð33Þ

The covariance between the random effects γ1 and γ2 is set, intentionally,

Covðg1; g2Þ ¼ r
Z1t1 Z1t2
Z2t1 Z2t2

 !
ð34Þ

in order to be able to decrease or increase the correlation between the marginal random effects

γ1 and γ2, by changing the value of ρ, without losing the positive definiteness of �Γ. This

Table 2. Comparative table of true values of parameters and estimates based on 1000 replications using true values of parameters.

Parameter Value Empirical mean Empirical Sd Bias

β1 50.67 50.669 0.763 0.000

-4.80 -4.779 0.811 0.021

14.00 14.012 0.345 0.012

2.70 2.700 0.016 0.000

β2 13.20 13.263 1.077 0.063

-2.80 -2.796 1.186 0.003

27.00 27.000 0.068 0.000

1.70 1.699 0.019 0.000

σ1 5.80 5.796 0.062 0.003

σ2 7.60 7.602 0.082 0.002

doi:10.1371/journal.pone.0159649.t002
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property of �Γ will be used to assess the power of the likelihood ratio test through simulations,
by changing the value of ρ. We simulate 1000 data sets with ρ = 0.8, in order to assess the accu-
racy of estimates using the EM-based estimators. With ρ = 0.8, the randomly chosen �Γ is

�Γ ¼

27:77 18:80 41:70 4:93

18:80 36:00 47:47 5:62

41:70 47:47 97:81 8:91

4:93 5:62 8:91 1:37

0BBBB@
1CCCCA ð35Þ

Empirical accuracy of the estimates. The 1000 data sets simulated in order to assess the
accuracy of the estimates performed using the EM-based estimators contain N = 5000 observa-
tions provided by n = 300 independent subjects.

The mean and the standard deviation of the 1000 estimates are presented, respectively, in
the second and the third column of the Table 2. The bias of the parameter estimates, which is
the absolute difference between the true value of the parameter and the mean of the 1000 esti-
mates, is calculated as measure of performance. These bias are contained in the forth column
of the Table 2.

Ê½ �̂Γ�, ŝ �̂Γ and Biasð �̂ΓÞ (Eqs (36), (37)) contain, respectively, the empirical mean, the empiri-

cal standard deviation and the empirical bias of �Γ.

Ê½ �̂Γ � ¼

27:86 18:71 41:19 4:93

18:71 35:73 47:09 5:58

41:19 47:09 95:93 8:87

4:93 5:58 8:87 1:36

0BBBB@
1CCCCA; ŝ �̂Γ ¼

5:32 2:99 6:37 0:63

2:98 2:86 5:11 0:50

6:37 5:11 13:73 0:97

0:63 0:50 0:97 0:11

0BBBB@
1CCCCA ð36Þ

Biasð �̂Γ Þ

0:085 0:090 0:515 0:001

0:089 0:265 0:382 0:045

0:514 0:382 1:881 0:039

0:001 0:045 0:039 0:007

0BBBB@
1CCCCA ð37Þ

The bias contained in the estimates of βk and σk ranges from 0.000 to 0.063 (Table 2), and
the bias contained in the estimates of the entries of �Γ ranges from 0.001 to 1.881 (Eq 37). These

results show that b̂k and ŝk (i.e. Ŝk) seem unbiased when �̂Γ is biased.
The estimates of �Γ appear to be poorer than the estimates of all other parameters. In order

to investigate which entries of �Γ are particularly poorly estimated, we calculate the coefficients
of variation (CV) of these entries. The CV computed here is obtained by dividing the standard
deviation of the estimates by the true value of each entry of �Γ. The CVs give an idea of the vari-
ability of estimates around the true values and enable to compare these variabilities between
them. A particularly large value of CV could lead us to suspect that the corresponding input is
particularly poorly estimated. Here, the CV ranges from 0.08 to 0.19, and is represented by the
Fig 1 for more visibility. Given these CV values, it seems that none of the entries of �Γ is particu-
larly poorly estimated.

Deep investigation on the estimates’ accuracy. Here, we compute the Mean Square Error
(MSE) of the EM-based estimators with N = 600,1000 and N = 3000 across n = 50, 60, 100 and
300 to investigate how both values of n and N affect the quality of the estimates. For each value
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of n and N, we simulate 1000 data sets on which we estimate the model parameters and com-
pute the MSE of these estimates.

