J. Pinheiro and D. Bates, Mixed-effects models in S and S-PLUS, 2006.
DOI : 10.1007/978-1-4419-0318-1

T. Snijders, Multilevel Analysis, 2011.
DOI : 10.1007/978-3-642-04898-2_387

URL : https://hal.archives-ouvertes.fr/hal-01495096

A. Gelman and J. Hill, Data analysis using regression and multilevel/hierarchical models, 2006.
DOI : 10.1017/CBO9780511790942

A. Zuur, E. Ieno, N. Walker, A. Saveliev, and G. Smith, Mixed effects models and extensions in ecology with R, 2009.
DOI : 10.1007/978-0-387-87458-6

A. Zellner, An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias, Journal of the American Statistical Association, vol.57, issue.298, pp.348-368, 1962.
DOI : 10.2307/1911287

K. Liang and S. Zeger, Longitudinal data analysis using generalized linear models, Biometrika, vol.73, issue.1, pp.13-22, 1986.
DOI : 10.1093/biomet/73.1.13

M. Lindstrom and D. Bates, Newton Raphson and EM algorithms for linear mixed-effects models for repeated-measures data, Journal of the American Statistical Association, vol.83, issue.404, pp.1014-1022, 1988.

S. Zeger, K. Liang, and P. Albert, Models for Longitudinal Data: A Generalized Estimating Equation Approach, Biometrics, vol.44, issue.4, p.3233245, 1988.
DOI : 10.2307/2531734

G. Molenberghs and G. Verbeke, Models for discrete longitudinal data, 2005.

G. Verbeke and G. Molenberghs, Linear Mixed Models for Longitudinal Data, 2009.
DOI : 10.1007/978-1-4612-2294-1_3

P. Diggle, P. Heagerty, K. Liang, and S. Zeger, Analysis of Longitudinal Data., Biometrics, vol.53, issue.2, 2013.
DOI : 10.2307/2533983

D. Bates, M. Maechler, B. Bolker, and S. Walker, lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. This is computer program (R package) The URL of the package is, 2014.

J. Pinheiro, D. Bates, S. Debroy, and D. Sarkar, nlme: linear and nonlinear mixed effects models. R package version 3.1?117, 2014.

R. Littell, G. Milliken, W. Stroup, R. Wolfinger, and O. Schabenberger, SAS system for mixed models Cary. Nc: sas institute, 1996.

S. Fieuws and G. Verbeke, Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles, Biometrics, vol.22, issue.2, pp.424-431, 2006.
DOI : 10.1111/j.1541-0420.2006.00507.x

N. Shock, . Greulich-rc, P. Costa, R. Andres, E. Lakatta et al., Normal human aging: The Baltimore longitudinal study of aging, 1984.

R. Thiébaut, H. Jacqmin-gadda, G. Chêne, C. Leport, and D. Commenges, Bivariate linear mixed models using SAS proc MIXED. Computer methods and programs in biomedicine, pp.249-256, 2002.

S. Subramanian, D. Kim, and I. Kawachi, Covariation in the socioeconomic determinants of self rated health and happiness: a multivariate multilevel analysis of individuals and communities in the USA, Journal of Epidemiology & Community Health, vol.59, issue.8, pp.664-669, 2005.
DOI : 10.1136/jech.2004.025742

A. Tseloni and C. Zarafonitou, Fear of Crime and Victimization: A Multivariate Multilevel Analysis of Competing Measurements, European Journal of Criminology, vol.5, issue.4, pp.387-409, 2008.
DOI : 10.1177/1477370808095123

J. Sy, J. Taylor, and W. Cumberland, A Stochastic Model for the Analysis of Bivariate Longitudinal AIDS Data, Biometrics, vol.53, issue.2, pp.542-555, 1997.
DOI : 10.2307/2533956

S. Fieuws, G. Verbeke, B. Maes, and Y. Vanrenterghem, Predicting renal graft failure using multivariate longitudinal profiles, Biostatistics, vol.9, issue.3, pp.419-431, 2008.
DOI : 10.1093/biostatistics/kxm041

R. Charnigo, R. Kryscio, M. Bardo, D. Lynam, and R. Zimmerman, Joint modeling of longitudinal data in multiple behavioral change. Evaluation & the health professions, pp.181-200, 2011.

X. Wang, Joint generalized models for multidimensional outcomes: A case study of neuroscience data from multimodalities, Biometrical Journal, vol.177, issue.2, pp.264-280, 2012.
DOI : 10.1002/bimj.201100041

C. Brombin, D. Serio, C. Rancoita, and P. , Joint modeling of HIV data in multicenter observational studies: A comparison among different approaches. Statistical methods in medical research, p.0962280214526192, 2014.

