
HAL Id: hal-01379025
https://hal.sorbonne-universite.fr/hal-01379025

Submitted on 11 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Microstrain-level measurement of third-order elastic
constants applying dynamic acousto-elastic testing

Guillaume Renaud, Maryline Talmant, Guillaume Marrelec

To cite this version:
Guillaume Renaud, Maryline Talmant, Guillaume Marrelec. Microstrain-level measurement of third-
order elastic constants applying dynamic acousto-elastic testing. Journal of Applied Physics, 2016,
120 (13), pp.135102. �10.1063/1.4963829�. �hal-01379025�

https://hal.sorbonne-universite.fr/hal-01379025
https://hal.archives-ouvertes.fr


Microstrain-level measurement of third-order elastic constants applying dynamic
acousto-elastic testing
Guillaume Renaud, Maryline Talmant, and Guillaume Marrelec 
 
Citation: Journal of Applied Physics 120, 135102 (2016); doi: 10.1063/1.4963829 
View online: http://dx.doi.org/10.1063/1.4963829 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/120/13?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect 
J. Acoust. Soc. Am. 127, 2759 (2010); 10.1121/1.3372624 
 
Determination of third order elastic constants in a complex solid applying coda wave interferometry 
Appl. Phys. Lett. 94, 011904 (2009); 10.1063/1.3064129 
 
AN ULTRASONIC ANGLE BEAM METHOD FOR DETERMINING THIRD ORDER ELASTIC CONSTANTS VIA
ACOUSTOELASTICITY MEASUREMENTS 
AIP Conf. Proc. 975, 1207 (2008); 10.1063/1.2902570 
 
Laser ultrasonic determination of the elastic constants of damaged propellant 
AIP Conf. Proc. 615, 1392 (2002); 10.1063/1.1472957 
 
Determination of the higher-order elastic compliance constants of metals from measurements of the dependence
of ultrasound velocity on stress 
J. Acoust. Soc. Am. 101, 2111 (1997); 10.1121/1.418142 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  134.157.80.70 On: Thu, 06 Oct 2016

07:40:38

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1076526789/x01/AIP-PT/JAP_ArticleDL_092816/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Guillaume+Renaud&option1=author
http://scitation.aip.org/search?value1=Maryline+Talmant&option1=author
http://scitation.aip.org/search?value1=Guillaume+Marrelec&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4963829
http://scitation.aip.org/content/aip/journal/jap/120/13?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/127/5/10.1121/1.3372624?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/94/1/10.1063/1.3064129?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2902570?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2902570?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1472957?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/101/4/10.1121/1.418142?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/101/4/10.1121/1.418142?ver=pdfcov


Microstrain-level measurement of third-order elastic constants applying
dynamic acousto-elastic testing

Guillaume Renaud,a) Maryline Talmant, and Guillaume Marrelec
Sorbonne Universit�es, UPMC Univ Paris 06, CNRS UMR 7371, INSERM UMR S 1146, Laboratoire
d’Imagerie Biom�edicale, 15 rue de l’�ecole de m�edecine, 75006 Paris, France

(Received 11 June 2016; accepted 18 September 2016; published online 3 October 2016)

The nonlinear elasticity of solids at the microstrain level has been recently studied by applying

dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments

but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied

strain ranging from 10�7 to 10�5 and produced by a stationary elastic wave. In conventional quasi-

static acousto-elastic experiments, the strain is applied in a quasi-static manner; it exceeds 10�4 and

can reach 10�2. In this work, we apply dynamic acousto-elastic testing to measure the third-order elas-

tic constants of two isotropic materials: polymethyl methacrylate and dry Berea sandstone. The peak

amplitude of the dynamic applied strain is 8 � 10�6. The method is shown to be particularly suitable

for materials exhibiting large elastic nonlinearity like sandstones, since the measurement is performed

in the domain of validity of the third-order hyperelastic model. In contrast, conventional quasi-static

acousto-elastic experiments in such materials are often performed outside the domain of validity of the

third-order hyperelastic model and the stress-dependence of the ultrasonic wave-speed must be extrapo-

lated at zero stress, leading to approximate values of the third-order elastic constants. The uncertainty

of the evaluation of the third-order elastic constants is assessed by repeating multiple times the meas-

urements and with Monte-Carlo simulations. The obtained values of the Murnaghan third-order elastic

constants are l¼�73 GPa 6 9%, m¼�34 GPa 6 9%, and n¼�61 GPa 6 10% for polymethyl meth-

acrylate, and l¼�17 000 GPa 6 20%, m¼�11 000 GPa 6 10%, and n¼�30 000 GPa 6 20% for dry

Berea sandstone. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963829]

I. INTRODUCTION

The third-order elastic constants (TOECs) evaluate the

first-order deviation from linear elasticity of solid materials.1–3

The measurement of the TOECs is of interest for the valida-

tion of models describing the thermo-elastic behavior of crys-

tals and phonon-phonon interactions.1,2 Prior-knowledge of

the TOECs for a given material was proposed to be used for

the assessment of internal stress in metals4,5 and in rocks.6

Several methods have been proposed to measure the TOECs:

