Neurally Adjusted Ventilatory Assist as an alternative to Pressure Support Ventilation – A multicentre randomized trial

A Demoule, M Clavel, C Rolland-Debord, S Perbet, N Terzi, A Kouatchet, F Wallet, H Roze, F Vargas, C Guerin, J Dellamonica, S Jaber, L Brochard, T Similowski

Online supplement

Table E1. Main differences between Pressure Support Ventilation (PSV) and Neurally Adjusted Ventilatory Assist (NAVA)

	PSV	NAVA
Ventilator triggering		
Principle	The ventilator is triggered when flow or pressure at airway opening exceed a preset value.	The ventilator is triggered when the EAdi signal exceeds a preset value in μV .
Setting	Preset value is set in l.s ⁻¹ or cmH ₂ O.	Preset value is set in μV.
Airway pressurization - Level of assistance -		
Principle	Airways are pressurized at the preset "pressure support level".	Airways are pressurized in proportion of the EAdi signal.
Setting	Pressure support level, expressed in cmH ₂ O.	NAVA level: factor by which the Edi signal is multiplied to adjust the amount of assist delivered to the patient.
Relationship between the	The level of assistance is	The level of assistance is
level of assistance and the	constant, irrespective of	proportional to the EAdi, a
intensity the patient	the intensity of the patient	surrogate of the intensity
inspiratory effort.	inspiratory effort.	of the patient ventilatory drive.
Ventilator cycling-off		
Principle	Airway insufflation by the ventilator ends when the inspiratory flow falls below a set proportion of the maximal inspiratory flow.	Airway insufflation by the ventilator ends when the EAdi falls below 70% of its peak value.
Setting	Cycling-off can be adjusted. In most ventilators, cycling-off value is set between 25% and 30% by default.	Fixed (70% of EAdi peak value) cannot be adjusted

EAdi, electrical activity of the diaphragm.

Table E2. Definition of the five main asynchronies and the asynchrony index

Asynchronies	Definitions
Ineffective effort (n.min ⁻¹)	Presence of a characteristic EAdi activity not followed by a
	ventilator-delivered pressurization
Late cycling (n.min ⁻¹)	Duration of pressurization at least twice as long as the patient's
	neural inspiratory time
Double triggering Type (n.min ⁻¹)	Two respiratory cycles due to a biphasic EAdi signal
Premature cycling (n.min ⁻¹)	Duration of pressurization at least twice shorter than the patient's
	neural inspiratory time
Auto-triggering (n.min ⁻¹)	A cycle delivered by the ventilator in the absence of EAdi signal
Asynchrony index (%)	[(auto-triggering + ineffective efforts + late cycling + premature
	cycling +double triggering) / (ineffective effort + breath rate)] x
	100

EAdi, electrical activity of the diaphragm.

The number of each type of asynchrony was reported as the total number of each event per minute (n.min⁻¹).

Table E3. Volume of patients per year and enrolment rate per centre

	Volume of patients	Enrollment rate
	admitted per year,	per year,
	n	%
Centre 1	569	6.7
Centre 2	568	1.1
Centre 3	406	2.7
Centre 4	646	0.8
Centre 5	732	1.6
Centre 6	516	0.8
Centre 7	744	0.3
Centre 8	462	3.0
Centre 9	698	1.3
Centre 10	889	2.8
Centre 11	666	0.3

Table E4. Causes of respiratory failure

	PSV	NAVA
	(n = 66)	(n = 62)
De novo. n (%)	38 (58)	34 (55)
Pneumonia. n (%)	23	21
Aspiration. n (%)	7	4
Extra pulmonary sepsis. n (%)	3	3
Other. n (%)	5	6
Postoperative. n (%)	13 (20)	13 (21)
Pneumonia	3	3
Extrapulmonary sepsis	2	3
ARDS following	4	4
cardiothoracic surgery		
Hemorrhagic shock. trauma	2	2
Other	2	1
Acute-on-chronic. n (%)	12 (18)	12 (19)
Acute cardiogenic pulmonary	3 (5)	3 (5)
oedema. n (%)		

Table E5. Main reasons for switch to controlled mechanical ventilation

	PSV	NAVA	P
	(n = 60)	(n = 58)	
Respiratory distress. hypoxaemia or	8 (13)	5 (9)	0.414
hypercapnic acidosis despite optimization of			
ventilator settings. n (%)			
Severe hypotension. shock or arrhythmias. n (%)	1 (2)	2 (3)	0.378
Increased need for sedation for agitation or	1 (2)	2 (3)	0.378
patient-ventilator asynchrony. n (%)			
Investigation requiring an increase of sedation	10 (17)	9 (16)	0.865
for (gastrointestinal endoscopy.			
transoesophageal echocardiography. surgery). n			
(%)			
Other. n (%)	2 (3)	1 (2)	0.579

Table E6. Comparison of patients' characteristics and baseline variables between failure and success patients