S. Bandyopadhyay, B. Ganguli, and A. Chatterjee, A review of multivariate longitudinal data analysis. Statistical methods in medical research, pp.299-330, 2011.

G. Verbeke, S. Fieuws, G. Molenberghs, and M. Davidian, The analysis of multivariate longitudinal data: A review. Statistical methods in medical research, pp.42-59, 2014.

A. Galecki, General class of covariance structures for two or more repeated factors in longitudinal data analysis, Communications in Statistics - Theory and Methods, vol.2, issue.11, pp.3105-3119, 1994.
DOI : 10.1002/9780470316436

O. Brien, L. Fitzmaurice, and G. , Analysis of longitudinal multiple-source binary data using generalized estimating equations, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.77, issue.1, pp.177-193, 2004.
DOI : 10.1198/016214502388618889

V. Carey and B. Rosner, Analysis of longitudinally observed irregularly timed multivariate outcomes: regression with focus on cross-component correlation, 1%3C21::AID-SIM639%3E3.0.CO, pp.21-312, 2001.
DOI : 10.1002/1097-0258(20010115)20:1<21::AID-SIM639>3.0.CO;2-5

M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Université Paris, vol.8, 1959.

R. Nelsen, An introduction to copulas, 1999.
DOI : 10.1007/978-1-4757-3076-0

P. Lambert and F. Vandenhende, A copula-based model for multivariate non-normal longitudinal data: analysis of a dose titration safety study on a new antidepressant, Statistics in Medicine, vol.88, issue.21, pp.3197-3217, 2002.
DOI : 10.1002/sim.1249

T. Macurdy, The use of time series processes to model the error structure of earnings in a longitudinal data analysis, Journal of Econometrics, vol.18, issue.1, pp.83-114, 1982.
DOI : 10.1016/0304-4076(82)90096-3

R. Tsay, Multivariate Time Series Analysis: With R and Financial Applications, 2013.

R. Johnson, D. Wichern, and P. Education, Applied Multivariate Statistical Analysis., Biometrics, vol.54, issue.3, 2007.
DOI : 10.2307/2533879

W. Tschacher and F. Ramseyer, Modeling psychotherapy process by time-series panel analysis (TSPA), Psychotherapy Research, vol.2, issue.4-5, pp.4-5469, 2009.
DOI : 10.1016/S0165-1781(02)00247-0

W. Tschacher, P. Zorn, and F. Ramseyer, Change Mechanisms of Schema-Centered Group Psychotherapy with Personality Disorder Patients, PLoS ONE, vol.25, issue.6, p.22745811, 2012.
DOI : 10.1371/journal.pone.0039687.t003

C. Horváth and J. Wieringa, Pooling data for the analysis of dynamic marketing systems, Statistica Neerlandica, vol.12, issue.2, pp.208-229, 2008.
DOI : 10.2307/2281644

K. Liang, S. Zeger, and B. Qaqish, Multivariate regression analyses for categorical data, Journal of the Royal Statistical Society Series B (Methodological), pp.3-40, 1992.

S. Zeger and K. Liang, Longitudinal Data Analysis for Discrete and Continuous Outcomes, Biometrics, vol.42, issue.1, pp.121-130, 1986.
DOI : 10.2307/2531248

R. Prentice and L. Zhao, Estimating Equations for Parameters in Means and Covariances of Multivariate Discrete and Continuous Responses, Biometrics, vol.47, issue.3, pp.825-839, 1991.
DOI : 10.2307/2532642

J. Rochon, Analyzing Bivariate Repeated Measures for Discrete and Continuous Outcome Variables, Biometrics, vol.52, issue.2, pp.740-750, 1996.
DOI : 10.2307/2532914

M. Crowder, On the use of a working correlation matrix in using generalised linear models for repeated measures, Biometrika, vol.82, issue.2, pp.407-410, 1995.
DOI : 10.1093/biomet/82.2.407

S. Gray and R. Brookmeyer, Estimating a Treatment Effect from Multidimensional Longitudinal Data, Biometrics, vol.54, issue.3, pp.976-988, 1998.
DOI : 10.2307/2533850

S. Gray and R. Brookmeyer, Multidimensional Longitudinal Data: Estimating a Treatment Effect from Continuous, Discrete, or Time-to-Event Response Variables, Journal of the American Statistical Association, vol.1, issue.450, pp.396-406, 2000.
DOI : 10.2307/2531248