ultrasonic harmonic generation of a single finite amplitude

wave and ultrasonic two-wave nonlinear mixing,7 shock wave

compression,8,9 and stress-dependence of ultrasonic wave-

speed (or acousto-elasticity).10 Methods based on the mea-

surement of the acousto-elastic effect have been used the most

to determine the complete set of independent TOECs. The

task is rather straightforward in isotropic materials (3 indepen-

dent TOECs)11 but becomes arduous in anisotropic materials

(e.g., cubic crystals have 6 independent TOECs12 and ortho-

rhombic crystals have 20 independent TOECs13). The reason

why acousto-elastic methods were used the most comes likely

from the fact that the observed phenomenon (stress-depen-

dence of ultrasonic wave-speed) is more easily measured. The

maximum applied stress (typically hydrostatic or uniaxial)

can be adapted to the sensitivity of the technique that

monitors the change of wave-speed (as long as the stress does

not induce plastic deformation). Conventional acousto-elastic

experiments are quasi-static, the applied stress is varied step

by step, and ultrasonic wave-speed is measured for each value

of the applied stress.11,12 While early conventional quasi-

static acousto-elastic measurements employed a static loading

up to 1 GPa,11,14,15 recent studies have used less than

10 MPa.16 The method to monitor the change of wave-speed

induced by the quasi-static loading can be ultrasonic (propa-

gating short burst14 or resonance technique17) or hybrid opti-

cal and ultrasonic (diffraction of light by standing elastic

wave13 or Brillouin spectroscopy18).

Perhaps surprisingly, literature from the 1980s reports

very little work on the measurement of the complete set of

TOECs in solids. Recent theoretical work on the ab initio cal-

culation of TOECs refers to the measurements performed in

the 1960s or 1970s.19 While it is generally accepted that the

TOECs are difficult to measure experimentally,19 very little

work has been dedicated to the improvement of the accuracy

and precision of the acousto-elastic measurement of the

TOECs in the last three decades. However, significant work

was published in the past three decades on the development of

ways to measure the acousto-elastic effect in solids, without

the objective of evaluating the complete set of TOECs though.

The quasi-static applied stress was proposed to be replaced

with a slowly varying loading.20,21 Techniques relying on the

interaction between two bulk elastic waves22 or surface

waves23,24 were also studied.

Dynamic Acousto-Elastic Testing (DAET)25–29 belongs to

this last family of methods. It is the dynamic analog of a con-

ventional quasi-static acousto-elastic measurement. However,a)guillaume.renaud@upmc.fr
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there exist differences between the DAET and the conven-

tional approach to measure the acousto-elastic effect. First,

the applied loading is not quasi-static but induced by a sta-

tionary elastic wave. In a typical lab measurement, the sta-

tionary elastic wave has a frequency of a few kHz. This

means that the elastic constants at stake are all adiabatic

elastic constants, unlike a quasi-static acousto-elastic mea-

surement where both adiabatic and isothermal elastic con-

stants are involved.10 Second, it can be applied at low

vibrational strain, typically 10–6, while conventional quasi-

static acousto-elastic measurements operate with an applied

strain exceeding 10�4. Finally DAET explores the dynamic

elastic behavior about the equilibrium state of the material,

i.e., both tensile and compressive behaviors are investigated,

while quasi-static experiments apply a compressive stress

only (or tensile stress only). Although DAET was applied to

the investigation of nonlinear elasticity in various media, it

was not used to measure the complete set of TOECs of a

given material.

In this study, we applied DAET to the measurement of

the three independent TOECs of two isotropic materials

(polymethyl methacrylate (PMMA) and dry Berea sand-

stone) at a low strain level, namely, 8 � 10�6. The choice

of these two materials was motivated by the fact that their

nonlinear elastic behaviors differ quantitatively and qualita-

tively. PMMA is a standard polymer material exhibiting

small and simple elastic nonlinearity; it is useful as a refer-

ence material in order to validate the experimental method.

Berea sandstone is a consolidated granular material with

high elastic nonlinearity that was widely studied by geo-

scientists. To our knowledge, Winkler and McGowan16

reported the conventional quasi-static acousto-elastic meas-

urements in PMMA and Berea sandstone performed with

the smallest applied strain, namely, of order 10�4 (i.e., an

applied stress of a few MPa). Therefore, we compared their

results to those obtained in this study applying dynamic

acousto-elastic testing.

After recalling the principles of dynamic acousto-elastic

testing in Section II A, the relations between the change of

ultrasonic wave-speed and the TOECs are given in Section

II B. Then, the experiments are described in Section II C.

Section II D is dedicated to the estimation of the TOECs and

their uncertainty. In Section III, we compare our results to

the literature and discuss different causes that may explain

the discrepancies observed between DAET and conventional

quasi-static acousto-elastic measurements.

II. MEASUREMENT OF THIRD-ORDER ELASTIC
CONSTANTS (TOECs) APPLYING DYNAMIC
ACOUSTO-ELASTIC TESTING

A. Principles of dynamic acousto-elastic testing

A detailed description of the technique can be found in

Refs. 30 and 31. We recall here only what is essential for

the understanding of this study. In a lab experiment, the

sample is excited at a frequency corresponding to a low-

order compressional resonance mode (typically a few kHz).

