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Abstract—Manycore processors are a way to face the always
growing demand in digital data processing. However, by putting
closer distinct and possibly private data, they open up new
security breaches. Splitting the architecture into several partitions
managed by a hypervisor is a way to enforce isolation between the
running virtual machines. Thanks to their high number of cores,
these architectures can mitigate the impact of dedicating cores
both to the virtual machines and the hypervisor, while allowing
an efficient execution of the virtualized operating systems.

We present such an architecture allowing the execution
of fully virtualized multicore operating systems benefiting of
hardware cache coherence. The physical isolation is made by the
means of address space via the introduction of a light hardware
module similar to a memory-management unit at the network-
on-chip entrance, but without the drawback of relying on a page
table.

We designed a cycle-accurate virtual prototype of the archi-
tecture, controlled by a light blind hypervisor with minimum
rights, only able to start and stop virtual machines. Experiments
made on our virtual prototype shows that our solution has a low
time overhead – typically 3% on average.

I. INTRODUCTION

The computer world is facing an explosion in the amount of
digital data. This data can come from social networks as well
as new uses of mobile computing as communicating objects.
The information contained in these data is valuable either for
commercial purpose, or for economic, environmental or health-
related purposes as well. Clearly, the issue of security for
accessing such information is critical, as is the protection of
personal data.

By their nature, manycore processors are able to run
multiple applications in parallel and thus allow to process a
large data stream. However, they must be able to guarantee
the security properties for such applications, namely integrity
and confidentiality, in particular if the data processed are from
different clients.

We propose a mixed hardware/software solution which
can be used as a cloud platform, allowing to execute nu-
merous independent applications, while providing an isolated
execution environment as a response to the confidentiality and
integrity problematics. The choice of a manycore architecture
seems particularly suited to this goal, since the high number
of cores allows to respond to all kinds of computational
demands. However, existing manycore architectures do not
provide security extensions, so they cannot propose an efficient
solution. The baseline manycore architecture used in this work
is the TSAR [1] architecture, which is a manycore architecture
with hardware cache coherence and virtual memory support,

but no particular mechanism for addressing security issues. The
security-enhanced version of this architecture will be called the
Tsunamy architecture.

The proposed architecture can typically be used by cloud
platform servers, to which several clients can connect and
execute their program for processing data. In such a context,
two clients’ applications need to be isolated with more than
just processes, because a bug exploit in the operating system
could lead to data leakage and corruption between the two
applications. In our proposed solution, we make thus the as-
sumption that each client runs an entire operating system, using
the well-known technique of operating system virtualization.

An ideal framework for cloud platforms would meet the
following goals and constraints: little or no hardware exten-
sion, no performance penalty compared to an operating system
running alone on the platform, support for general purpose
(e.g. Unix-like) multicore operating systems, hardware cache
coherence support, unmodified (bare-metal) execution of guest
operating systems and of course security concerns: virtual
machine isolation and small Trusted Computing Base (TCB).
We will discuss how our solution answers these constraints
along the article.

We believe that this paper makes three contributions:

• We provide the design of a secure manycore archi-
tecture allowing the execution of physically isolated
virtual machines of variable size, and supporting cache
coherency.

• We discuss the design of a blind hypervisor adapted
to this architecture, and requiring little hardware ex-
tensions

• We demonstrate the feasibility of our approach by
the implementation and evaluation of a cycle-accurate
virtual prototype, and we show that the virtualization
overhead remains low.

The rest of the document is organized as follows: section II
gives more details about the background of hypervisors and
manycore architectures, and discusses related works; sec-
tion III presents our design choices based on the security
properties we target; section IV contains a description of the
existing components upon which this work is based, and the
proposed modifications; section V presents our hypervisor and
its basic functionalities, comprising the virtual machine boot
and shutdown; section VI presents our experimental proce-
dures and the obtained simulations results; finally, section VII
concludes and summarizes the remaining work.



II. BACKGROUND AND RELATED WORKS

A. Manycore Architectures

Manycore architectures are architectures containing from a
few tens to thousands of cores integrated on the same chip.
Such architectures use simple cores in order to maximize
the performance per Watt ratio [2]. They are typically clus-
tered, the clusters being connected together via a Network-
on-Chip [3], [4]. Each cluster (figure 1) usually contains one
or several cores and a few peripherals, connected over a fast
local interconnect. Apart from the performance per Watt, the
biggest advantage of manycore architecture is their inherent
redundancy, which allows both power dissipation reduction
by dynamically turning off idle cores, and fault-tolerance
through deactivation of faulty cores while using the remaining
functional ones.

Manycore architectures vary in the way the cores can
communicate, either inside a cluster or between two different
clusters. Some architectures use specialized interfaces (e.g [5])
or dedicated hardware buffers to make two cores communicate,
while some others support shared memory. Among the shared
memory architectures, some support hardware coherence [6],
[7] while others do not [8].

We believe that a manycore architecture should provide
shared memory with hardware cache coherence in order to
support general purpose operating systems. In a cloud platform
context, it is true that we need not allocate all of the resources
to a single user, but providing a minimum number of cores
is essential to have a sufficient computational power since
cores are simple. Besides, running a general-purpose multicore
operating system almost requires to have hardware coherence.

The TSAR architecture [1] described in section IV and
used as a baseline for this work thus provides shared memory
with hardware cache coherence.

INTERCONNECT

C0 C1 C2 C3

XICU DMAL2

NIC

Figure 1. Manycore Architecture

B. Logical Partitions and Dedicated Hardware

A logical partition is an independent operating environ-
ment, consisting of a subset of the architecture processors,
memory and I/O devices, and running a guest operating
system. The guest operating system is a virtualized oper-
ating system, running above some kind of hypervisor. As
such, a logical partition is one type of virtual machine [9].
Logical partitioning is used in some virtualized environments
requiring high insurance, such as separation kernels [10],
[11]. Commercial services using architecture partitioning for
virtual machines include the Infrastructure as a Service (IaaS)
provided by IBM [12], [13], or Hitashi embedded virtualization
technology [14].