Without surprise, Table 3 shows that the quality of estimates is clearly improved when both
n and N grow. Estimations performed on dataset containing N = 3000 observations are more
accurate than those performed with N = 600, observing the maximum value of the MSE in each
case. For N = 600, information contained in Table 3 shows that the MSE related to n = 60 (60
subjects) are better than those related to n = 300. This result suggests a good tradeoff between
the number of subjects and the total number of observations in order to have accurate esti-

mates, especially if the number of observations is not very high. Once again, it appears that Γ̂
(Table 3) has the highest MSE for all values of n and N.

The bivariate likelihood ratio test. Considering the random effects covariance matrix �Γ
(see Eq (35)), the related correlation matrix is

1:00 0:59 0:80 0:80

0:59 1:00 0:80 0:80

0:80 0:80 1:00 0:77

0:80 0:80 0:77 1:00

0BBBB@
1CCCCA: ð38Þ

Fig 1. Coefficients of variation of entries of Γ. N = 5000 observations and n = 300 subjects.

doi:10.1371/journal.pone.0159649.g001
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That is, the matrix of the correlations between the marginal random effects (i.e., the random
effects related to the two dependent variables) is

Corðg1; g2Þ ¼
0:80 0:80

0:80 0:80

 !
ð39Þ

whereas the estimate (on one of the previous simulated data) of this matrix, Cor(γ1, γ2), of the
correlations between the marginal random effects, is

dCorðg1; g2Þ ¼ 0:77 0:78

0:90 0:74

 !
ð40Þ

If we decide to test H0: Cor(γ1, γ2) = 0 against H1: Cor(γ1, γ2) 6¼ 0 in the case of these simu-
lated data, we must know the distribution of the LR statistic S. In order to approximate the dis-
tribution of S, under H0, we proceed to an extensive simulation study in the next paragraph.

Empirical distribution of S underH0. In this paragraph, our goal is to investigate about
the empirical law of the LR statistic S, under H0, when the size N of the data set increases. The
simulated data sets used in this paragraph are also of bivariate longitudinal type, with N the
total number of observations coming from n subjects. We choose N as an arithmetic sequence
ranging from 50 to 2000, where the common difference is 50. We choose n = N/5 as it is suffi-
cient to have two observations per subject for fitting the model. When N/n = 1, the random-
effects parameters and the residual variance are unidentifiable [1].

The expected (standard) asymptotic distribution of S, under H0, is a χ
2(4). This may be

explained by the fact that Cov(γ1, γ2) and its transpose, Cov(γ1, γ2)
>, contain four entries,

respectively, and �Γ contains Cov(γ1, γ2) and Cov(γ1, γ2)
>. Therefore, the difference between

Table 3. Mean Square Error of EM-based estimator with 95% CI estimated on 1000 replications for various values of n andN.

Parameter n N = 600 N = 1000 N = 3000

β1 50 1.27 (0.01 - 4.64) 1.10 (0.00 - 3.83) 0.71 (0.00 - 2.57)

60 1.38 (0.00 - 5.56) 0.99 (0.00 - 3.90) 0.65 (0.00 - 2.44)

100 1.31 (0.00 - 4.79) 0.87 (0.00 - 3.41) 0.46 (0.00 - 1.58)

300 1.64 (0.00 - 5.93) 0.80 (0.00 - 3.23) 0.29 (0.00 - 1.13)

β2 50 2.13 (0.01 - 7.22) 1.73 (0.00 - 6.21) 1.08 (0.00 - 4.17)

60 2.12 (0.00 - 8.06) 1.63 (0.01 - 6.66) 0.95 (0.00 - 3.52)

100 1.88 (0.00 - 7.14) 1.29 (0.00 - 4.76) 0.62 (0.00 - 2.24)

300 2.30 (0.00 - 8.54) 1.23 (0.00 - 4.57) 0.43 (0.00 - 1.65)

σ1 50 0.03 (0.00 - 0.10) 0.10 (0.00 - 0.07) 0.01 (0.00 - 0.02)