The dynamic change of elasticity induced by this stationary

elastic wave is measured by applying simultaneously a

sequence of ultrasonic short bursts (with a typical center fre-

quency of 1 MHz).31 The geometry of the sample and the

position of the ultrasound transducers that transmit and

receive the ultrasonic pulses are selected so that the strain

field (produced by the stationary elastic wave) traversed by

the ultrasonic pulses is quasi-homogeneous and quasi-static

with regard to the ultrasonic travel time in the sample. Each

ultrasonic pulse experiences a different strain level, and the

large number of ultrasonic pulses in the sequence (1000)

provides a dense sampling of the relation between the ultra-

sonic wave-speed and applied strain. The change of wave-

speed is deduced from the change of travel time. The latter

is precisely determined with a method based on the cross-

correlation function between a given ultrasonic pulse of the

sequence and the very first ultrasonic pulse that serves as a

reference (for more details, see for instance Ref. 31). The

strain value associated with each ultrasonic pulse is a spatial

and temporal average of the actual strain seen by the ultra-

sonic pulse during its propagation through the sample.30

Contrary to conventional quasi-static measurements of the

acousto-elastic effect,16 we do not glue the ultrasonic trans-

ducers on the sample, the transducers are placed a few milli-

meters away from the sample, and coupling is ensured with

an ultrasound transmission gel. The changes in the ultra-

sonic path length in the coupling gel due to the deformation

of the sample (while ultrasound transducers are immobile)

must be corrected.30 For porous materials like Berea sand-

stone, a thin layer of nail polish is applied to the contact

area so that the gel does not penetrate by capillary action. In

this work, a shear ultrasonic wave with vertical polarisation

is generated and received without shear ultrasound trans-

ducers and without direct contact with the sample. It relies

on the refraction of a compressional ultrasonic wave gener-

ated by a compressional ultrasound transducer (Figure 1).

Details on the signal processing and the choice of the inci-

dent angle are addressed in Appendix A.

B. Relation between the change of ultrasonic
wave-speed induced by a uniaxial loading
and third-order elastic constants (TOECs)
for an initially isotropic medium

Under the approximation of a third-order hyperelastic

model (based on the assumption that the strain energy den-

sity function is a third-order polynomial), there are three

independent TOECs for an isotropic elastic material. We use

here the Murnaghan third-order elastic constants l, m, and n.

The equations in the case of a uniaxial loading along the

y-dimension (Figure 1) and the arbitrary angle between the

loading direction and the direction of ultrasonic propagation

are recalled, for the velocity of a compressional wave

(P-wave) VP and a shear wave with polarisation in the (x, y)

plane (SV-wave) VSV
32

q0V2
P ¼ kþ 2lð Þ þ �yy

kþ lð Þ

�
sin hPð Þ2 2k2 þ 9klþ 6l2

� �

� cos hPð Þ2k kþ 2lð Þ þ 2ll

þ 4 sin hPð Þ2 kþ lð Þ � 2 cos hPð Þ2k
� �

m

�
; (1)
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q0V2
SV ¼ lþ �yy

kþ lð Þ 2 l kþ lð Þ þ lmþ k
4

n

� �
: (2)

VP and VSV are natural velocities, i.e., the propagation dis-

tance in the undeformed state divided by the propagation time.10

The subscript 0 means at zero applied strain. q0 is the mass den-

sity. k and l are Lam�e second order elastic constants. hP is the

refraction angle for the compressional wave in the sample deter-

mined by Snell’s law; sinðhPÞ ¼ sinðhgelÞVP0
=Vgel, where hgel

and Vgel are the incidence angle and the compressional wave-

speed in the coupling gel. �yy is the strain experienced by an ultra-

sonic pulse during its propagation in the sample. The derivation

of these equations assumes that the applied stress is uniform and

static.10 We apply these equations to DAET since the applied

stress is quasi-static and quasi-uniform.

We shall later in this manuscript measure the first-order

derivative of the relative variation of wave-speeds VP and

VSV, i.e., DVP

VP0

¼ VP�VP0

VP0

and DVSV

VSV0

¼ VSV�VSV0

VSV0

. From Equations

(1) and (2), one obtains

@

@�yy

DVP

VP0

� 	
¼ 1

2 kþ 2lð Þ kþ lð Þ

�
sinhPð Þ2 2k2þ 9klþ 6l2

� �

� coshPð Þ2k kþ 2lð Þ þ 2ll

þ 4 sinhPð Þ2 kþ lð Þ � 2 coshPð Þ2k
� �

m

�
; (3)

@

@�yy

DVSV

VSV0

� 	
¼ 1

2l kþ lð Þ 2 l kþ lð Þ þ lmþ k
4

n

� �
: (4)

Three types of measurements are required to retrieve the

three independent TOECs so that a system of three linear

equations with three unknowns (the three TOECs, i.e., l, m
and n) can be solved. Thus, we performed DAET measure-

ments in three configurations (Figure 1):

• Normal incidence (direction of ultrasonic propagation is nor-

mal to the axis of loading, hgel¼ 0): only a compressional

wave is created in the sample (hP¼ 0); Equation (3) is used.
• Oblique incidence (direction of ultrasonic propagation is

oblique to the axis of loading, hgel¼ 25�): the receiving

ultrasound transducer is positioned to record the compres-

sional wave refracted in the sample with angle hP;

Equation (3) is used.
• Oblique incidence (direction of ultrasonic propagation is

oblique to the axis of loading, hgel¼ 25�): the receiving

ultrasound transducer is positioned to record the vertically

polarized shear wave refracted in the sample with angle

hSV; Equation (4) is used.