H. Geys, G. Molenberghs, and L. Ryan, Pseudolikelihood Modeling of Multivariate Outcomes in Developmental Toxicology, Journal of the American Statistical Association, vol.26, issue.447, pp.734-745, 1999.
DOI : 10.2307/2529820

M. Zhang, A. Tsiatis, M. Davidian, K. Pieper, and K. Mahaffey, Inference on treatment effects from a randomized clinical trial in the presence of premature treatment discontinuation: the SYNERGY trial, Biostatistics, vol.12, issue.2, pp.258-269, 2011.
DOI : 10.1093/biostatistics/kxq054

J. Mcardle, Dynamic but Structural Equation Modeling of Repeated Measures Data, pp.561-614, 1988.
DOI : 10.1007/978-1-4613-0893-5_17

S. Duncan and T. Duncan, A multivariate latent growth curve analysis of adolescent substance use Structural Equation Modeling: A Multidisciplinary Journal, pp.323-347, 1080.

F. Oort, Three-mode models for multivariate longitudinal data, British Journal of Mathematical and Statistical Psychology, vol.54, issue.1, pp.49-78, 2001.
DOI : 10.1348/000711001159429

G. Hancock, W. Kuo, and F. Lawrence, An Illustration of Second-Order Latent Growth Models, Structural Equation Modeling: A Multidisciplinary Journal, vol.29, issue.3, pp.470-489, 2001.
DOI : 10.1037//0022-006X.59.1.38

S. Fieuws and G. Verbeke, Joint models for high-dimensional longitudinal data. Longitudinal data analysis, pp.367-391, 2009.

G. Reinsel, Estimation and Prediction in a Multivariate Random Effects Generalized Linear Model, Journal of the American Statistical Association, vol.74, issue.1, pp.406-414, 1984.
DOI : 10.1080/01621459.1984.10478064

R. Maccallum, C. Kim, W. Malarkey, and J. Kiecolt-glaser, Studying Multivariate Change Using Multilevel Models and Latent Curve Models, Multivariate Behavioral Research, vol.32, issue.3, pp.215-253, 1997.
DOI : 10.1207/s15327906mbr3203_1

H. Ribaudo and S. Thompson, The analysis of repeated multivariate binary quality of life data: a hierarchical model approach. Statistical methods in medical research, pp.69-83, 2002.

L. Beckett, D. Tancredi, and R. Wilson, Multivariate longitudinal models for complex change processes Statistics in medicine, pp.231-239, 2004.

X. An, Q. Yang, and P. Bentler, A latent factor linear mixed model for high-dimensional longitudinal data analysis, Statistics in Medicine, vol.86, issue.416, pp.4229-4239, 2013.
DOI : 10.1002/sim.5825

J. Schafer and R. Yucel, Computational Strategies for Multivariate Linear Mixed-Effects Models With Missing Values, Journal of Computational and Graphical Statistics, vol.11, issue.2, pp.437-457, 2002.
DOI : 10.1198/106186002760180608

A. Shah, N. Laird, and D. Schoenfeld, A Random-Effects Model for Multiple Characteristics with Possibly Missing Data, Journal of the American Statistical Association, vol.9, issue.438, pp.775-779, 1997.
DOI : 10.1080/01621459.1997.10474030

P. Bentler and D. Weeks, Linear structural equations with latent variables, Psychometrika, vol.45, issue.3, pp.289-308, 1980.
DOI : 10.1007/BF02293905

L. Bringmann, N. Vissers, M. Wichers, N. Geschwind, P. Kuppens et al., A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data, PLoS ONE, vol.21, issue.4, p.23593171, 2013.
DOI : 10.1371/journal.pone.0060188.s004

I. Funatogawa, T. Funatogawa, and Y. Ohashi, An autoregressive linear mixed effects model for the analysis of longitudinal data which show profiles approaching asymptotes Statistics in medicine, pp.2113-2130, 2007.

J. Hamilton, State-space models. Handbook of econometrics, pp.3039-3080, 1994.

T. Lodewyckx, F. Tuerlinckx, P. Kuppens, N. Allen, and L. Sheeber, A hierarchical state space approach to affective dynamics, Journal of Mathematical Psychology, vol.55, issue.1, pp.68-83, 2011.
DOI : 10.1016/j.jmp.2010.08.004

K. Gates and P. Molenaar, Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples, NeuroImage, vol.63, issue.1, pp.310-319, 2012.
DOI : 10.1016/j.neuroimage.2012.06.026

J. Rice and C. Wu, Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves, Biometrics, vol.50, issue.1, pp.253-259, 2001.
DOI : 10.1111/j.0006-341X.2001.00253.x

J. Faraway, Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models, 2005.

H. Wu and J. Zhang, Nonparametric regression methods for longitudinal data analysis: mixed-effects modeling approaches, 2006.