60 0.04 (0.00 - 0.14) 0.02 (0.00 - 0.07) 0.01 (0.00 - 0.02)

100 0.04 (0.00 - 0.14) 0.02 (0.00 - 0.08) 0.01 (0.00 - 0.02)

300 0.06 (0.00 - 0.22) 0.03 (0.00 - 0.11) 0.01 (0.00 - 0.02)

σ2 50 0.05 (0.00 - 0.18) 0.03 (0.00 - 0.12) 0.01 (0.00 - 0.03)

60 0.06 (0.00 - 0.21) 0.03 (0.00 - 0.12) 0.01 (0.00 - 0.03)

100 0.06 (0.00 - 0.24) 0.04 (0.00 - 0.15) 0.01 (0.00 - 0.03)

300 0.09 (0.00 - 0.36) 0.04 (0.00 - 0.18) 0.01 (0.00 - 0.05)
�Γ 50 400.91 (1.52 - 1274.32) 670.46 (2.36 - 2536.73) 489.07 (2.02 - 1840.60)

60 706.45 (2.58 - 2497.42) 620.34 (2.70 - 2293.58) 408.79 (0.85 - 1597.77)

100 701.50 (3.79 - 2747.70) 477.55 (2.08 - 1839.26) 283.25 (1.97 - 1023.77)

300 798.28 (3.65 - 2603.65) 547.83 (3.03 - 1721.46) 199.54 (0.81 - 736.08)

doi:10.1371/journal.pone.0159649.t003
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the number of entries of �Γ which need to be estimated with Lðyjdata; H0Þ and Lðyjdata; H1Þ,
respectively, is df = 4. Precisely, the parameters of interest are ρη1 τ1, ρη1 τ2, ρη2 τ1 and ρη2 τ2 (see
Eq (14)).

Fig 2 assumes an asymptotic distribution of χ2(4) and plots the Kolmogorov-Smirnov test’s
p-value (at log10 scale) against the total number of observations of the data set that has served
to compute the LR statistic S. The blue curve is obtained by applying the empirical Bartlett cor-
rection to S and the red curve is obtained without correction. The horizontal dashed line repre-

sents log10(0.05). The empirical Bartlett corrected S, say ŜB, can be expressed as

ŜB ¼ df � S=Ê½SjH0�. This Bartlett correction is applied in order to avoid the small size distor-
tion of the χ2(df) distribution, when performing the LR test using a data set of small size [78].
Fig 2 thus helps to investigate how the LR distribution performs in finite and small dimension.
It also helps to investigate, in the case of this bivariate correlation test, how the Bartlett correc-
tion helps to avoid the small size distortion of the chi-square approximation. As the total num-
ber of observations increases, the curves (red and blue) reach the dashed line, gradually.

Fig 2. Empirical analysis of the asymptotic distribution of the LR statistic S underH0, using longitudinal data sets (200 replications) with size
N 2 {50, 100, 150, 200,…, 2000} coming from n 2 {10, 20, 30,…, 400} subjects. An asymptotic distribution of χ2(4) is assumed and the Kolmogorov-
Smirnov test’s p-value (at log10 scale) is ploted against the total number of observations of the data set that has served to compute the LR statistic S.
The blue curve is obtained by applying the empirical Bartlett correction to S and the red curve is obtained without correction. The horizontal dashed line
represents log10(0.05).

doi:10.1371/journal.pone.0159649.g002
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Assuming the χ2(4) distribution of S, it seems important to work with a data set containing at
least 500 observations coming from at least 2 subjects, and to apply the Bartlett correction in
order to avoid the breakdown of the procedure.

The type I error is generally controlled by the significance level of 10% (red and blue curves
of Fig 3). It is clear that the control is almost full with the Bartlett correction (blue curve of
Fig 3).

By simulating 1000 × 3000 realizations of χ2(4) distribution, we plot the red sheath repre-
sented in Fig 4. This sheath corresponds to the minimum and the maximum of the simulated
χ2(4) realizations. The blue curve inside the red sheath represents the empirical LR statistics
obtained from the 3000 simulated data sets under H0. This figure (Fig 4) shows that the asymp-
totic distribution of LR statistic related to the bivariate correlation test is not violated, since the
blue curve does not go out of the red sheath.