Logical partitions can either have dedicated processors or
share them. Dedicating hardware to specific guest operating
systems has the drawback of rigidity and non optimal use
of the resources. However, it comes with a big advantage:
by dedicating these resources to the guest operating system,
the hypervisor does not necessarily need to interact with the
latter, therefore minimizing risks of being compromised. This
technique is known as hypervisor disengagement [15]. Besides,
this reduced interaction in turn results in a low performance
overhead for the virtual machine compared to a non virtualized
execution of the operating system.

C. Hypervisors and Security Concerns

Operating system virtualization [16] is a technique which
allows to execute an unmodified operating system on a part
of an architecture. A hypervisor is generally used to manage
the different virtualized operating systems [17], [18]. It is a
software agent located between the hardware and the virtu-
alized operating systems, and its role is to allocate hardware
resources to guest operating systems. As such, it is a security
critical point, since every breach in the hypervisor can lead to:

• unauthorized reads of data of a virtual machine (con-
fidentiality violation);

• unauthorized modification of pieces of data of a virtual
machine (integrity violation);

• information leakage – data left in memory or hard-
ware components which can be exploited by another
malicious virtual machine.

Thus, the hypervisor must be part of the Trusted Computing
Base (TCB), i.e. the trusted elements in the system. This is
why the hypervisor should remain as small as possible, so as
to minimize the risks of it being compromised. [9] defines
two properties for measuring the hypervisor sensitivity to
attacks: small footprint and reduced interaction. The footprint
is traditionally measured in lines of code (LoC), fewer lines
meaning fewer bugs in average, and thus fewer possibilities for
an attacker to exploit a flaw. Using hardware virtualization ex-
tensions, hypervisor can be as small as 4K LoC [19], whereas
hypervisor implementing all the virtualization mechanism can
reach 100K LoC [20].

Interactions between the hypervisor and a guest operating
system happen at launch and shutdown, and every time a
virtual machine requires a service from the hypervisor, for
example during an I/O access. Hypervisor disengagement
allows to limit interactions at their minimum, i.e. launch and
shutdown, thus reducing the possibilities for an attacker to
exploit a bug in a hypervisor function.

Hypervisors can be classified into several categories. In
traditional T1 hypervisors (figure 2), a single hypervisor
instance manages all the resources, allocates them, and inter-
acts frequently with the guest operating system. For example,
every I/O interrupt triggers a context switch to the hypervisor.
Other interactions may be required, in particular for memory
management if there is no specific hardware extensions, which
include an additional privilege mode to the CPU to the user and
kernel modes, combined with a MMU extension to translate
machine addresses to another layer called physical addresses.
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Figure 2. Different types of Hypervisors

Such hypervisors thus need many hardware modifications to
have reduced interactions, and still are not completely isolated.

Distributed hypervisors [21], [22] consist of having sev-
eral hypervisor instances, each in charge of a subset of the
architecture (figure 2), typically at the allocation granularity.
As for traditional T1 hypervisors, such hypervisors are in
charge of the underlying hardware and provide an interface
to access I/O devices, thus making a reduced interaction with
the virtual machine not possible.

Dedicated hypervisors [23], [24] run on dedicated cores
and manages the operating systems running on other cores.

Disengaged hypervisors [15] are a type of dedicated
hypervisor which limit the runtime interaction with the vir-
tual machines by letting the latter directly in charge of the
underlying hardware. This allows for improved security and
performance. This type of hypervisors can have both a small
footprint and a reduced interaction, but usually require hard-
ware extensions to isolate the running virtual machines.

Blind hypervisors [25] are a type of dedicated and dis-
engaged hypervisor which tend to even more minimize the
runtime attack surface compared to disengaged hypervisors, by
disallowing the hypervisor access to hardware resources of a
virtual machine once it is started. Not only are the interactions
between a virtual machine and the hypervisor not required, but
they are impossible. If the hypervisor can still stop a running
virtual machine, it cannot access any of its data during of after
its execution. Blind hypervisors also usually require hardware
extensions to achieve their goal.

D. Memory Isolation

In order to enforce isolation between the different vir-
tual machines, a hypervisor can use a third address space
comprising physical addresses (or host physical addresses).
The translation mechanism must ensure that all the physical
addresses obtained for a virtual machine can only target
memory or devices located inside the cluster allocated to that
virtual machine. Traditionally, this translation is made via
the Memory Management Unit (MMU) inside the first-level
cache [26], [27], [28] but it requires that the hypervisor and
the virtual machine share cores. For a disengaged hypervisor,
this is thus impossible. Another technique is to add a MMU
with pagination between the NoC and each initiator on the
latter. However, this comes with several drawbacks: first a
MMU generally uses a Translation Lookaside Buffer (TLB)
to speed up address translation. This implies a non negligible

hardware overhead, including the logic to manage the TLB
misses. Second, the hypervisor must create the page table
for the memory allocated to a virtual machine and store it
into a memory space non accessible by itself nor by any
virtual machine. This cannot be done entirely in software
and therefore requires the introduction of specific hardware
elements. Third, a MMU is slow to perform address translation
because of the TLB misses overhead.

Overall, this solution is not entirely satisfying, and given
the need for a hardware extension, a technique similar to
segmentation will be investigated to perform physical memory
isolation [29].

III. DESIGN CHOICES

We target highly secure environments with redundant iso-
lation mechanisms, in particular physical isolation between
virtual machines, guaranteed by the hardware.

To prevent two virtual machines to interact, our solution
obviously dedicates cores to virtual machines.

Hypervisor disengagement is crucial to our solution since
we target a highly secure platform. To this end, we consider
dedicated architecture extensions. These extensions, which
should remain minimal, allow to leverage the small interac-
tions between the virtual machine and the hypervisor. Our
solution uses a small dedicated disengaged blind hypervisor.
This hypervisor is not able to access data inside clusters, nor
change the allocated elements of a virtual machine once the
primary configuration is made. Indeed, the reconfiguration is
only possible after completion of a procedure comprising the
deletion of all memory banks contents.

