L. Mcedward, Ecology of marine invertebrate larvae, Boca Raton, 1995.

B. L. Bayne, Growth and delay of metamorphosis of the larvae of Mytilus edulis, pp.1-47, 1965.

A. R. Beaumont and M. D. Budd, Delayed growth of mussel (Mytilus edulis) and scallop (Pecten maximus) veligers at low temperatures, Marine Biology, vol.63, issue.2, pp.97-100, 1982.
DOI : 10.1007/BF00396996

A. L. Martel, R. Tremblay, N. Toupoint, F. Olivier, and B. Myrand, ): Potential Impact on Recruitment, Journal of Shellfish Research, vol.33, issue.2, pp.443-455, 2014.
DOI : 10.2983/035.033.0213

J. A. Pechenik, Delayed metamorphosis by larvae of benthic marine invertebrates: Does it occur? Is there a price to pay?, Ophelia, vol.29, issue.29, pp.63-94, 1990.
DOI : 10.1080/00785236.1990.10422025

N. Toupoint, larval supply and seston quality: effect on recruitment, Ecology, vol.93, issue.8, pp.1922-1934, 2012.
DOI : 10.1016/0022-0981(92)90205-O

J. Widdows, Physiological ecology of mussel larvae, Aquaculture, vol.94, issue.2-3, pp.147-163, 1991.
DOI : 10.1016/0044-8486(91)90115-N

J. C. Montgomery, A. G. Jeffs, S. D. Simpson, M. Meekan, and C. Tindle, Sound as an Orientation Cue for the Pelagic Larvae of Reef Fishes and Decapod Crustaceans, Adv. Mar. Biol, vol.51, pp.143-196, 2006.
DOI : 10.1016/S0065-2881(06)51003-X

S. D. Simpson, M. Meekan, A. G. Jeffs, J. C. Montgomery, and R. Mccauley, Settlement-stage coral reef fish prefer the higherfrequency invertebrate-generated audible component of reef noise. An. Behav, Scientific RepoRts | 6:33829 | DOI: 10.1038/srep33829 9, pp.1861-1868, 2008.

A. N. Radford and A. Ridley, Individuals in foraging groups may use vocal cues when assessing their need for anti-predator vigilance, Biology Letters, vol.3, issue.3, pp.249-252, 2007.
DOI : 10.1098/rsbl.2007.0110

M. J. Vermeij, K. L. Marhaver, C. M. Huijbers, I. Nagelkerken, and S. D. Simpson, Coral Larvae Move toward Reef Sounds, PLoS ONE, vol.76, issue.5, p.10660, 2010.
DOI : 10.1371/journal.pone.0010660.g003

J. A. Stanley, C. A. Radford, and A. G. Jeffs, Induction of settlement in crab megalopae by ambient underwater reef sound, Behavioral Ecology, vol.21, issue.1, pp.113-120, 2010.
DOI : 10.1093/beheco/arp159

J. A. Stanley, C. A. Radford, and A. G. Jeffs, Behavioural Response Thresholds in New Zealand Crab Megalopae to Ambient Underwater Sound, PLoS ONE, vol.72, issue.12, p.28572, 2011.
DOI : 10.1371/journal.pone.0028572.s002

S. L. Wilkens, J. A. Stanley, and A. G. Jeffs, ) larvae by vessel noise, Biofouling, vol.9, issue.1, pp.65-72, 2012.
DOI : 10.1017/S0025315400015216

D. Malakoff, Keeping Tabs on the Sea, Science, vol.328, issue.5985, pp.1498-1499, 2010.
DOI : 10.1126/science.328.5985.1498

J. I. Mcdonald, S. L. Wilkens, J. A. Stanley, and A. G. Jeffs, Vessel generator noise as a settlement cue for marine biofouling species, Biofouling, vol.80, issue.6, pp.741-749, 2014.
DOI : 10.1007/s002270000303

J. A. Stanley, S. L. Wilkens, and A. G. Jeffs, Fouling in your own nest: vessel noise increases biofouling, Biofouling, vol.80, issue.7, pp.837-844, 2014.
DOI : 10.1007/978-94-015-9956-6_21