C. Experiments

The measurements were performed with cylindrical

samples of two materials: PMMA and room-dry Berea

FIG. 1. Experimental setup. (a) Experimental configuration for the first type of measurement with normal incidence. (b) Experimental configuration for the sec-

ond and third types of measurements with oblique incidence. hprobe is the vertical distance between the clamped end of the sample and the entering point of the

ultrasonic beam in the sample.
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sandstone (Cleveland quarry near Birmingham, OH, USA,

gray sandstone quarried approximately 20 ft from the bottom

of the quarry, in the lower formation of the west side of the

quarry). During the experiments, the room temperature was

close to 20 �C and the relative humidity varied between 50%

and 80%. Prior to DAET experiments, bulk compressional

and shear wave-speeds were measured with a dedicated

setup. The characteristics of the samples are summarized in

Table I. We measured the bulk compressional wave-speed in

the transmission coupling gel Vgel¼ 1620 m/s 6 2.5%. The

second order elastic constants k and l were calculated from

the measurements of the mass density q0, the bulk compres-

sional wave-speed VP0
, and the bulk shear wave-speed VS0

as

l ¼ q0V2
S0

and k ¼ q0ðV2
P0
� 2V2

S0
Þ.

In order to quantify the impact of the variability due to the

positioning of the ultrasound transducers on the estimation of

the TOECs, the measurements were repeated multiple times

with systematic removal and repositioning of the two ultra-

sound transducers. Each type of measurement was repeated 12

times for Berea sandstone and 9 times for PMMA, during 3

different days. By doing so, we aimed to measure the TOECs

with evaluation of the uncertainty of the estimates, including

the effect of the reproducibility of the measurements. Figures 2

and 3 show typical measurements in PMMA and Berea sand-

stone, respectively. The theory (Equations (3) and (4)) predicts

a linear relation between the relative change of wave-speed

and the applied strain. Therefore, the first-order derivative of

the relation between the relative change of wave-speed

( @
@�yy

DVP=VP0
Þ

�
or @

@�yy
DVSV=VSV0

Þ
�

) and the axial strain (�yy)

was determined by applying a linear regression to the 1000

data points. Each data point was obtained from the analysis of

a single ultrasonic pulse that experienced a given strain level.

In PMMA, a linear function fitted the experimental data very

well (Figure 2). In Berea sandstone, the relation between the

relative change of wave-speed and the loading strain �yy was

more complex (Figure 3), as hysteresis and a DC offset were

observed. Previous work26,27,31,33 showed that the hysteresis

and the DC offset observed in rocks depend on the strain

amplitude and frequency of the dynamic loading. However,

the first-order derivative of the relation between the relative

TABLE I. Measured geometry and physical properties of the samples.

Material PMMA Berea sandstone

Diameter (mm) 30 25

Length (mm) 200 150

Mass density q0 (kg/m3) 1172 6 1% 2152 6 1%

Permeability (mD) 100–200

Bulk compressional wave-speed VP0
(m/s) 2730 6 1% 3090 6 2.5%

Bulk shear wave-speed VS0
(m/s) 1385 6 1% 1810 6 2.5%

Frequency of resonance mode (Hz) 2794 4610

FIG. 2. Typical measurements in PMMA: relative change of ultrasonic

wave-speed as a function of the axial loading strain (�yy). Blue circles indi-

cate decreasing strain while red crosses indicate increasing strain. The black

solid lines show the result of the linear regression.

FIG. 3. Typical measurements in Berea sandstone: relative change of ultra-

sonic wave-speed as a function of the axial loading strain (�yy). Blue circles

indicate decreasing strain while red crosses indicate increasing strain. The

black solid lines show the result of the linear regression.
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change of the wave-speed and the loading strain (i.e., the mean

slope in Figures 2 and 3) shows virtually no sensitivity to the

strain amplitude and frequency. Therefore, we propose to

model this feature of the nonlinear elastic behavior of Berea

sandstone by applying the classical theory of nonlinear elastic-

ity involving the TOECs.

D. Estimation of the third-order elastic constants
and uncertainty

Measurements were repeated 12 times for Berea sand-

stone and 9 times for PMMA; therefore, the TOECs are esti-

mated by applying overdetermined linear regression (see for

instance Refs. 34 and 35). The relation between the observa-

tions, the model, and the three unknown parameters can be

written in the form of a matrix product y¼Axþ dþ e, where

A is a 3N� 3 matrix, and y, x, d, and e are 3N-dimensional

vectors. N is the number of repetition of the measurement,

N¼ 9 for PMMA and N¼ 12 for Berea sandstone. y contains

the observations while x is a column vector containing the

three unknown parameters (i.e., the third-order elastic con-

stants). The vector e contains the errors on the measured val-

ues y. A and d are constructed with coefficients that are

determined by the model, and they link the observations to

the three unknown TOECs (Equations (3) and (4))

@

@�yy

DVP

VP0

� 	




hgel¼0

�

i¼1

..

.

@

@�yy

DVP

VP0

� 	




hgel¼0

�

i¼N

@

@�yy

DVP

VP0

� 	




hgel¼25

�

i¼1

..

.

@

@�yy

DVP

VP0

� 	




hgel¼25

�

i¼N

@

@�yy

DVSV

VSV0

� 	




hgel¼25

�

i¼1

..

.

@

@�yy

DVSV

VSV0

� 	




hgel¼25

�

i¼N

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

a1 b1 0

..

.

a1 b1 0

a2 b2 0

..

.

a2 b2 0

0 b3 c3

..

.

0 b3 c3

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

l
m
n

0
@

1
Aþ

d1

..

.

d1

d2

..

.

d2

d3

..

.

d3

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

þ
e1

..