	Failure of partial ventilatory mode	Success of partial ventilatory mode	p
	n=39	n=79	
Age. years	61 (58-71)	72 (58-78)	0.172
Sex. male. n (%)	30 (38)	48 (62)	0.081
SAPS 2	44 (34-63)	43 (34-58)	0.610
Blood gases			
PaO ₂ /FiO ₂ . mmHg	233 (187-280)	226 (190-280)	0.811
PaCO ₂ . <i>mmHg</i>	40 (34-45)	39 (34-48)	0.806
Dyspnoea-VAS. from 0 to 10	1 (0-3)	1 (0-3)	0.945
Duration of mechanical ventilation	4 (3-8)	5 (3-9)	0.401
prior to inclusion. days			
Cause of acute respiratory failure			0.420
Acute-on-chronic n (%)	8 (53)	7 (47)	
Acute cardiogenic pulmonary edema. n (%)	1 (20)	4 (800)	
De novo. n (%)	22 (33)	44 (67)	
Postoperative. n (%)	7 (27)	19 (73)	
Study group. NAVA. n (%)	19 (49)	39 (49)	0.663

SAPS, simplified acute physiology; NAVA, neurally adjusted ventilatory assist.

Continuous data are reported as median (interquartile range [IQR]) and categorical data are reported as number of events (percentages).

Table E7. Time spent in each mechanical ventilation mode during the first 48 hours following inclusion

	PSV	NAVA	P	
	(n = 66)	(n=62)		
Pressure support ventilation (PSV). h	47.1 (39.8-48.0)	2.5 (0.8-12.3)	<0.0001	
PSV-Pressure control ^a . h	1.5 (0.5-2.4)	0 (0-0)	ND	
Neurally adjust ventilator assist (NAVA) . h	NA	44.1 (33.0-47.8)	NA	
NAVA-PSV ^b . h	NA	0.7 (0.3-2.2)	NA	
NAVA-Pressure control ^c . h	NA	0.85 (0.4-1.2)	NA	
Assist-control ventilation. h	3.0 (1.0-10.5)	2.1 (0.6-25.5)	0.812	
Pressure-regulated volume control. h	4.5 (1.8-8.5)	1.3 (0.8-7.3)	0.330	
Pressure control ventilation. h	1.2 (0.6-1.8)	0 (0-0)	ND	

⁽a) PSV-Pressure control. pressure control ventilation as back-up mode of PSV.

⁽b) NAVA-PSV. PSV as a primary back-up mode in NAVA.

⁽c) NAVA-Pressure control. pressure control ventilation as secondary back-up mode in NAVA.

Table E7. Respiratory variables at three time points during the first 5 days of treatment

	24 hours		48 hours			Day-5			
	PSV	NAVA	P	PSV	NAVA	P	PSV	NAVA	P
	(n = 66)	(n = 60)		(n = 66)	(n = 58)		(n = 25)	(n = 22)	
Dyspnoea, n (%)	19 (66)	9 (28)	0.03	13 (52)	14 (50)	0.54	6 (46)	3 (30)	0.67
ATICE score	16.5 (13-19)	16 (11-19)	0.66	16.5 (11-20)	18 (12-20)	0.68	17 (14-19)	16 (11-20)	0.66
PEEP level, cmH_2O	6 (5-8)	6 (5-8)	0.52	6 (5-8)	6 (5-8)	0.97	6 (5-8)	6 (5-8)	0.67
PSV level, cmH_2O	12 (10-14)	NA	NA	12 (10-12)	NA	NA	10 (8-12)	NA	NA
NAVA level, cmH_2O . μV^1	NA	1.8 (1.0-2.5)	NA	NA	1.9 (1.0-2.8)	NA	NA	1.3 (1.0-3.0)	NA
Tidal volume, ml	461 (400-530)	455 (410-550)	0.69	456 (386-549)	444 (380-535)	0.65	467 (425-587)	439 (380-572	0.33
Tidal volume, ml.kg ⁻¹	7.2 (6.3-8.3)	7.2 (6.4-8.2)	0.92	7.2 (6.4-8.3)	7.15 (6.3-8.3)	0.53	7.1 (6.6-9.2)	6.8 (5.9-8.7)	0.34
Minute ventilation, l.min ⁻¹	10.0 (8.9-12.4)	11.7 (10-13)	0.045	11.0 (9.4-13.4)	10.4 (8.5-12.4)	0.44	11.5 (9.95-13.0)	11.0 (8.7-14.0)	0.57
Respiratory rate ^a , min ⁻¹	23 (20-26)	26 (20-29)	0.09	24 (18-29)	24 (19-28)	0.95	25 (22-28)	25 (23-30)	0.53
PaO ₂ /FiO ₂ , mmHg	217 (166-293)	237 (179-305)	0.66	247 (189-320)	262 (198-305)	0.68	197 (170-277)	261 (18651)	0.11
pН	7.43 (7.39-7.47)	7.45 (7.40-7.47)	0.29	7.43 (7.39-7.46)	7.44 (7.39-7.47)	0.74	7.42 (7.40-7.43)	7.44 (7.37-7.46)	0.87
PaCO ₂ , mmHg	40 (36-46)	39 (33-48)	0.41	40 (34-46)	41 (34-51)	0.71	42 (37-49)	41 (39-48)	0.88

PSV, pressure support ventilation; NAVA, neurally adjust ventilator assist; ATICE, adaptation to intensive care environment (evaluates comfort, ranges from 0 to 20).

Continuous data are reported as median (interquartile range [IQR]) and categorical data as number of event (percentages).

^aRespiratory rate was computed based on ventilator breaths.