We believe that dedicated hypervisors are particularly
suited to manycore architecture since the high number of cores
mitigates the impact of dedicating cores to the hypervisor. Ded-
icating cores to the hypervisor has another indirect advantage:
it lets the possibility to reuse the user and kernel modes of the
processor to dissociate critical parts of the hypervisor from
the others, by using the kernel mode for critical parts. As an
example, our hypervisor uses a shell to execute commands
for virtual machines creation. We do not want that a buffer
overflow in the shell can result in a possible corruption of
the hypervisor sensitive data, what is possible by putting the
shell related parts of the hypervisor in the user side. Similarly
to what happens in an operating system, critical parts of the
hypervisor are called via syscalls, which are the only parts to
be included in the TCB.
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The blind and disengaged parts are carried out by means
of address translation (figure 3): our translation mechanism
operates at the output of the first-level cache, before the intra-
cluster crossbar and is performed by a hardware component
called Hardware Address Translator (HAT). This module acts
as a wrapper for initiators inside a cluster and plays the same
role as a MMU for segmentation, although it differs in several
ways compared to the latter: it uses topology information in
order to perform address translation. The price to pay for this
design choice compared to pagination is a lack of flexibility in
hardware resource allocation – since a user launching a virtual
machine can only allocate a multiple of clusters – but from a
security point of view, it allows to physically isolate clusters of
distinct virtual machines by the means of address routing (with
the exception of some peripherals, which will be discussed
later). In summary, our proposed solution for physical isolation
is a simple and fast segmentation module, whose downside
is the translation granularity, but which does not come as a
problem with our design choices.

HAT
Disabled

HAT
Enabled

Configurable Not Configurable

Activation

Deactivation

Figure 4. HAT States

Figure 4 shows the alternating two states of the HAT. When
the processor starts, the HATs are in the disabled state in which
they provides an identity translation from machine to physical.
In this state, they can be configured by any core; practically, it
can only be an inactive core, i.e. a core not already dedicated
to the hypervisor or a running virtual machine. Then, during
the boot sequence of the virtual machine, the HATs are
configured by one of the virtual machine cores. Finally, the
HATs are activated by their own core, and switch their state to
enabled. Once in the enabled state, they cannot be configured
anymore; a new configuration will only be possible after the
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Figure 6. The TSAR Architecture

HAT deactivation, which is coupled to the virtual machine
shutdown.

Another problem, which has not been covered until now, is
cache coherence. Since L1 caches contain machine addresses,
and L2 caches physical addresses, coherence requests need a
translation mechanism. The latter is also achieved by our HAT
module.

The global infrastructure of our designed solution is pre-
sented in figure 5, separating trusted from untrusted compo-
nents. The disk is encrypted for security purpose, and major
cyphering/deciphering operations are handled by a hardware
coprocessor called HCrypt.

IV. EXISTING HARDWARE COMPONENTS AND
MODIFICATIONS

A. The TSAR Architecture

Figure 6 and 7 show an overview of the TSAR architecture.
It is a clustered architecture with a 2D mesh topology using
a Network-on-Chip. The cluster with coordinates (0, 0) addi-
tionally contains an access to I/O cluster via an Input/Output
Bridge (IOB). The I/O cluster contains all the I/O peripherals.
The TSAR architecture is designed to support up to 16 × 16
clusters; in particular, 8 bits in the address are reserved for
address routing (4 for X and 4 for Y ).

All clusters contain:

• 4 MIPS32 cores with their paginated virtual MMU
and their first level caches, split between instructions
and data. The L1 cache coherence is managed entirely
in hardware. Misses in the TLB are also handled by
the hardware.

• 1 second level (L2) cache, which is in charge of a
segment of the physical memory address space. In
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particular, it is responsible for the coherence of the
copies in L1 caches for the lines contained in its
segment.

• 2 internal peripherals: an interrupt controller including
timer functions (XICU) and a Direct Memory Access
controller (DMA). These peripherals are called repli-
cated peripherals.

• A local crossbar interconnecting these components
with an access to the global network (L1/L2 Network)

via a router.

The I/O cluster additionally contains:

• A terminal controller (TTY).

• A hard-drive disk controller (IOC).

• A Programmable Interrupt Controller (PIC), able to
convert a hardware interrupt into a software one.

• A Read Only Memory (BROM) containing the reset,
startup and shutdown codes, so that these critical codes
cannot be modified.

• A I/O network interconnecting these components with
an access to the RAMs network (XRAM network) and
the global network via the IOB.

This architecture will be used as a base for our secured
architecture proposal, with substantial modifications in order
to meet the motivated requirements.

B. Hardware Modifications to the TSAR Architecture

This section presents in details the hardware modifications
proposed by our solution in order to isolate two virtual
machines by adding hardware extensions.

Figure 8 shows an overview of our proposed secured
architecture with the hardware extensions.

The translation from machine addresses to physical ad-
dresses is performed by the HAT module, which is configured
once by the hypervisor at the start of an operating system
and placed behind each initiator in the architecture – as well
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cores as replicated DMAs. The latency taken for translating a
machine address through the HAT is 2 cycles (pipelined in case
of consecutive requests), with only one cycle for the translation
mechanism.

A physical address outgoing from a HAT can be one of
the followings two types:

• an address targeting a module included in a cluster of
the same virtual machine: memory via the L2 cache
or a replicated peripheral (DMA or XICU); this is the
standard case, and it will be referred to as an internal
access

• an address targeting a peripheral outside the virtual
machine, namely the disk controller or the TTY. This
case will be referred to as an external access.

Figure 9 shows an overview of the HAT operation depend-
ing on the type of address to translate.

Translate
Internal
Access

Emit
Physical
Address

Receive
Machine
Address

Lookup
DevAccess

Table Entry
Found

Entry
not Found

Figure 9. Hardware Address Translator Overview

The hardware cost involved for the HAT is 130 bytes of
memory (85 bytes for internal registers, 5 bytes for configu-
ration registers, and 8 bytes for each of the 5 external access
entries), and two FIFOs of depth 2 for buffering transactions,
with widths of 112 and 56 bits.

C. Internal Accesses

The physical address space is split on the clusters in such
a way that the most significant bits (MSB) define the cluster
coordinates, as this is the case with the TSAR architecture.
The machine addresses provided by the MMU are 40-bit but
only the first 32 bits are relevant: in fact the 8 MSB are set
to 0 (ETX and ETY fields) because the operating system used
here is 32 bits. Thus, the translation mechanism achieved by
the HAT only consists in computing the coordinates of the
destination cluster of the virtual machine and writing it in the
8 MSB of the physical address. Figure 10 and 11 illustrate
how the HAT module works with a 16-cluster architecture.
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Figure 10. Translation from Machine to Physical Address for an Internal
Access

In this example, a virtual machine is running on clusters
(0,2), (0,3), (1,2) and (1,3) of the platform. The X size of
the virtual machine is 2 and the Y size is 2. The MX field
represents the number of bits needed to code the X size of the
virtual machine: in our case, only 1 bit is needed. The MY
field is the same as MX for the Y dimension (1 bit too).