.

e3N

0
B@

1
CA: (5)

The coefficients a1, b1, d1, a2, b2, d2, b3, c3, and d3 are given by

a1 ¼
l

kþ 2lð Þ kþ lð Þ ;

b1 ¼ �
k

kþ 2lð Þ kþ lð Þ ;

d1 ¼ �
k

2 kþ lð Þ ;

a2 ¼
l

kþ 2lð Þ kþ lð Þ ;

b2 ¼
2 sin hPð Þ2 kþ lð Þ � cos hPð Þ2k

kþ 2lð Þ kþ lð Þ ;

d2 ¼
sin hPð Þ2 2k2 þ 9klþ 6l2

� �
� cos hPð Þ2k kþ 2lð Þ

2 kþ 2lð Þ kþ lð Þ ;

b3 ¼
1

2 kþ lð Þ ;

c3 ¼
k

8l kþ lð Þ ;

d3 ¼ 1:

The least-square estimate of the three unknown TOECs

x̂ is given by

x̂ ¼ ðATAÞ�1ATðy� dÞ; (6)

and the corresponding covariance matrix of the estimates of

the TOECs by

Varðx̂Þ ¼ r̂2ðATAÞ�1; (7)

where r̂2 is the mean squared error of the fitted model. The

square roots of the diagonal elements of this matrix are the

standard deviations of the estimates of the TOECs.

The uncertainty of the estimation of the TOECs was

evaluated with Monte-Carlo simulations (200 000 samples).

For each sample, we repeated the following steps. For each

parameter, random values were generated following a nor-

mal distribution with a mean value equal to the nominal

value of the parameter and a standard deviation equal to the

uncertainty given in Table II. Table II lists the parameters

and their uncertainty involved in the inference of the
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TOECs. The coefficients in A and d were computed. Linear

regression was applied to obtain an estimate of the TOECs.

Figure 4 shows the results of Monte-Carlo simulations

for the TOECs. The median values of the distributions of the

TOECs are l¼�73 GPa, m¼�34 GPa, and n¼�61 GPa

for PMMA. For Berea sandstone, we find l¼�17 000 GPa,

m¼�11 000 GPa, and n¼�30 000 GPa. For PMMA, the

lower limit of the second quartile and the upper limit of the

third quartile are found at �9% and þ9% about the median

values for l and m, and �10% and þ10% for n. For Berea

sandstone, the lower limit of the second quartile and the

upper limit of the third quartile are found at �20% and

þ20% about the median values of l, �10% and þ10% about

the median values of m, and �20% and þ20% about the

median values of n. Uncertainty (in percent) is larger for

Berea sandstone than for PMMA; this is likely essentially

due to the slight inhomogeneity of the sample of Berea sand-

stone and the dependence on temperature and humidity con-

ditions of its elastic properties. This is supported by the fact

that the reproducibility of the measurement in Berea sand-

stone is worse than in PMMA (Table III).

III. DISCUSSION

A. Comparison of TOECs measured in this work
in PMMA and Berea sandstone with literature

In this first part of the Discussion, we propose to compare

the values of the TOECs obtained in this work applying

DAET to studies that reported either measurements of all three

TOECs in PMMA and Berea sandstone or measurements giv-

ing access to a single coefficient of elastic nonlinearity that is

a combination of the TOECs and the second-order elastic con-

stants. Although this comparison is necessary, it is worth men-

tioning that its relevance is limited by the variability of the

elastic properties of the materials. While the variability of the

elastic properties of rock samples extracted at different places

in a quarry is obvious, the variability of the elastic properties

for PMMA was also mentioned in the literature.36

1. Comparison with conventional quasi-static
acousto-elastic measurements

Table IV shows the TOECs obtained in this study and by

Winkler et al.16 in PMMA and Berea sandstone. The standard

deviations of the estimates obtained in this work are given

TABLE II. Uncertainty of the parameters involved in the inference of the

TOECs.

Parameter Uncertainty

Compressional wave-speed (PMMA) 61%

Shear wave-speed (PMMA) 61%

Compressional wave-speed (Berea) 62.5%

Shear wave-speed (Berea) 62.5%

Compressional wave-speed (coupling gel) 62.5%

Mass density 61%

Accelerometer sensitivity 61%

Incidence angle in coupling gel 61�

FIG. 4. Distribution of the TOECs l, m, and n obtained with Monte-Carlo

simulations for PMMA (top) and Berea sandstone (bottom). The median

value and the inter-quartile range are indicated.

TABLE III. Mean and standard deviation (SD) of the linear coefficient relat-

ing the relative change of wave-speed to the strain measured in PMMA

(N¼ 9 repetitions of the measurement) and Berea sandstone (N¼ 12 repeti-

tions of the measurement). Standard deviations are given in absolute values

and as a percent of the mean value.

PMMA PMMA

Incidence Mean (N¼ 9) SD (N¼ 9)

@

@�yy
½DVP�=VP0

Þ
�

Normal �1.2 0.085 (7%)

@

@�yy
½DVP�=VP0

Þ
�

Oblique �5.4 0.11 (2%)

@

@�yy
½DVSV �=VSV0

Þ
�

Oblique �4.1 0.31 (8%)

Berea sandstone Berea sandstone

Incidence Mean (N¼ 12) SD (N¼ 12)

@

@�yy
½DVP�=VP0

Þ
�

Normal �171 16 (9%)

@

@�yy
½DVP�=VP0

Þ
�

Oblique �970 110 (11%)