Empirical power of the bivariate correlation test. In order to analyze the power of this
likelihood ratio test performed with EM-based estimates, we calculate S on data sets which

Fig 3. Empirical analysis of the asymptotic distribution of the LR statistic S underH0, using longitudinal data sets (200 replications) with size
N 2 {50, 100, 150, 200,…, 2000} coming from n 2 {10, 20, 30,…, 400} subjects. An asymptotic distribution of χ2(4) is assumed and the type I error (at
log10 scale) is ploted against the total number of observations of the data set that has served to compute the LR statistic S. The blue curve is obtained
by applying the empirical Bartlett correction to S and the red curve is obtained without correction. The horizontal dashed lines represent the significance
levels of 5% and 10%, respectively.

doi:10.1371/journal.pone.0159649.g003
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have been simulated under H0 and H1, respectively, leading to what we named S0 and S1 vec-
tors containing the resulting values of S. We then plot a ROC curve with S0 and S1, where S0 is
the vector of the cases while S1 contains the controls. We calculate S0 and S1 in different situa-
tions where we have changed the value of ρ in the following configuration:

Covðg1; g2Þ ¼ r
Z1t1 Z1t2
Z2t1 Z2t2

 !
ð41Þ

Wemaintain fixed η1 = 5.27, η2 = 6.00, τ1 = 9.89, τ2 = 1.17 and change ρ (2 {0.1, 0.2, 0.3,…,
0.9}). The number of subjects (n) and the total number of observations (N) have also been
modified throughout these simulation studies. In each case, the estimated Area Under Curve
(AUC) of the ROC curve with its confidence interval have been recorded to produce Fig 5.

With n = 50 subjects, we detect, indeed, a correlation of 0.6 when the total number of obser-
vations is N = 3000; in contrast, if the total number of observations is N = 600, we perfectly
detect a correlation of 0.7.

Fig 4. Empirical analysis of the asymptotic distribution of the LR statistic S underH0, using 3000 (replications) simulated longitudinal data
sets (underH0) of sizeN = 15000 coming from n = 500 subjects. The minimum and the maximum of 1000 × 3000 simulated realizations of χ2(4) are
used to construct the red sheath. The blue curve represents the LR statistics related to the bivariate correlation test.

doi:10.1371/journal.pone.0159649.g004
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Unsurprisingly, confidence intervals of AUC are also more accurate with N = 3000 than
with N = 600. With a sufficient number of observations and subjects, weak correlations are eas-
ily detected. For example, we perfectly detect a correlation of 0.2 with N = 3000 and n = 300
where AUC = 0.96(0.93 − 0.98) according to Fig 5. However, we detect quite well a correlation
of 0.3 with N = 600 and n = 60 where AUC = 0.81(0.73 − 0.88).

In the case where estimates are of a higher quality (because they are performed on data sets
having a sufficient number of observations N = 5000 and subjects n = 300), we plot ROC curves
with low values of ρ (0.1, 0.2 and 0.3). We then show in Fig 6, the estimated AUC and its 95%
confidence interval.

Fig 6 shows that EM-based estimators lead to a good power of the bivariate correlation test,
when we have a sufficient number of observations and subjects in the longitudinal study case.
This goodness of the power of the bivariate correlation test persists when the correlation
between marginal random effects is low (about 0.2).

Applications on real data sets
In this section we analyze two data sets by using the likelihood ratio test through the EM-based
estimators presented above. The first dataset is of multivariate multilevel type and the second
is, specifically, of longitudinal multivariate type.

Application to education data in the Netherlands. The data used here are named ‘bdf’
under the package nlme [13] of the R software. These data contain N = 3776 Grade eight stu-
dents (aged about eleven years) in n = 208 elementary schools in the Netherlands [79]. These
pupils were tested twice (with an interval of one year between grade seven and grade eight) on
their proficiency in Dutch language and arithmetics, where the goal was to investigate which

Fig 5. Empirical analysis of the power of the correlation test. AUC values of ROC curves with their confidence interval computed for different ρ,
number of subjects (n) and observations (N). Left panel for N = 600, n = 50, 60, 100. Right panel for N = 3000, n = 50, 100, 300.