A core sends the virtual address 0x83681424 which is
translated by the MMU into the machine address 0x41487424.
In a virtual machine with 4 clusters, the machine address
starting with 0x4 is located in the cluster (0,1), containing
the machine address range <0x40000000–0x7FFFFFFF>. In
our example, the cluster (0,1) of the virtual machine is the
cluster (0,3) of the platform, with a physical address range
<0x0300000000–0x03FFFFFFFF>. Therefore, the HAT will
provide the translation of an address belonging to the cluster
(0,1) of the virtual machine to an address inside the cluster
(0,3) of the platform.

D. External Accesses

The hypervisor software is not involved in the accesses
made by virtual machines to peripheral devices. The differ-
entiation between an internal access and an external access
is made via a lookup into a DevAccess table. If the machine
address matches an entry into the table then the HAT acts
similarly as a segmentation mechanism. This is the case if
the device targeted by the address is actually allocated to the
virtual machine. This DevAccess table contains several entries,
each one containing two pieces of information:

• the base physical address of the segment associated to
the device (BASE PA);

• the two’s complement of the size in bytes of this
segment (MASK).
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This choice was made over the base/length attributes of the
segment, requiring two integer comparators, so as to keep the
HAT as light as possible.

For simplicity reasons, the I/O cluster is chosen as the
cluster running the hypervisor, although it could be any other
cluster.

Figure 12 provides an example of the way the HAT
performs a device access.

MA MX MY OFFSET

MASK

0xFFFF0000

0xFFFFFFC0

...

...

BASE PA

0xA8900000

0xA8100040

=

=

=

=

0xA8100060

...

...

VALID

Figure 12. Translation from Machine to Physical Address for an External
Access

In this example, the virtual machine is deployed on 4
clusters, so the fields MX and MY are 1-bit wide. The machine
address emitted by the core is 0xA8100060. This address is
then masked with the two’s complement contained in the HAT
table and compared with the base physical addresses of all
devices associated to the virtual machine. If one comparison
is true then the machine address is valid and the request is sent
to the target device. In contrast, if no comparison is true then
the request is considered as an internal access, and therefore
will be issued with a physical address contained in the clusters
allocated to the virtual machine. If this address is not valid, i.e.
that initially it was targeting an unauthorized device, it will be
routed to the default component of the cluster and an error will
be returned to the core as a bus error; this error indicates to the
operating system that the core tried to access a non-existing
address.

V. HYPERVISOR BASIC FUNCTIONALITIES

A. Clusters Allocation

When the user makes a request to start a virtual machine,
the hypervisor allocates the requested number of clusters for
this virtual machine, and for that must find a free set of
clusters. Furthermore, in order to avoid that a given virtual
machine can interfere with another, we made the choice to
allocate only a contiguous and convex set of clusters to a
virtual machine. Indeed, since two virtual machines share the
same global network (L1/L2 network), a lot of traffic generated
by a certain virtual machine could potentially degrade the
performances of another virtual machine (this is discussed in
section VI-F).

Figure 13 illustrates how a non-convex allocation can result
in a traffic interference between two virtual machines.

Free Cluster

I/O Cluster

VM-1 Cluster

VM-2 Cluster

Router

Overloaded Router

Request from VM-1

Request from VM-2

Figure 13. Non-Convex Clusters Allocation

This choice also has two other advantages: first, it allows
to give the operating system a simple 2D-mesh topology
which corresponds to reality, therefore respecting its locality
heuristics; second, it requires few data to represent an allocated
set of clusters, which is important given that the hardware will
be involved in resource management. Of course, this implies
that some values for clusters cannot be treated well (typically
high prime numbers), but we can suppose that the demanded
values are reasonable, either because only some of them are
proposed to clients or because a higher level layer “rounds up”
the demanded value to match a proposed value.

Clusters Allocation Algorithm. The algorithm for clusters allo-
cation is described in figure 14. It is composed of two parts. In
the first part (line 5), we enumerate all the (x, y) values so that
x× y equals the required number of allocated clusters n; This
can be done in two ways: either enumerate all x values, then
compute y = n/x and check that x × y = n; or have a pre-
computed table of possible configurations (possibly indexed
by n), which makes it easier to explore the best configurations
first (i.e. those for which x and y are close). In the second
part, we check all possible placements (lines 8-9) and check
the availability of such placements (lines 11-18).

B. Peripherals Allocation

The external access mechanism provided by the HAT
allows a virtual machine to access specific channels of the
IOC and the TTY. Each channel contains a set of addressable



1 bool a l l o c a t e ( i n t t a b [ X_SIZE ] [ Y_SIZE ] , i n t n ,
i n f o _ s ∗ i n f o ) {

2 i f ( n >= X_SIZE ∗ Y_SIZE | | n <= 0) {
3 re turn f a l s e ;
4 }
5 f o r ( ( i , j ) such t h a t i ∗ j = n ) {
6 / / T r y i n g t o f i n d i ∗ j f r e e c l u s t e r s
7 / / on t h e mesh
8 f o r ( i n t k = 0 ; k <= X_SIZE − i ; k ++) {
9 f o r ( i n t l = 0 ; l <= Y_SIZE − j ; l ++) {

10 / / T r y i n g c o r n e r ( k , l )
11 bool ok = t rue ;
12 f o r ( i n t u=k ; u < k+ i && ok ; u ++) {
13 f o r ( i n t v= l ; v < l + j && ok ; v ++) {
14 i f ( t a b [ u ] [ v ] != 0 ) {
15 ok = f a l s e ;
16 }
17 }
18 }
19 i f ( ok ) {
20 i n f o −>x = k ;
21 i n f o −>x _ s i z e = i ;
22 i n f o −>y = l ;
23 i n f o −>y _ s i z e = j ;
24 re turn true ;
25 }
26 }
27 }
28 }
29 re turn f a l s e ;
30 }

Figure 14. Clusters Allocation Algorithm. tab is the cluster occupation table,
n the number of clusters required, and info the returned informations

registers independent from the others. Each channel of the IOC
also contains a hard drive disk comprising the operating system
instance: image of the operating system, its file system, and
its associated bootloader. Only one of each operating system
instance can be run at a time, and in our prototype it is selected
in the hypervisor command to launch a new instance.