@

@�yy
½DVSV �=VSV0

Þ
�

Oblique �631 140 (22%)
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and can be compared to those reported in Ref. 16; it evaluates

the goodness of fit between the measurements and the model

(the uncertainty of estimates was not provided by the

authors16). We obtained TOECs in Berea sandstone that are

larger than those reported in Ref. 16. As noted by the authors

in Ref. 16, their conventional quasi-static acousto-elastic

measurements were conducted at a strain level that exceeds

the domain of validity of the model (see Section III B 2 for

further details). Consequently, the authors proposed to extrap-

olate at zero stress the stress-dependence of the ultrasonic

wave-speed measured at few MPa applied stress. This proce-

dure was also applied by Johnson et al.37 Therefore, we

believe that the measurements conducted by Winkler et al.16

may have led to approximate values of TOECs. In contrast,

DAET operates at microstrains about the equilibrium state

(zero stress), within the domain of validity of the third-order

hyperelastic model. Beyond this direct comparison for Berea

sandstone, it is worth mentioning that other authors have

reported the values of TOECs in a different type of sandstone

close to �100 000 GPa applying conventional quasi-static

acousto-elastic measurements,37 i.e., larger than the values

reported in this work in Berea sandstone.

For PMMA, we obtain TOECs that are significantly

larger than those reported by Winkler et al.16 However, the

authors pointed out that the variation of ultrasonic wave-

speed with stress was small and rather difficult to measure

with their techniques. In this work, we use a method based

on the cross-correlation function refined with parabolic inter-

polation of the maximum of the cross-correlation function

(for more details, see for instance Ref. 31). This is a very

robust technique to detect a subsample time shift. As seen in

Table IV, the standard deviations of the estimates that evalu-

ate the goodness of fit between the measurements and the

model are smaller in this work than in the work by Winkler

et al.16

From the TOECs measured in PMMA applying DAET,

we can derive a coefficient that quantifies the dependence of

the compressional wave-speed VP on the hydrostatic pressure

P. In this way, our results can be compared to other studies

reported in the literature. The dependence of the compres-

sional wave-speed VP on the hydrostatic pressure P is deter-

mined by the TOECs and the second-order elastic constants:

q0@V2
P=@P ¼ �ð6 lþ 4 mþ 7 kþ 10 lÞ=ð3 kþ 2 lÞ. Asay

et al.15 measured q0@V2
P=@P ¼ 16 and Renaud et al.38

reported q0@V2
P=@P ¼ 12:4. We find q0@V2

P=@P ¼ 3065%

(the uncertainty is half the interquartile range obtained with

Monte-Carlo simulations), therefore larger than the two val-

ues reported in the literature.

It is important to highlight that the uncertainty of the

estimation of the TOECs (Figure 4) is larger than the stan-

dard deviations of the fitting process (Table IV), because it

includes the effects of reproducibility and uncertainty of

the other parameters (Table II). The reproducibility of con-

ventional quasi-static acousto-elastic measurements was

rarely reported in the literature,39 while it is a good prac-

tice to report the estimates of physical constants with their

overall uncertainty. It is also worth stressing that the accu-

racy of the estimation of the TOECs is highly dependent on

the accuracy of the estimation of the parameters, particu-

larly the velocity of compressional and shear waves and

the incidence angle in the coupling gel. Our experimental

setup can definitely be further refined to improve the repro-

ducibility of the measurement and therefore reduce the

associated variability of the measurement (Table III). In

particular, the system used to maintain and position the

ultrasound transducers with a certain incidence angle was

not optimal. Thus, we speculate that TOECs in a homoge-

neous material like PMMA can be estimated with DAET

with an uncertainty of less than 5%, with an optimal exper-

imental setup.

2. Comparison with harmonic generation
measurements

The nonlinear propagation of a compressional elastic

wave is often described with the parameter of nonlinearity b.

A typical experiment consists in broadcasting a mono-

frequency ultrasonic burst and recording the signal generated

by nonlinear propagation at the second harmonic frequency

(twice the frequency injected in the medium). The parameter

of nonlinearity b is derived from the amplitude of the com-

ponent at the second harmonic frequency and it is related to

the TOECs by

b ¼ � 3

2
þ lþ 2m

kþ 2l

� 	
:

Using the values of the third-order and second-order elastic

constants obtained in this study for Berea sandstone, we

obtain b¼ 1900 6 6% (the uncertainty is half the interquartile

range obtained with Monte-Carlo simulations). In this way,

our results can be compared to the ultrasonic harmonic gener-

ation measurements reported in the literature. The comparison

of the TOECs obtained applying DAET to harmonic genera-

tion measurements is particularly interesting because the two

techniques are operated in the same range of strain (of the

order of 10�6). Applying ultrasonic harmonic generation

measurements in Berea sandstone, Meegan et al.40 found

b¼ 7000 6 25%, and Tencate et al.41 reported b¼ 400.

For PMMA, Landsberger et al.42 obtained b¼ 10 apply-

ing ultrasonic harmonic generation measurements. We find

b¼ 14.6 6 5% (the uncertainty is half the interquartile range

obtained with Monte-Carlo simulations), therefore in good

agreement with the work by Landsberger et al.42

TABLE IV. Estimates of the TOECs and standard deviations of the esti-

mates obtained in this study and reported by Winkler et al.16 in PMMA and

dry Berea sandstone. Two samples of Berea sandstone (Berea 1 and Berea

2) were studied in Ref. 16.

l (GPa) m (GPa) n (GPa)

PMMA (this study) �73 6 2% �34 6 2% �61 6 4%

PMMA16 �37 6 16% �29 6 21% �22 6 27%

Berea (this study) �17000 6 7% �11000 6 7% �30000 6 19%

Berea 116 �1850 6 2% �4200 6 2% �5010 6 3%

Berea 216 �2040 6 26% �4260 6 10% �5640 6 6%

135102-7 Renaud, Talmant, and Marrelec J. Appl. Phys. 120, 135102 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  134.157.80.70 On: Thu, 06 Oct 2016

07:40:38



B. Accuracy of the acousto-elastic measurement
of TOECs

Our goal here is to show that the accuracy of the

acousto-elastic measurement of the TOECs can be improved

in several ways. In particular, the actual applied stress expe-

rienced by ultrasonic bursts must be precisely evaluated, the

signal processing technique for measuring changes of ultra-

sonic travel time must be optimal, as small applied stress as

possible must be applied, and the differences between adia-

batic and isothermal second-order elastic constants and their

frequency-dispersion must be considered.