M. Davidian and D. Giltinan, Nonlinear models for repeated measurement data: An overview and update, Journal of Agricultural, Biological, and Environmental Statistics, vol.16, issue.4, pp.387-419, 2003.
DOI : 10.1198/1085711032697

R. Crouchley, D. Stott, J. Pritchard, and D. Grose, Multivariate Generalised Linear Mixed Models via sabreR (Sabre in R), 2010.

R. Team, R: A Language and Environment for Statistical Computing Available from: http:// www

S. Sturtz, U. Ligges, and A. Gelman, R2WinBUGS: A Package for Running WinBUGS from R, Journal of Statistical Software, vol.12, issue.3, 2005.

S. Fieuws and G. Verbeke, Joint modelling of multivariate longitudinal profiles: pitfalls of the random-effects approach, Statistics in Medicine, vol.16, issue.20, pp.3093-3104, 2004.
DOI : 10.1002/sim.1885

N. Laird, N. Lange, and D. Stram, Maximum Likelihood Computations with Repeated Measures: Application of the EM Algorithm, Journal of the American Statistical Association, vol.39, issue.397, pp.97-10510478395, 1987.
DOI : 10.1080/01621459.1987.10478395

D. Bates, M. Maechler, B. Bolker, and S. Walker, lme4: Linear mixed-effects models using Eigen and S4; 2013 Available from

S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, The Annals of Mathematical Statistics, vol.9, issue.1, pp.60-62, 1938.
DOI : 10.1214/aoms/1177732360

M. Bartlett, Properties of sufficiency and statistical tests, Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1937.

H. Brandsma and J. Knuver, Effects of school and classroom characteristics on pupil progress in language and arithmetic, International Journal of Educational Research, vol.13, issue.7, pp.777-788, 1989.
DOI : 10.1016/0883-0355(89)90028-1

A. Djènontin, S. Bio-bangana, N. Moiroux, M. Henry, O. Bousari et al., Culicidae diversity, malaria transmission and insecticide resistance alleles in malaria vectors in Ouidah-Kpomasse-Tori district from Benin (West Africa): A pre-intervention study, Parasites & Vectors, vol.3, issue.1, pp.83-93, 2010.
DOI : 10.1186/1756-3305-3-83

L. Port, A. Cottrell, G. Martin-prevel, Y. Migot-nabias, F. Cot et al., First malaria infections in a cohort of infants in Benin: biological, environmental and genetic determinants. Description of the study site, population methods and preliminary results, BMJ open, vol.2, issue.2, pp.342-352, 2012.

J. Ballard, J. Khoury, K. Wedig, L. Wang, B. Eilers-walsman et al., New Ballard Score, expanded to include extremely premature infants. The Journal of pediatrics, pp.417-423, 1991.

G. Cottrell, B. Kouwaye, C. Pierrat, L. Port, A. Bouraïma et al., Modeling the Influence of Local Environmental Factors on Malaria Transmission in Benin and Its Implications for Cohort Study, PLoS ONE, vol.6, issue.1, 2012.
DOI : 10.1371/journal.pone.0028812.t001

URL : https://hal.archives-ouvertes.fr/hal-01354235

D. Courtin, M. Oesterholt, H. Huismans, K. Kusi, J. Milet et al., The Quantity and Quality of African Children's IgG Responses to Merozoite Surface Antigens Reflect Protection against Plasmodium falciparum Malaria, PLoS ONE, vol.4, issue.10, 2009.
DOI : 10.1371/journal.pone.0007590.t004

D. Chant, On asymptotic tests of composite hypotheses in nonstandard conditions, Biometrika, vol.61, issue.2, pp.291-298, 1974.
DOI : 10.1093/biomet/61.2.291

S. Self and K. Liang, Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions, Journal of the American Statistical Association, vol.72, issue.398, pp.605-61010478472, 1987.
DOI : 10.1080/01621459.1987.10478472

H. Vu and S. Zhou, Generalization of likelihood ratio tests under nonstandard conditions, The Annals of Statistics, vol.25, issue.2, pp.897-916, 1997.
DOI : 10.1214/aos/1031833677

V. Giampaoli and J. Singer, Likelihood ratio tests for variance components in linear mixed models, Journal of Statistical Planning and Inference, vol.139, issue.4, pp.1435-1448, 2009.
DOI : 10.1016/j.jspi.2008.06.016