The association between an instance I and the allocated
clusters is used by the hypervisor to configure the PIC:
the interruptions outgoing from a channel are routed to the
PIC, which must trigger software interrupts towards an XICU
located in a cluster allocated to the same instance I , which in
turn converts it to a hardware interrupt.

C. Cyphered Disk and File System

In our architecture, the disk images, comprising the kernel
and the file system, are cyphered with a key which is specific
to the user and which can be obtained from a password. During
a virtual machine lifetime, this key is stored inside the memory
of that virtual machine. The kernel needs to be deciphered by
the bootloader at the start of the virtual machine, and the file
system is deciphered by the kernel every time a new block is
read from the hard drive disk. Similarly, every time a block is
written back on the disk, it needs to be cyphered with the key.

All the major cryptographic computations are made by a
secure cryptographic coprocessor integrated into the architec-
ture, and called HCrypt [30].

Figure 15 shows in details the procedure required to create
the cyphered disk. The first step is to encrypt the kernel and
the file system. For this, the HCrypt is requested to generate
a key K1: this key is the main user key used for encryption
of the different elements of the disk image (steps 1, 2, 3).

The second step is to create a binary structure containing
the elements allowing to retrieve the cryptographic key K1

when running the bootloader. For this, two values are randomly
generated: an Initialization Vector (IV) and a Salt. The Salt
is combined with the user password in the PBKDF-2 [31]
cryptographic function, which outputs a 256-bit key. This key
is then separated into two parts: the 128 most significant
bits are used as an Authentication Key (Auth Key) while the
128 least significant bits are used as a session key EM (K2)
for encrypting the key K1. The 128 least significant bits are
called EM (K2) because when a session key is loaded into
the HCrypt, the latter expects to receive an encrypted key and
internally decrypts this key with its master key. Similarly, the
HCrypt generates only encrypted session keys, so that reading
this key alone is not sufficient to decipher data. Then the IV
and EM (K2) are loaded in the HCrypt and the session key
EM (K1) can be encrypted. The HCrypt outputs the encrypted
session key K1: EK2

(EM (K1)). This encrypted key is then
stored in a binary structure with the IV, the Auth Key and the
Salt (steps 4, 5, 6, 7).

This binary structure, called Struct Keys, is finally stored
in the disk image, and will be used by the bootloader to allow
the disk decryption (8).
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Figure 15. Cyphered Disk Creation Procedure

Figure 16 shows the procedure required for the decryption
of the cyphered disk, which takes place at the start of a virtual
machine. The decryption procedure of the disk is shown in
Figure 16, and must be performed by the bootloader.

The Struct Keys contained in the hard drive disk is read
once the user password is entered. The bootloader executes
the PBKDF-2 function with the Salt contained in the structure
and the entered password. The 128 most significant bits are
then compared to the Auth Key of the Struct Keys to check
the password validity. If the entered password is wrong, then
the bootloader stops. Otherwise, EM (K2) is loaded into the
HCrypt as a session key, and the IV is loaded as well, allowing
to decipher EK2

(EM (K1)) (steps 1, 2, 3, 4).



Once deciphered, EM (K1) is loaded inside the HCrypt and
stored in memory, for the operating system be able to decipher
other hard drive disk data – e.g. applications or images –
without asking for the user password every time (step 5).

Finally, the bootloader decrypts the kernel and stores it
in memory, after what it is able to execute the boot of
the operating system (steps 6, 7). The user key EM (K1) is
unloaded from the HCrypt after every operation.
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Figure 16. Cyphered Disk Decryption Procedure

D. Virtual Machine Boot Procedure

The virtual machine boot procedure can be divided in five
steps:

• (1) Clusters allocation;

• (2) Channel allocation for external peripherals;

• (3) Generation of the virtual machine architecture
description;

• (4) Isolation of the clusters allocated;

• (5) Awakening of the cores allocated: this must be
done by the hypervisor, by sending an Inter-Process
Interrupt (IPI).

The problem with this sequence is located in the steps 4
and 5: since the hypervisor is executing on another cluster, it
cannot send an IPI to an isolated virtual machine. However,
the isolation in step 4 cannot be done after step 5 since it
would mean that a virtual machine starts in a non isolated
environment.

The main idea for solving this problem is to make each
core contained in the clusters allocated to the future virtual

machine execute a hypervisor code (startup code) whose role
is to configure the HAT to isolate the virtual machine.

Figure 17 shows in more details the steps of the boot
process.
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Figure 17. Virtual Machines Boot Procedure

First, a user requests the hypervisor to deploy a new virtual
machine via the hypervisor shell. The user specifies which
operating system instance he wants to boot and the size, in
clusters, desired for its virtual machine. The hypervisor core,
Chyp then searches for a set of free clusters and allocates them
to the new virtual machine. After that, the hypervisor generates
a Device-Tree binary file representing the architecture on
which the virtual machine is deployed – number of memory
banks, cores and channels allocated to the virtual machine.
The hypervisor routes the interruption lines of the peripherals
associated to the virtual machine and then wakes up the
bootstrap core of the virtual machine C0−VM via an Inter-



Process-Interrupt.

Once awakened, the C0− VM jumps to the startup code.
Since it is the first core to execute this code, it must perform
general configurations.

Second, it must load from the disk of the virtual machine
the encrypted bootloader and kernel of operating system. Then,
he must copy the description of the architecture of the virtual
machine created by the CHyp core in the memory of the virtual
machine.

Third, it must configure all the HATs of the virtual ma-
chine: those of cores, DMA controllers and external periph-
erals. For the peripherals, the C0−VM must also activate the
HATs after configuration.

Finally the C0−VM activates its own HAT and jumps to
the bootloader of the operating system.

One of the actions of the bootloader is to ask the user
password and then decrypt the kernel of the operating system
as see in the figure 16 at the section V-C.