M. G. Hadfield, Biofilms and Marine Invertebrate Larvae: What Bacteria Produce That Larvae Use to Choose Settlement Sites, Annual Review of Marine Science, vol.3, issue.1, pp.453-470, 2011.
DOI : 10.1146/annurev-marine-120709-142753

J. B. Waterbury, S. W. Watson, R. R. Guillard, and L. Brand, Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium, Nature, vol.35, issue.5694, pp.293-294, 1979.
DOI : 10.1146/annurev.mi.31.100177.001301

S. W. Chisholm, A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature, vol.334, issue.6180, pp.340-343, 1988.
DOI : 10.1038/334340a0

R. Iturriaga and B. G. Mitchell, Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean, Marine Ecology Progress Series, vol.28, pp.291-297, 1986.
DOI : 10.3354/meps028291

J. B. Waterbury, S. W. Watson, F. W. Valois, and D. G. Franks, Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus, Can. J. Fish. Aquat. Sci, vol.214, pp.71-120, 1986.

S. M. Gallager, J. B. Waterbury, and D. K. Stoecker, Efficient grazing and utilization of the marine cyanobacterium Synechococcus sp. by larvae of the bivalve Mercenaria mercenaria, Marine Biology, vol.10, issue.5, pp.251-259, 1994.
DOI : 10.1007/BF00349564

N. V. Zhukova, V. I. Kharlamenko, V. I. Svetashev, and I. A. Rodionov, Fatty acids as markers of bacterial symbionts of marine bivalve molluscs, Journal of Experimental Marine Biology and Ecology, vol.162, issue.2, pp.253-263, 1992.
DOI : 10.1016/0022-0981(92)90205-O

G. M. Wenz, Acoustic Ambient Noise in the Ocean: Spectra and Sources, The Journal of the Acoustical Society of America, vol.34, issue.12, pp.1936-1956, 1962.
DOI : 10.1121/1.1909155

F. Pernet, R. Tremblay, and E. Bourget, Settlement success, spatial pattern and behavior of mussel larvae Mytilus spp. in experimental 'downwelling' systems of varying velocity and turbulence, Marine Ecology Progress Series, vol.260, pp.125-140, 2003.
DOI : 10.3354/meps260125

L. S. Eyster and J. A. Pechenik, Attachment of Mytilus edulis L. larvae on algal and byssal filaments is enhanced by water agitation, Journal of Experimental Marine Biology and Ecology, vol.114, issue.2-3, pp.99-110, 1987.
DOI : 10.1016/0022-0981(88)90131-1

C. Carl, bychanging surface wettability and microtopography, Biofouling, vol.6, issue.2, pp.175-186, 2012.
DOI : 10.1007/s00027-005-0758-5

P. E. Gribben, A. G. Jeffs, R. De-nys, and P. Steinberg, Relative importance of natural cues and substrate morphology for settlement of the New Zealand Greenshell??? mussel, Perna canaliculus, Aquaculture, vol.319, issue.1-2, pp.240-246, 2011.
DOI : 10.1016/j.aquaculture.2011.06.026

B. L. Bayne, Primary and Secondary Settlement in Mytilus edulis L. (Mollusca), The Journal of Animal Ecology, vol.33, issue.3, pp.513-523, 1964.
DOI : 10.2307/2569

A. Alfaro, B. Copp, D. Appleton, S. Kelly, and A. G. Jeffs, Chemical cues promote settlement in larvae of the green-lipped mussel, Perna canaliculus, Aquaculture International, vol.183, issue.4, pp.405-412, 2006.
DOI : 10.1007/s10499-005-9041-y

A. R. Soares, B. A. Da-gama, A. P. Da-cunha, V. L. Teixeira, and R. C. Pereira, Induction of Attachment of the Mussel Perna perna by Natural Products from the Brown Seaweed Stypopodium zonale, Marine Biotechnology, vol.220, issue.2, pp.158-165, 2008.
DOI : 10.1007/s10126-007-9048-7