doi:10.1371/journal.pone.0159649.g005
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characteristics of schools can account for the differences in the effectiveness of schools with
regard to pupils’ progress in language and arithmetics. Most of the previous analyses of this
dataset were concerned with investigating how the language test score depends on the pupil’s
intelligence, his family’s socio-economic status and on related class or school variables. By fit-
ting two independent (separate) models, [79] found that variables in Table 4 have a significant
effect on post-test scores (language post-test and arithmetic post-test). These variables are:
socio-economic status, intelligence score, age, gender and nationality. They also found a

Fig 6. Analysis of the power of the likelihood ratio test performed under EM-estimators.ROC curves with ρ 2 {0.1, 0.2, 0.3}.
N = 5000 observations, n = 300 subjects, 95% CI on AUC.

doi:10.1371/journal.pone.0159649.g006
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significant random slope related to the language pre-test and to the gender in the language
post-test model.

Based on these results from [79] and some of their data (n = 131 schools, N = 2287 pupils;
age and ethnicity are not present), we have fitted the bivariate linear mixed-effect model where
post-test scores are the response variables and covariates are the pre-test scores, socio-eco-
nomic status, intelligence score, gender and minority (a factor indicating if the pupil is a mem-
ber of a minority group). Random intercepts and random slopes related to pre-test scores are
integrated to the model on the school level in the configuration shown by the Table 5.

Table 6 contains estimated fixed effects and residual standard deviations of the model.

Table 4. Modeling of covariates on post-test achievement in language and arithmetic from [79].

Model Language (post) Arithmetic (post)

Language pre-test 0.567 -

Arithmetic pre-test - 0.413

Socio-economic status 0.143 0.132

Intelligence score 0.124 0.270

Age −0.069 −0.081

Gender (female) 0.187 −0.103

Ethnicity (foreign) n.s. −0.105

doi:10.1371/journal.pone.0159649.t004

Table 5. Model configuration.

Variables

Model parts Language (post) Arithmetic (post)

Fixed effects Language (pre) Arithmetic (pre)

Socio-eco. status Socio-eco. status

Intelligence score Intelligence score

Gender Gender

Minority Minority

Random effects (school level) 1 1

Language (pre) Arithmetic (pre)

doi:10.1371/journal.pone.0159649.t005

Table 6. Estimated fixed effects and residual standard deviations in the joint bivariate model fitted to school data.

Response variables

Language (post) Arithmetic (post)

Covariates Estimate p-value Estimate p-value

Intercept 4.690 −1.456

Language (pre) 0.795 0.000 - -

Arithmetic (pre) - - 0.807 0.000

Socio-eco. status 0.101 0.000 0.089 0.000

Intelligence score 0.474 0.000 0.810 0.000

Gender (female) 1.778 0.000 −0.522 0.003

Minority (yes) −0.302 0.589 −0.545 0.194

σ1 and σ2 5.356 4.066

doi:10.1371/journal.pone.0159649.t006
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The estimated covariance matrix Γ̂ of the random effects is:

Γ̂ ¼

15:15 �0:54 18:20 �0:27

�0:54 0:02 �0:65 0:01

18:20 �0:65 30:69 �0:48

�0:27 0:01 �0:48 0:01

0BBBB@
1CCCCA

The null hypothesis, H0, that the arithmetic post-test score and the language post-test score
are independent, is rejected with a p-value of 1.436 × 10−7. This result justifies a joint analysis
of post-scores conditionally on the covariates present in the model and is therefore a supple-
mentary information obtained from the data. The estimated correlation matrix of the random
effects is:

r̂ ¼

1:00 �1:00 0:84 �0:82

�1:00 1:00 �0:84 0:82

0:84 �0:84 1:00 �1:00

�0:82 0:82 �1:00 1:00

0BBBB@
1CCCCA

Table 6 shows that covariates which are significant in the independent models are also sig-
nificant in the joint model. The Minority covariate is neither significant in the joint model, nor

significant in the independent models. Γ̂ij and r̂ ij identify the item which is at the intersection

of the row i and the column j of the matrices Γ̂ and r̂, respectively. These matrices are filled
from the top to the bottom in the order of (Intercepty1, Slopey1, Intercepty2, Slopey2).