The other cores of the virtual machine are woken up by
the operating system at the end of the bootloader, and only
have to activate their HAT.

E. Virtual Machines Shutdown Procedure

Our proposed virtual machine shutdown mechanism aims at
proposing an interface for stopping a running virtual machine,
accessible either by the hypervisor, or by the virtual machine
itself. We do not make assumptions here on the reasons why
the hypervisor would terminate a virtual machine, but provide
this service and guarantee that once called, this procedure will
terminate the virtual machine and clear all of its footprints.
In our prototype, a hypervisor shell command allows to call
this procedure, as well as a system call added in the operating
system we use.

The shutdown procedure is based on two hardware modules
and a software procedure. The two hardware modules allowing
to achieve the shutdown procedure are the Shutdown Virtual
Machine Controller (SVM Controller) and the Shutdown Vir-
tual Machine Agent (SVM Agent). They guarantee that the
virtual machine will be stopped at the end of the process.

The SVM Controller is the master module, seen by the
hypervisor, and which can initiate the shutdown procedure.
The SVM Controller delegates to the SVM agents the tasks
required for the shutdown. SVM Agents are replicated in all
the clusters, except the one running the hypervisor.

Figure 18 shows the steps required for the shutdown of
a virtual machine. Four entities are involved: the core CHyp,
the SVM Controller, SVM Agents and the cores in the virtual
machine.

First, the hypervisor sends a request to the SVM Controller
indicating the instance number of the virtual machine he wants
to stop. The SVM Controller checks the virtual machine state,
and computes which SVM Agents it must contact. Then, it
sends a message to these SVM Agents in charge of the virtual
machine. The SVM Controller is thus a priori able to access to
the devices of all virtual machines, but the hardware guarantees
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Figure 18. Virtual Machine Shutdown Procedure

that the only addresses it can emit are those from the SVM
Agents.

When the SVM Agents receive the message from the SVM
Controller, they activate the Soft Reset signal. This signal is a
wired signal between a SVM Agent and all the cores inside the
same cluster. This makes cores to jump at their reset address
(0xBFC00000 for MIPS cores).

The first instructions in the reset code check the cause of
the reset via the processor status register. If the cause is a soft-
reset, the core executes a specific hypervisor code (shutdown
code) in order to stop the virtual machine.

The first instructions of the shutdown code synchronize
pending writes, i.e. they ensure that all memory accesses of
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the virtual machine outgoing from cores are completed. Then,
it ensures that devices have finished all their pending requests,
e.g. currently undergoing disk accesses. This is because we
have to make sure that disk accesses are complete before
freeing the memory of the virtual machine, otherwise it could
lead to information leakage.

Then, this code must clear the memory banks allocated to
the virtual machine, so as to ensure the privacy property of the
virtual machine data. Finally, it must invalidate the content of
all L2 caches contained in the clusters allocated to the virtual
machine. This invalidation must be done to avoid memory
coherency issues.

Once this shutdown code is executed, the cores of the
virtual machine send a signal to the SVM Agent of their
cluster, indicating that the procedure is completed, and wait
for the other cores to finish. Once the SVM Agent receives
the signals from all its cores, it deactivates all the HATs
in the virtual machine: those of cores, DMAs and allocated
peripherals. Once all the HATs are deactivated, the SVM Agent
sends a message to the SVM Controller indicating that the
shutdown of the cluster is done. After this step, the HATs can
anew be configured by the hypervisor.

When the SVM Controller receives a message from all
the SVM Agents associated with the virtual machine, it raises
an interrupt to the hypervisor in order to notify that the
virtual machine has been stopped. The hypervisor updates the
status of the virtual machine and its allocation information,
thus allowing the clusters to be allocated for another virtual
machine.

As this procedure does not need the cooperation of the
virtual machine, it can potentially be used as an emergency
shutdown by the hypervisor. The SVM Controller is simply
seen by the virtual machine as a standard device. A channel is
then allocated in the SVM Controller for every running virtual
machine, like for other devices (e.g. hard drive disk).

The hardware cost required for one SVM Agent is 51 bytes
of memory (47 bytes for internal registers and 4 bytes for
configuration registers), and it is 34 + N × 5 bytes for the
SVM Controller (34 bytes for internal registers and 5 bytes for
each of the N configuration entries), where N is the maximum
number of running virtual machines on the platform – typically
the number of clusters.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The architecture is described in SystemC at the cycle-
accurate level using the SoCLib components library [32]. Oper-
ating system instances are run via a hypervisor terminal, which
also allows to switch between the displays of all instances.

A. Applications

Applications used for evaluations are FFT from the Splash-
2 suite [33], Histogram and Kmeans from the Phoenix-2
benchmark suite [34], and Convol, which is an image filtering
program performing a 2-dimensional convolution filter. Table I
shows the configuration for each application.

Table I. APPLICATIONS PARAMETERS

Application Input Data
Histogram 25 MB image (3,408 × 2,556)
Convol 1,024 × 1,024 image
FFT 218 Complex Points
Kmeans 10,000 points

All these benchmarks have been run over an operating
system called ALMOS [35], which is developed in our lab-
oratory. It is a UNIX-like research operating system dedicated
to manycore architectures.

Although we only ran ALMOS instances, we could have
used other operating systems such as Linux or NetBSD. Our
hardware solution makes no assumption about the operating
system used, and the reason for using only one type of
operating system is to avoid porting other operating systems
on the TSAR architecture (independently from the extensions
presented here).

B. Performance Overhead Results

This section evaluates independently three sources of possi-
ble overhead: the overhead added by the HATs, the overhead
resulting from the simultaneous execution of several virtual
machine, and the overhead due to the encrypted file system.

HAT Overhead. Figure 19 shows the execution times with the
Tsunamy platform for the 4 considered benchmarks. These
times are normalized per number of cores and per application
w.r.t. times on the TSAR architecture.



This experiment aims at measuring the extra time induced
by the addition of HATs in the architecture, this is why a
comparison is made with the same configuration on the TSAR
architecture. Each application has been run on configurations
with 1, 4, 8, 16 and 32 threads, in which each thread was
deployed on a dedicated core. For all the configurations, only
one virtual machine is deployed on the platform.