A. M. Ganesan, A. C. Alfaro, J. D. Brooks, and C. M. Higgins, The role of bacterial biofilms and exudates on the settlement of mussel (Perna canaliculus) larvae, Aquaculture, vol.306, issue.1-4, pp.388-392, 2010.
DOI : 10.1016/j.aquaculture.2010.05.007

A. C. Alfaro, Effect of water flow and oxygen concentration on early settlement of the New Zealand green-lipped mussel, Perna canaliculus, Aquaculture, vol.246, issue.1-4, pp.285-294, 2005.
DOI : 10.1016/j.aquaculture.2005.02.049

C. A. Radford, A. G. Jeffs, C. T. Tindle, and J. C. Montgomery, Temporal patterns in ambient noise of biological origin from a shallow water temperate reef, Oecologia, vol.147, issue.4, pp.921-929, 2008.
DOI : 10.1007/s00442-008-1041-y

S. D. Simpson, A. N. Radford, E. J. Tickle, M. G. Meekan, and A. G. Jeffs, Adaptive Avoidance of Reef Noise, PLoS ONE, vol.58, issue.5, p.16625, 2011.
DOI : 10.1371/journal.pone.0016625.g002

R. B. Emlet and S. S. Sadro, Linking stages of life history: How larval quality translates into juvenile performance for an intertidal barnacle (Balanus glandula), Integrative and Comparative Biology, vol.46, issue.3, pp.334-346, 2006.
DOI : 10.1093/icb/icj023

L. A. Gosselin and R. Rehak, Initial juvenile size and environmental severity: influence of predation and wave exposure on hatching size in Nucella ostrina, Marine Ecology Progress Series, vol.339, pp.143-155, 2007.
DOI : 10.3354/meps339143

L. R. Mcedward and P. Qian, Effects of the duration and timing of starvation during larval life on the metamorphosis and initial juvenile size of the polychaete Hydroides elegans (Haswell), Journal of Experimental Marine Biology and Ecology, vol.261, issue.2, pp.185-197, 2001.
DOI : 10.1016/S0022-0981(01)00272-6

A. L. Moran, Size and Performance of Juvenile Marine Invertebrates: Potential Contrasts Between Intertidal and Subtidal Benthic Habitats, American Zoologist, vol.39, issue.2, pp.304-312, 1999.
DOI : 10.1093/icb/39.2.304

N. E. Philipps and S. D. Gaines, Spatial and temporal variability in size at settlement of intertidal mytilid mussels from around Pt. Conception, California, Invertebrate Reproduction & Development, vol.2, issue.1-3, pp.171-177, 2002.
DOI : 10.1086/282838

L. A. Gosselin and P. Qian, Juvenile mortality in benthic marine invertebrates, Marine Ecology Progress Series, vol.146, pp.265-282, 1997.
DOI : 10.3354/meps146265

H. L. Hunt and R. E. Scheibling, Role of early post-settlement mortality in recruitment of benthic marine invertebrates, Marine Ecology Progress Series, vol.155, pp.269-301, 1997.
DOI : 10.3354/meps155269

B. T. Jenewein and L. A. Gosselin, Ontogenetic shift in stress tolerance thresholds of Mytilus trossulus: effects of desiccation and heat on juvenile mortality, Marine Ecology Progress Series, vol.481, pp.147-159, 2013.
DOI : 10.3354/meps10221

P. Soudant, Y. Marty, J. Moal, H. Masski, and J. Samain, Fatty acid composition of polar lipid classes during larval development of scallop Pecten maximus (L.), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.121, issue.3, pp.279-288, 1998.
DOI : 10.1016/S1095-6433(98)10130-7

G. Barnathan, Non-methylene-interrupted fatty acids from marine invertebrates: Occurrence, characterization and biological properties, Biochimie, vol.91, issue.6, pp.671-678, 2009.
DOI : 10.1016/j.biochi.2009.03.020

F. Da-costa, R. Robert, C. Quéré, G. H. Wikfors, and P. Soudant, Essential Fatty Acid Assimilation and Synthesis in Larvae of the Bivalve Crassostrea gigas, Lipids, vol.233, issue.417, pp.503-511, 2015.
DOI : 10.1007/s11745-015-4006-z