There is a clear inter-school variability with respect to the post-test scores (Γ̂11 ¼ 15:15 and

Γ̂33 ¼ 30:69). Everything else being equal, schools that have good scores in arithmetics also
have good scores in language (r̂31 ¼ 0:84). The schools in which the differential effect of the
pre-test score in arithmetics on the post-test score is strongly negative are in average above the
average post-test score in language (r̂41 ¼ �0:82); same as with the language pre-test score
(r̂32 ¼ �0:84). This confirms that the scores in language and in arithmetics vary in the same
direction in schools. The schools in which the differential effect of the pre-test score (in arith-
metics or language) on the post-test score is strongly negative are in average above the average
post score (r̂21 ¼ �1 and r̂43 ¼ �1), and vice versa. These schools have strived to bring the
level of all pupils above the average. In contrast, pupils with a good initial level maintain their
level without becoming excellent. The differential effect of the pre-test score has a very weak

variability (arithmetics score: Γ̂22 ¼ 0:02; language score: Γ̂44 ¼ 0:01) and this implies that the
pre-test score explains about 0.15% (in arithmetics) and 0.03% (in language) of inter-school
variability of post-test scores.

We have fitted the bivariate model without random slopes (with random intercept only) to
investigate if it fits more to the data than the model with random slopes, due to the weak vari-
ability of these random slopes. The results are presented in Table 7, where the estimated fixed
effects and their significance generally remain the same.

The estimated covariance matrix, related to results contained in Table 7 of random effects is

Ĝ ¼ 5:15 5:41

5:41 7:07

 !
ð42Þ

which indicates a correlation of r̂ ¼ 0:895 between the random marginal intercepts, confirm-
ing a strong positive correlation between post-test scores in arithmetics and language. With a
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p-value of 8.505 × 10−5, the likelihood ratio test indicates that the data are more compatible
with the model incorporating random intercepts and random slopes at a time.

Fixed effects seem very strong and do not significantly change between the independent and
bivariate models. In contrast, a posterior distribution of random effects changes significantly
between the independent model and the joint bivariate model. For example, we plot the joint
distribution of random effects conditional on the data concerning School 47 in the education
dataset under the independent model and the joint bivariate model. Fig 7a shows the joint pos-
terior distribution of random intercepts under the independent model whereas Fig 7b presents
the same posterior distribution under the joint bivariate model. A clear difference appears
between these two distributions. We notice the same difference between distributions of ran-
dom intercepts and slopes as shown in Fig 7c and 7d as well as the joint distribution of random
slopes in Fig 7e and 7f. The joint bivariate model seems to fit more to the present data and we
retain it for their analysis.

Application to malaria immune response data in Benin. The data come from a study
which was conducted in nine villages (Avamé centre, Gbédjougo, Houngo, Anavié, Dohinoko,
Gbétaga, Tori Cada Centre, Zébè and Zoungoudo) of Tori Bossito area (Southern Benin),
where P. falciparum is the most common species in the study area (95%) [80] from June 2007
to January 2010. The aim of this study was to evaluate the determinants of malaria incidence in
the first months of life of child in Benin. Details of the follow-up procedures have been pub-
lished elsewhere [81].

Data description. Mothers (n = 620) were enrolled at delivery and their newborns were
actively followed-up during the first year of life. One questionnaire was conducted to gather
information on women’s characteristics (age, parity, use of Intermittent Preventive Treatment
during pregnancy (IPTp) and bed net possession) and on the course of their current pregnancy.
Maternal peripheral blood as well as cord blood were collected into Vacutainer1 EDTA (Ethyl-
ene diaminetetraacetic acid) tubes. At birth, newborn’s weight and length were measured by
midwives and gestational age was estimated using the Ballard method [82].

During the follow-up of newborns, axillary temperature was measured weekly. Symptomatic
malaria cases, defined as fever (>37.5°C) with TBS and/or RDT positive, were treated with an
artemisinin-based combination therapy as recommended by the Benin National Malaria Con-
trol Program. Systematically, TBS were made every month to detect asymptomatic infections.
Every three months, venous blood was sampled to quantify the level of antibody against
malaria promised candidate vaccine antigens. The environmental risk of exposure to malaria
was modeled for each child, derived from a statistical predictive model based on climatic,

Table 7. Results of the model with random intercepts only.