1. Accurate calculation of applied stress along
ultrasonic path

Quasi-static acousto-elastic measurements applying a uni-

axial compressive loading often assumes perfect sliding condi-

tions at the interface between the sample and the plates of the

testing machine, as well as perfect parallelism.43 Under these

conditions, the stress field in the sample is uniform and the

actual stress in the sample is correctly evaluated. However,

such ideal conditions are never met and partial adhesion occurs.

Although it was proposed to minimize lateral constraint by

using indium, lead, or teflon shims,12,44 this issue has received

little attention. Johnson et al.45 showed that, for a rectangular

parallelepipedic sample, a slenderness ratio of at least 8 is nec-

essary to measure properly the stress dependence of a compres-

sional wave when the ultrasonic transducers are placed in the

central region of the sample. They found that the use of a sam-

ple with a small slenderness ratio leads to the underestimation

of the actual stress-dependence of the ultrasonic wave-speed.

In particular, the use of a cubical sample underestimates by

24% the actual stress-dependence of the ultrasonic wave-speed.

Winkler et al.16 conducted conventional quasi-static

acousto-elastic measurements in PMMA and Berea sandstone.

They used prism-shaped samples of 2.5 cm� 7.5 cm� 15 cm,

that is to say, with a slenderness ratio of only 2 in one plane.

The ultrasound transducers are placed at mid-length of the

sample, and the actual stress experienced by an ultrasonic

burst is assumed to be given by the compressive force applied

by the testing machine and the section area of the sample

(2.5 cm� 7.5 cm). Therefore, the stress field was assumed uni-

form. As a consequence, the actual static stress along the

ultrasonic path may have been overestimated since such a

configuration leads to a non-uniform stress field. The two

ends of the sample in contact with the plates of the testing

machine experience a higher stress than the center of the sam-

ple that is traversed by the ultrasonic pulses. In DAET, the

stress field is not uniform but can be calculated;46 it is deter-

mined by the first axial compressional resonance mode of the

cylindrical sample (see Appendix B for more details on the

correction of the non-uniformity of the applied strain field).

2. Validity of theory of elasticity

Experiments of acousto-elasticity are classically operated

with the assumption that the elastic strain energy W can be

approximated by a Taylor expansion in strain up to the third-

order. For an isotropic solid, the elastic strain energy reduces to3

q0W ¼ k
2

tr �ð Þ2 þ l tr �2 þ 2l� 2mþ n

6
tr �ð Þ3

þ 2m� n

2
tr �ð Þtr �2 þ n

3
tr �3; (8)

where tr � is the trace of the strain tensor � and q0 is the

unstrained mass density. This development of the elastic

strain energy is valid as long as the three terms involving the

TOECs (l, m, and n) remain much smaller than the first two

terms involving the second-order elastic constants (k and l).

Using the values of the third-order and second-order elastic

constants obtained in this study and taking �yy ¼ 10�4, it is

found that the energy attributed to nonlinear elastic strain is

10% of the energy attributed to linear elastic strain.

Winkler et al.16 applied a strain larger than 10�4

(applied stress was varied from 0.5 MPa to 6 MPa), and the

authors write “It should be noted that third-order elasticity

predicts linear plots of velocity-squared versus stress, so the

fact that we observe curvature in some rocks shows that the

assumptions of the theory have been exceeded.” In contrast,

the applied strain in DAET is much smaller. With �yy¼ 8

� 10�6, the energy attributed to nonlinear elastic strain is

less than 1% of the energy attributed to linear elastic strain.

We obtained the values of TOECs in Berea sandstone that

are significantly larger than those reported by Winkler

et al.16 This discrepancy may be due to the fact that their

measurements were conducted outside the range of validity

of the theory of third-order elasticity.

3. Adiabatic and isothermal second-order elastic
constants—Frequency dispersion of second-order
elastic constants

The theory developed for conventional quasi-static

experiments of acousto-elasticity10 involves isothermal elas-

tic constants and adiabatic elastic constants. The applied

strain is generated in a quasi-static manner; therefore, the

process is isothermal, while ultrasound propagation is an adi-

abatic phenomenon. Although small, the difference between

isothermal elastic constants and adiabatic elastic constants is

virtually systematically neglected.34,37 In contrast, DAET

involves solely the adiabatic elastic constants since the

applied strain is dynamic with a frequency of a few kHz.

In addition, in materials like PMMA with attenuation of

elastic waves increasing tremendously with frequency, the

second-order elastic constants increase with frequency as

well.36,47 It was shown that the second-order elastic constants

of PMMA measured by conventional mechanical testing are

more than twice smaller than those measured from ultrasonic

wave-speeds. In dry sandstones, velocity dispersion is usually

considered negligible;48 however, it cannot be neglected in

fluid saturated sandstones.49 In Equations (3) and (4), the

second-order elastic constants k and l appear multiple times,

and they refer either to the quasi-static applied loading or to

ultrasonic propagation. Therefore, applying Equations (3) and

(4) means that frequency dispersion of the second-order elas-

tic constants is neglected. As a consequence, it is not clear

whether these equations can be applied to conventional quasi-

static acousto-elastic testing in materials like PMMA. In
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contrast, DAET operates at a few kHz for the applied strain.