N. V. Zhukova, Biosynthesis of non-methylene-interrupted dienoic fatty acids from [14C]acetate in molluscs, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.878, issue.1, pp.131-133, 1986.
DOI : 10.1016/0005-2760(86)90351-6

C. Grob, M. Hartmann, M. V. Zubkov, and D. J. Scanlan, Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean, Environmental Microbiology, vol.9, issue.12, pp.3266-3274, 2011.
DOI : 10.1111/j.1462-2920.2011.02586.x

A. R. Kirkham, A global perspective on marine photosynthetic picoeukaryote community structure, The ISME Journal, vol.10, issue.5, pp.922-936, 2013.
DOI : 10.1038/nature07236

URL : https://hal.archives-ouvertes.fr/hal-00848701

T. L. Richardson and G. A. Jackson, Small Phytoplankton and Carbon Export from the Surface Ocean, Science, vol.315, issue.5813, pp.838-840, 2007.
DOI : 10.1126/science.1133471

E. Agirbas, Temporal changes in total and size-fractioned chlorophyll-a in surface waters of three provinces in the Atlantic Ocean (September to November) between 2003 and 2010, Journal of Marine Systems, vol.150, pp.56-65, 2003.
DOI : 10.1016/j.jmarsys.2015.05.008

J. L. Pinckney, Phytoplankton community structure and depth distribution changes in the Cariaco Basin between 1996 and 2010. Deep Sea Research Part I: Oceanographic Research Papers, pp.27-37, 2015.

P. Flombaum, Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus, Proceedings of the National Academy of Sciences, vol.110, issue.24, pp.9824-9829, 2013.
DOI : 10.1073/pnas.1307701110

L. C. Smith and S. Stephenson, New Trans-Arctic shipping routes navigable by midcentury, Proceedings of the National Academy of Sciences, vol.110, issue.13, pp.1191-1195, 2013.
DOI : 10.1073/pnas.1214212110

R. Tremblay, Physiological and biochemical indicators of mussel seed quality in relation to temperatures, Aquatic Living Resources, vol.24, issue.3, pp.273-282, 2011.
DOI : 10.1051/alr/2011113

S. Bassim, A. Tanguy, B. Genard, D. Moraga, and R. Tremblay, Identification of Mytilus edulis genetic regulators during early development, Gene, vol.551, issue.1, pp.65-78, 2014.
DOI : 10.1016/j.gene.2014.08.042

URL : https://hal.archives-ouvertes.fr/hal-01103881

R. R. Guillard, in Culture of marine invertebrate animals eds W, pp.29-60, 1975.

J. J. Kamphorst, J. Fan, W. Lu, E. White, and J. D. Rabinowitz, Liquid Chromatography???High Resolution Mass Spectrometry Analysis of Fatty Acid Metabolism, Analytical Chemistry, vol.83, issue.23, pp.9114-9122, 2011.
DOI : 10.1021/ac202220b

A. Leblanc, Determination of isotopic labeling of proteins by precursor ion scanning liquid chromatography/tandem mass spectrometry of derivatized amino acids applied to nuclear magnetic resonance studies, Rapid Communications in Mass Spectrometry, vol.826, issue.10, pp.1165-1174, 2012.
DOI : 10.1002/rcm.6204

J. Folch, M. Lees, and G. H. Sloane-stanlez, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem, vol.226, pp.497-509, 1957.

Y. Marty, F. Delaunay, J. Moal, and J. Samain, Changes in the fatty acid composition of Pecten maximus (L.) during larval development, Journal of Experimental Marine Biology and Ecology, vol.163, issue.2, pp.221-234, 1992.
DOI : 10.1016/0022-0981(92)90051-B

K. Schuhmann, Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes, Journal of Mass Spectrometry, vol.1217, issue.1, pp.96-104, 2012.
DOI : 10.1002/jms.2031

M. Anderson, R. N. Gorley, K. R. Clarke, and . Plymouth, Primer-E; 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods, 2008.