Response variables

Language (post) Arithmetic (post)

Covariates Estimate p-value Estimate p-value

Intercept 4.698 −1.446

Language (pre) 0.789 0.000 - -

Arithmetic (pre) - - 0.789 0.000

Socio-eco. status 0.103 0.000 0.093 0.000

Intelligence score 0.480 0.000 0.809 0.000

Gender (female) 1.788 0.000 −0.526 0.002

Minority (yes) −0.391 0.489 −0.498 0.249

σ1 and σ2 5.384 4.091

doi:10.1371/journal.pone.0159649.t007
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entomological parameters, and characteristics of children’s immediate surroundings as
reported by [83].

Concerning the antibody quantification, two recombinant P. falciparum antigens were used
to perform IgG subclass (IgG1 and IgG3) antibody quantification by Enzyme-Linked Immuno-
Sorbent Assay (ELISA) standard methods developed for evaluating malaria vaccines by the
African Malaria Network Trust (AMANET [www.amanet148trust.org]). Protocol was
described in detail [84].

Data analysis. For our analysis, we use some of the data and we rename the proteins used
in the study described above, for confidentiality reasons (some important findings are yet to be
published). Thus, the proteins we use here, are named A1, A2, B and C, and are related to the
antigens IgG1 and IgG3 as mentioned above in the description of the study. A1 and A2 are dif-
ferent domains of the same protein A, and C and D are two different proteins. Information
contained in the multivariate longitudinal dataset of malaria are described in the Table 8,
where Y denotes a protein which is one of the following:

IgG1 A1; IgG3 A1; IgG1 A2; IgG3 A2; IgG1 B; IgG3 B; IgG1 C; IgG3 C ð43Þ

The aim of the analysis of these data is to evaluate the effect of the malaria infection on the
child’s immune (against malaria). Since the antigens which characterize the child’s immune
status interact together in the human body, we analyze the characteristics of the joint distribu-
tion of these antigens, conditional on the malaria infection and other factors of interest. The
dependent variables are then provided by conc.Y (Table 8) which describes the level of the pro-
tein Y in the children at 3, 6, 9, 12, 15 and 18 months. All other variables in the Table 8 are
covariates. We then have eight dependent variables which describe the longitudinal profile (in
the child) of the proteins listed in Eq (43).

In the models that we fit to these data, we specify one random intercept by child and one
random slope by child in the direction of the malaria infection. The illustration we do here is to
jointly analyze each of the 28 pairs of proteins, in order to investigate if some profiles of pro-
teins are independent, conditional on the configuration of the fitted model. After performing

Fig 7. Posterior distributions of random intercepts conditional on the data related to School 47 in the
education dataset. Left panels assume independence across the two dimensions while right panels assume
dependence. Top panels for the joint distribution of the random intercepts, middle panels for the joint distribution of
random intercept in first dimension and random slope in the second dimension, bottom panels for the joint distribution
of the random slopes.

doi:10.1371/journal.pone.0159649.g007

Table 8. Variables present in the analyzed dataset.

Variable Description

id Child ID

conc.Y concentration of Y

conc_CO.Y Measured concentration of Y in the umbilical cord blood

conc_M3.Y Predicted concentration of Y in the child’s peripheral blood at 3 months

ap Placental apposition

hb Hemoglobin level

inf_trim Number of malaria infections in the previous 3 months

pred_trim Quarterly average number of mosquitoes child is exposed to

nutri_trim Quarterly average nutrition scores

doi:10.1371/journal.pone.0159649.t008
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the bivariate correlation test on all 28 bivariate models, the obtained p-values, with a Bonfer-
roni correction, range from 4.16 × 10−33 to 0.932. The p-value 0.932 is the only one which is
not significant. This p-value corresponds to the pair of proteins (IgG3_A1, IgG1_B).

To investigate the general configuration of these proteins, in terms of correlations, we build
their hierarchical cluster tree using −log(p-value) as dissimilarity. This hierarchical cluster tree
is presented by the Fig 8.