For this evaluation, the times measured correspond to the
parallel phase of applications, because the way the external
devices are accessed is different from the reference TSAR
platform. In particular, measuring times corresponding to the
load of a file would actually measure the impact of the
external I/O cluster – which directly accesses the memory,
and requires flushing the L2 caches. Nevertheless, we made
these measurements for the whole application runtime, and
they barely differ (we discuss them below). The reason why
we used a different platform for the TSAR simulations is
that the I/O cluster requires 40-bit physical addresses, which
are not supported by ALMOS. The Tsunamy architecture,
despite having 40-bit physical addresses, allows the execution
of 32-bit operating systems thanks to the presence of HATs
(c.f. section IV-C). Ongoing work in the hypervisor targets
the generation of architecture information in the device-tree
format, so as to make it possible to execute Linux and NetBSD
on the Tsunamy architecture. This will allow to compare the
overhead of the Tsunamy enhancements alone, although they
are expected to be very close.

From all the applications, the maximum overhead is 15%
on Convol on 32 cores, and the maximum gain happens on
FFT with 8 cores. Although the addition of HAT modifies
the interleaving of transactions and is expected to produce
small variations, we are not currently sure how such a gain is
possible, and are investigating this result. However, on average,
our solution shows an overhead of 3.2% for all the different
configurations and applications, which seems acceptable to us
given the security guaranties.

Virtual Machine Interference. These experiments aim at deter-
mining whether concurrently executing virtual machine can
degrade their respective performance because of interferences
on the global network. Because of the topology constraints, we
expect this degradation to be null in the absence of external
peripheral accesses. In order to verify this, we execute 15
virtual machines in parallel (one per cluster), running the same
application on four cores, and compare their execution time
with the same application running on a single-cluster virtual
machine solely running on the architecture. Figure 21 shows
these relative execution times for the whole application, while
figure 22 shows the parallel phase of the application.

These results highlight the facts that in the absence of
massive I/O accesses, the execution times remain exactly the
same. The initialization phase of histogram, which loads a
25MB image, creates a lot of contention on the hard drive
disk, which contains only one initiator and target interface
(despite having 16 channels). Indeed, all the blocks from the
15 images are serialized when they are copied into memory.
Moreover, the load phase represents a non-negligible portion
of the total application time, even with a single thread. This
result was expected, and to overcome this bottleneck, having
several physical disks or a multi-port controller seems the only
solution.

0

0.5

1

1.5

2

2.5

FFT Histogram Kmeans Convol

E
xe

cu
tio

n 
tim

es
 fo

r 1
5 

vi
rt

ua
l m

ac
hi

ne
s

no
rm

al
iz

ed
 w

.r.
t. 

tim
es

 w
ith

 1
 v

ir
tu

al
 m

ac
hi

ne

Figure 21. Average total execution time of 15 applications running in parallel
(1 per VM), compared to a solely running application. Error bars represent
the standard deviation for the 15 virtual machines.
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Figure 22. Average parallel execution time of 15 applications running in
parallel (1 per VM), compared to a solely running application. Error bars
represent the standard deviation for the 15 virtual machines.

Cyphered File System. In order to evaluate the overhead in-
troduced by the encrypted file system, we made a micro-
kernel accessing consecutively 1000 pages from the disk, and
compared its execution time with and without the encrypted
file system. The page fault with the encrypted file system
requires an on-the-fly decryption of the page using the HCrypt,
which can process 128 bits of data in 11 cycles. The results
show that the version with the encrypted file system is 1.3
times slower. We can note that this worst case scenario is
emphasized by the fact that our hard drive disk model has
no latency, thus making the deciphering part take a bigger
proportion of the page fault resolution than what it would
normally with a realistic latency.

Figure 20 shows this overhead, measured in processor cy-
cles, for 4 applications (FFT, Histogram, Kmeans and Convol).
To this end, we also compare, for a given application and
number of cores, the total execution time with the encrypted
file system to the same configuration without the encrypted
file system. Each application is run with 1, 4, 8, 16 and 32
threads on dedicated cores. Again, only one virtual machine
is deployed for all configurations.

For the applications FFT and Kmeans, the introduction of
the encrypted file system does not impact performance; in fact,
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Figure 20. Execution Times for Cyphered File System Normalized w.r.t. Times with Plain Text File System

these benchmarks are not making any access to the hard drive
disk, apart from instruction related page faults.

For Convol, the overhead induced by the encrypted file
system is on average 1.5%. Even if this application accesses
the hard drive disk to load the image to be processed (which
takes 2 MB), the loading time of the image only represents a
few percentage of the computation time, so the performance
degradation remains modest.

For Histogram, the overhead induced by the encrypted file
system is larger than with others applications, since the image
loading time represents the major part of the application, as the
processing is very limited. We note that the overhead decreases
with the number of processors used by the applications, what
is due to the fact that within ALMOS, the disk accesses are
sequentialized. The overhead induced by deciphering the disk
– about 3000 cycles per access – is irrelevant compared to the
overhead induced by the serialization of disk accesses.

We can thus conclude that our proposed file system en-
cryption mechanism does not impact applications which do
not access the disk; and for applications using the disk, that
the overhead is acceptable.

Other experiments are currently in progress to measure
the cost of a software cryptographic solution integrated in the
operating system, in order to evaluate if such a solution is
prohibitive.

C. Hypervisor complexity

Table II shows the size, in lines of code, of the different
parts of our hypervisor implementation. It comprises a total
of 3.8K lines of code, excluding comments, which is good
regarding the small footprint property. Our hypervisor is sepa-
rated into two main parts: the kernel and the user part. In our
case, only the kernel part has to be trusted: in particular the
critical functions making the HAT configuration, the boot and
the shutdown procedures. These functions have in average 140
lines of code.