Thus, we believe that the estimates of the TOECs obtained

with DAET in PMMA are more accurate, because the fre-

quency dispersion of the second-order elastic constants in the

kHz range until 1 MHz (center frequency of the ultrasonic

bursts) is small.

4. Hysteresis

Berea sandstone is known to exhibit large and complex

elastic nonlinearity.27 As seen in Figure 3, the relation between

the relative change of the ultrasonic wave-speed and the

applied strain is not a simple linear relation. Unlike PMMA

(Figure 2), we observe hysteresis and DC offset. Their physical

origin is still debated.27,50 These two features were shown to

depend on the amplitude and the frequency of the dynamic

loading.33,51 However, the first-order derivative (or the slope)

of the relation between the relative change of the ultrasonic

wave-speed and the loading strain exhibits virtually no depen-

dence on the amplitude and the frequency of the dynamic load-

ing.27,52 This fact motivated us to simplify the complicated

behavior observed in Figure 3 as a linear relation and derive

the TOECs from the slopes of these linear relations.

Hysteresis was also observed when conducting quasi-

static acousto-elasticity measurements at moderate stress

(<70 MPa).53 In their work, Winkler et al.16 proposed to cal-

culate the first-order derivative of the relation between the

wave-speed and the loading strain using the first increasing

stress ramp. Why not choosing the decreasing stress ramp?

Why not using both increasing and decreasing stress ramps

when fitting the model to the experimental data? In our

study, a linear regression is applied to the complete nonlinear

elastic behavior (increasing strain branch and decreasing

strain branch) recorded when cycling the material between a

maximal compressive strain of �8� 10�6 and a maximal

tensile strain of þ8� 10�6.

IV. CONCLUSION

In this work, dynamic acousto-elastic testing (DAET)

was applied to the measurement of the three TOECs in

PMMA and Berea sandstone. It operates at microstrain about

equilibrium state. Therefore, we believe that DAET provides

more accurate estimates of the TOECs than conventional

quasi-static acousto-elastic experiments, especially in mate-

rials exhibiting large elastic nonlinearity like sandstones.

The reproducibility of the measurement was studied and

taken into account in the calculation of the uncertainty of

TOECs estimates. A definite comparison between the DAET

and the conventional quasi-static acousto-elastic experiment

must be conducted on the very same samples. This subject

will be investigated in future work.

APPENDIX A: ON THE CHOICE OF THE INCIDENCE
ANGLE AND THE MEASUREMENT CONFIGURATION
WITH A SV-WAVE AT OBLIQUE INCIDENCE

For the measurement configurations with a P-wave at

normal incidence and oblique incidence (Figure 1), the ultra-

sonic signal of interest (that is analyzed with the cross-

correlation based method) is the very beginning of the

received ultrasonic signal. This is not the case for the mea-

surement configuration with a SV-wave at oblique incidence

(Figure 1). In this configuration, the receiving ultrasound

transducer records two main signals and the ultrasonic signal

of interest is the second one. The first signal arises from the

diffraction of the P-wave. The technique based on the cross-

correlation function can only be applied if these two signals

do not overlap in time. Therefore, given the diameter D of

the cylindrical sample, the temporal duration of an ultrasonic

burst Dt, and the compressional and shear wave-speeds (Vgel,

VP, and VS), there can exist a minimal incidence angle hMIN
gel

so that the two signals do not overlap in time. For a sample

with a rather small diameter, if D
Dt 1=VS � 1=VPÞ < 1ð then

the incidence angle in the coupling gel must exceed the value

hMIN
gel � arcsinðVgel

VS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D

Dt ð1=VS � 1=VPÞ2ÞÞ
�r

. In this work,

we avoided this problem by using samples with a sufficiently

large diameter (D
Dt 1=VS � 1=VPÞ > 1ð ).

APPENDIX B: CALCULATION OF THE STRAIN
EXPERIENCED BY AN ULTRASONIC PULSE

The strain experienced by an ultrasonic pulse is calcu-

lated from the acceleration measured at one end of the sam-

ple and knowing the profile of the first axial compressional

resonance mode of the cylindrical sample.30,54 The first axial

compressional resonance mode is excited when the wave-

length equals four times the length of the cylindrical sample.

A maximum strain amplitude is obtained at the fixed end of

the cylinder while the strain amplitude is null at the free

end.30 We use samples with a diameter-to-length ratio of

0.15 (i.e., a slenderness ratio of 6.7) for PMMA and 0.17

(i.e., a slenderness ratio of 5.9) for Berea sandstone. As

expected,46 the observed resonance frequency of the first

compressional mode is close to that predicted by the long

rod approximation 1
4L

ffiffiffi
Y
q

q
, where L is the length of the cylin-

der, Y ¼ lð3kþ2lÞ
kþl is the Young’s modulus, and q is the mass

density. The observed resonance frequency is 1% smaller

than the value predicted by the long rod approximation for

PMMA and 3% smaller for Berea sandstone. Therefore, the

applied axial strain �yy can be assumed constant in the radial

dimension, and only the axial modal profile (Figure 1) must

be taken into account to estimate the actual strain �yy experi-

enced by an ultrasonic pulse.30
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