The branch related to the IgG1 is different from the branch related to the IgG3. In other
words, IgG1_A1, IgG1_A2, IgG1_B and IgG1_C are on the same branch which is different
from the branch containing IgG3_A1, IgG3_A2, IgG3_B and IgG3_C (Fig 8). Relatively to

Fig 8. Hierarchical cluster tree onmalaria-related proteins.

doi:10.1371/journal.pone.0159649.g008
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both IgG1 and IgG3, A1 and A2 go together, and B and C also go together. These results are
biologically very consistent, since A1 and A2 are domains of the same protein, and B and C are
two different proteins. On the cluster (Fig 8), it also appears that the proteins IgG3_A1 and
IgG1_B which are not significantly correlated (according to our bivariate test) are distant. Sta-
tistically, the model which may be used to jointly analyze these 8 protein profiles is not proba-
bly the model which contains all the 27 significant correlations, avoiding overfitting problems.
Based on the results provided by the bivariate correlation test, it may be useful to perform a
regularization procedure in the fitting of the full eight-variate model.

Conclusion
In the context of the multivariate linear mixed-effects model, we have suggested the more gen-
eral expressions of the EM-based estimators than those used in the literature to analyze multi-
variate longitudinal data. These estimators fit the framework of the multivariate multilevel data
analysis which, obviously, englobes the multivariate longitudinal data analysis framework. We
also have built a likelihood ratio test based on these EM estimators to test the independence of
two dimensions of the model. Furthermore, the simulation studies have validated the power of
this test and have shown that this is an extremely sensitive test. In the context of longitudinal
data, it allows to detect a modest correlation signal with a very small sample (ρ = 0.3,
AUC = 0.81, with n = 60 subjects and N = 600 observations). In the simulation studies, the
empirical distribution of the likelihood ratio statistic fits the χ2(4). The asymptotic properties
of likelihood ratio statistics, under nonstandard conditions, have been shown by [85] and [86].
These works have been generalized by [87] to cover a large class of estimation problems which
allow sampling from non identically distributed random variables. The asymptotic distribution
of the LR statistic derived by [87] is a mixture of chi-squared distributions. In the context of
likelihood ratio tests for variance components in linear mixed-effects models, [88] used the
results of [87] to prove that the proposed mixture of chi-squared distributions is the actual
asymptotic distribution of such LR used as test statistics for null variance components with one
or two random effects. Based on these works, Further theoretical investigations may be done to
properly find out the asymptotic distribution of the likelihood ratio statistic in the case of this
bivariate correlation test. Finally, we have illustrated the usefulness of the test on two different
real-life data. The first dataset, which is of multivariate multilevel type, concerns the effects of
school and classroom characteristics on pupils’ progress in Dutch language and arithmetics,
where the scores in language and arithmetics are the two response variables which have been
considered. Our method has yielded results that are consistent both with information in exist-
ing publications and with a conceptual understanding of the phenomenon. On this dataset, we
have highlighted a joint effect between the scores in arithmetics and language within schools in
the Netherlands. The second dataset, which is of longitudinal multivariate type, concerns a
study of the effect of the malaria infection on the child’s immune response in Benin. By jointly
analyzing all the pairs of protein profiles of interest, we have plotted a hierarchical cluster tree
of these proteins, using the bivariate correlation test. Information contained in this hierarchical
cluster tree is consistent with the biological literature related to this issue.

The model as it is written is easily extendable to more dimensions despite a sparsity problem
in choosing the parameterization of the covariance matrix or the precision matrix. Probably we
could use this two-dimensional dependence test to structure a larger covariance matrix. The
bivariate correlation test can help to construct iteratively, using a stepwise procedure, a parsi-
monious joint model containing all the components of y. This stepwise procedure may consist
in adding to the constructing model, at each step, the significant correlation between two
dependent variables. Using a model selection strategy, the model which fits more to the data
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will be retained. It could possibly be advantageous to turn to graphical LASSO type approaches
to make a penalized estimation of this covariance (or precision) matrix. We could also resort to
the rapid optimization methods such as that implemented in the lme4 [76] package, given the
slow pace of the EM algorithm. It would be useful to assess the interest of this method com-
pared to some heuristics such as the one which consists in setting one marginal response vari-
able as a covariate of the other(s).
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