D. Boot Procedure Results

Figure 23 shows the execution time of the boot procedure
of a virtual machine on a variable number of clusters. This
time is measured from at the beginning of the sequence,
i.e. when the run command is entered on the shell, to the
awakening of all cores of the virtual machine. The average time

Table II. HYPERVISOR COMPLEXITY IN LINES OF CODE (LOC)

Function LoC
Kernel 2671
Hat configuration 118
Boot procedure 141
Shutdown procedure 163
Shell 739
Total 3811

to boot a virtual machine is 1.6 millisecond for a processor
clocked at 1GHz. We can notice that the boot sequence is
almost independent from the number of clusters allocated to
the virtual machine. This can be explained by the fact that
when more clusters are allocated to a virtual machine, the
boot mechanism only has to configure a few more components.
In the figure 24, we can notice that the majority of the time
taken by the boot sequence is for executing the first step of
the bootloader (initialization, kernel deciphering, and cores
awakening) and for loading into the RAM the bootloader and
the kernel. These two steps are totally independent from the
size of the virtual machine, thus explaining the almost constant
time. In the figure 25, we have suppressed the bootloader step,
and we can notice that the device-tree generation and hardware
configuration steps are dependent from the size of the virtual
machine, but still represent a negligible overall time.

0

0.5

1

1.5

2

0 1 2 4 8
0

0.5

1

1.5

2

N
um

be
r o

f c
yc

le
s 

(x
 1

06 )

T
im

e 
at

 1
G

hz
 fr

eq
ue

nc
y 

(m
s)

Number of clusters allocated to a virtual machine

Figure 23. Execution time for virtual machine boot depending on the number
of clusters
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Figure 24. Breakdown of elapsed time during the boot procedure, depending
on the number of clusters
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Figure 25. Breakdown of elapsed time during the boot procedure excluding
the bootloader part, depending on the number of clusters

E. Shutdown Procedure Results

Figure 26 shows the execution time of the shutdown pro-
cedure of a virtual machine on a variable number of clusters.
This time is measured from the beginning of the sequence,
i.e. when the stop command is entered on the shell, to the
reception by the hypervisor of the interruption resulting from
the shutdown of the virtual machine. For this experiment, we
used 64MB RAMs for each cluster. The average time to stop
a virtual machine is 140 milliseconds. We can notice that
the shutdown mechanism is not dependent on the number of
clusters allocated to the virtual machine. This is because the
shutdown procedure is distributed, and all the clusters work
in parallel and clean their own resources. In addition, the
shutdown is obviously dependent on the size of the RAM
on each cluster: the reset of the memory used by the virtual
machine takes 99.9% of the time required to shutdown a virtual
machine. As the capacity of the memory increases, this reset
can only be longer. The 64 MB used for the experiments are
clearly under a real memory size – 1 GB per cluster would
be more realistic – but this phase is already parallel and using
DMAs, so the only way to speed it up would be to use a
memory with a hardware reset extension. No breakdown is
provided on figure 26 as only the RAM reset part would be
visible.
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Figure 26. Execution time for virtual machine shutdown depending on the
number of clusters

F. Discussion

Denial of service attacks. The topology constraints for cluster
allocation makes it impossible for a virtual machine to overload
the routers of another virtual machine by accessing memory.
Yet, we have run such an experiment (not detailed here), for
which the maximum degradation that we managed to obtain
was 30%. The round-robin policy of the routers guarantees a
minimum throughput for each direction, provided the target
module is consuming the requests. This value as a worst case
scenario seems acceptable; however, the experiments showed
that by that by the means of peripherals, the performance
degradation could be worse. Even though, these results have
to be mitigated, since they can be obtained only when several
virtual machines cooperate to degrade the performance of
another one. This is because the disk controller has a round-
robin policy between the channels (i.e. virtual machines) on
its initiator port. The worst case scenario would happen for
a target virtual machine making only disk accesses, when 14
other virtual machines would also access the disk constantly
to slow it down. The theoretical maximum degradation is a
factor 15 (the disk can transfer the blocks of the same virtual
machine only one 15th of the time), and the maximum value
obtained through simulation for this experiment is a factor of
6.1.

HAT entry types. The proposed HAT modules contains two
distinct mechanisms for translation, virtual machine-based if
the access is internal, and segment-based if the access targets
an external peripheral. This choice was made in order to keep
the HAT light, by providing a unified translation mechanism
to the majority of segments that would require a lot of entries
otherwise. However, we could question this choice and have
only segment-based entries in the HAT. The main advantage
of doing so would be the augmented flexibility in the clusters
allocated, which would not need to be contiguous or convex,
but instead could be any subset of clusters. On the downside,
letting apart the longer configuration time, the main drawback
would be that the number of entries in a HAT module would
depend on a maximum number of clusters possibly allocated to
a virtual machine. More precisely, the HAT currently contains
K entries of 8 bytes for global peripherals (for instance we
use K = 5); using only segment-based entries would require
K+N×4 entries of 8 bytes, where N is the maximum number



of clusters possibly allocated, and 4 is the number of entries
per cluster: one for the RAM segment, one for the DMA, one
for the XICU and one for the SVM controller.

Kernel or File System Corruption. Since the kernel and the
file system are not authenticated, it could be possible for an
attacker to change small parts of data on the disk, resulting
in undefined behaviours. To prevent such attacks, it would be
possible to use a hardware enhanced disk controller, which
provides a service of storing per-block metadata; these data
could contain a key-dependent hash of the block, which would
be re-computed and checked by the disk driver on each
block access. However, we believe that such attacks have
little chances to result in a useful effect, for example leeking
information. Indeed, in the case of kernel code, this will most
likely result in an exception and a denial of service, effect that
the attacker could already have by modifiying the disk image.

Bootloader Replacement. As the bootloader is in clear in
memory, there is a possibility for an attacker to replace this
highly critical code in order to pretend to be the bootloader and
get the password entered. The actual solution does not adress
this problem, and supposes that the bootloader code cannot be
corrupted. However, future work intends to authenticate this
code in order to prevent such attacks.

VII. CONCLUSION

This article presented a mixed hardware/software solu-
tion allowing to execute physically isolated virtual machines
comprising an unmodified operating system on a manycore
architecture. The solution uses a third address space to achieve
isolation, and induces a light hardware overhead for achieving
machine to physical address translation. The virtual machines
can execute directly on the hardware without the intervention
of the hypervisor and on a various number of clusters, while
keeping advantage of the hardware cache coherence mech-
anism of the architecture. This results in a very low time
overhead – typically 3% – as well as a light hypervisor of
less than 4,000 lines of code.

Future works include the achievement of a demonstration
platform running simultaneously different operating systems
families, namely NetBSD and ALMOS.
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