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éum national d’histoire naturelle, 75005 Paris, France

séum national d’histoire naturelle, UMS 2700, 75005 Paris, France
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A B S T R A C T

Both Ebolavirus and Marburgvirus were detected in several fruit bat species of the family

Pteropodidae, suggesting that this taxon plays a key role in the life cycle of filoviruses.

After four decades of Zaire Ebolavirus (ZEBOV) outbreaks in Central Africa, the virus was

detected for the first time in West Africa in 2014. To better understand the role of fruit bats

as potential reservoirs and circulating hosts between Central and West Africa, we examine

here the phylogeny and comparative phylogeography of Pteropodidae. Our phylogenetic

results confirm the existence of four independent lineages of African fruit bats: the genera

Eidolon and Rousettus, and the tribes Epomophorini and Scotonycterini, and indicate that

the three species suspected to represent ZEBOV reservoir hosts (Epomops franqueti,

Hypsignathus monstrosus, and Myonycteris torquata) belong to an African clade that

diversified rapidly around 8–7 Mya. To test for phylogeographic structure and for recent

gene flow from Central to West Africa, we analysed the nucleotide variation of

675 cytochrome b gene (Cytb) sequences, representing eight fruit bat species collected

in 48 geographic localities. Within Epomophorina, our mitochondrial data do not support

the monophyly of two genera (Epomops and Epomophorus) and four species (Epomophorus

gambianus, Epomops franqueti, Epomops buettikoferi, and Micropteropus pusillus). In

Epomops, however, we found two geographic haplogroups corresponding to the Congo

Basin and Upper Guinea forests, respectively. By contrast, we found no genetic
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1. Introduction

Filoviruses contain Ebolaviruses and Marburgviruses
that have caused many hemorrhagic fever outbreaks in
sub-Saharan Africa since a few decades, resulting in high
case-fatality rates (25–90%) in humans and other primates,
such as chimpanzees and gorillas. To date, six filoviruses
were described in Africa, including four Ebolaviruses
(Zaire, Sudan, Taı̈ Forest, and Bundibugyo) and two
Marburgviruses (Marburg and Ravn) [1,2] (Fig. 1). Two
filoviruses were also detected outside of Africa: the Reston
Ebolavirus in healthy humans and ill animals (macaques
and domestic pigs) in the Philippines and China [3,4], and
the Lloviu Cuevavirus, which caused massive die-offs in
cave colonies of Schreiber’s bat (Miniopterus schreibersii) in
France, Spain, and Portugal in 2002 [5].

Since the 1970s, researchers have sampled thousands of
arthropods and vertebrates to detect the presence of anti-
filovirus antibodies or a direct evidence of filoviruses (RT-
PCR or isolation) [2,6,7]. In 2005, Leroy et al. [8] provided
the first molecular evidence that fruit bats may be the
reservoir hosts for Zaire Ebolavirus (ZEBOV): the virus was
detected by RT-PCR in several wild-caught and apparently
healthy fruit bats belonging to three species of the family
Pteropodidae: Epomops franqueti (Franquet’s epauletted

fruit bat), Hypsignathus monstrosus (hammer-headed fruit
bat), and Myonycteris torquata (little collared fruit bat).
Subsequently, bats have been intensively studied to better
understand their role in the maintenance, transmission,
and evolution of filoviruses. Two years after, Marburg virus
was detected, using both specific antibodies and RT-PCR, in
Egyptian fruit bats (Rousettus aegyptiacus) collected in
northeastern Democratic Republic of the Congo (DRC) and
Gabon [9]. In 2009, Towner et al. [10] isolated the virus
from five R. aegyptiacus found in Kitaka Cave (Uganda), and
detected highly divergent viral genomes (21%) corres-
ponding to both Marburg virus and Ravn virus in the same
colony, lending additional support to the idea that
R. aegyptiacus represents a major reservoir host for
Marburgviruses. The geographic distribution of
R. aegyptiacus overlaps with that of Marburg and Ravn
outbreaks.

The geographic range of the three species of Pteropo-
didae identified as potential host reservoirs of ZEBOV
coincides with that of Ebola outbreaks (Fig. 1), but to date,
no live Ebolavirus has been isolated from any bat.
Therefore, it is difficult to know if they are the primary
source of infection for this virus or if they are only involved
with secondary transmission of infection to other species.
Fruit bats seem, however, to play an important role as

differentiation between Central and West African populations for all species known to

make seasonal movements, Eidolon helvum, E. gambianus, H. monstrosus, M. pusillus,

Nanonycteris veldkampii, and Rousettus aegyptiacus. Our results suggest that only three

fruit bat species were able to disperse directly ZEBOV from the Congo Basin to Upper

Guinea: E. helvum, H. monstrosus, and R. aegyptiacus.

� 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

Fig. 1. Location of Ebola hemorrhagic fever (circles) and Marburg hemorrhagic fever (green squares) outbreaks. The four species of Ebolaviruses are

distinguished by colours: red for Zaire (ZEBOV), blue for Sudan, white for Taı̈ Forest, and yellow for Bundibugyo. The tropical and subtropical moist broadleaf
forests are highlighted in green (http://www.worldwildlife.org/science/wildfinder).
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ervoir host of both Marburgviruses and Ebolaviruses.
ticularly relevant is the fact that anti-Ebolavirus
ibodies have been detected in five other fruit bat
cies in Africa: Eidolon helvum (African straw-coloured
t bat), Epomophorus gambianus (Gambian epauletted
t bat), Micropteropus pusillus (Peter’s dwarf epauletted
t Bat), Nanonycteris veldkampii (Veldkamp’s bat), and
aegyptiacus [11,12], as well as in the Asiatic

leschenaultii (Leschenault’s rousette) in Bangladesh
] (taxa highlighted in Fig. 2).
Because of the massive outbreak in West Africa (Guinea,
eria and Sierra Leone) in 2014–2016, it is crucial to
w which fruit bat species might serve as potential

ervoirs and circulating hosts of ZEBOV from Central
ica to West Africa or vice versa. Indeed, after four
ades of ZEBOV outbreaks in Central Africa, it was only in
4 that ZEBOV was detected in a country other than DRC,
on and Republic of the Congo (Congo). Of the 39 fruit

 species currently described on the African mainland,
y 13 are present in West Africa, where they can be found
ainforests and forest-savannah mosaics [14,15]. Fur-
rmore, phylogeographic analyses have shown that
ee species are in fact endemic to West Africa, i.e.
galoglossus azagnyi (western Woermann’s fruit bat),
onycteris leptodon (western little collared fruit bat), and
tonycteris occidentalis (Hayman’s tear-drop fruit bat)
,17]. The species Epomops buettikoferi (Buettikofer’s
uletted fruit bat) is also considered endemic to West
ica [14,15], but no molecular data are currently
ilable for this taxon. Of the nine species distributed
oth West and Central Africa, only four species have

n analysed for phylogeography structure, including the
y rare Casinycteris ophiodon (Pohle’s fruit bat) [17], as
ll as E. helvum [18], Myonycteris angolensis (Angolan
t bat) [16], and R. aegyptiacus [19].
Here, we analysed the molecular phylogeography of
ican fruit bats of the family Pteropodidae to better
erstand their potential role as reservoirs and circulat-

 hosts between Central and West Africa. The complete
ochondrial Cytb gene was sequenced for different
ulations of the following eight species to test for
logeographic structure and recent gene flow from
tral to West Africa: E. helvum, E. gambianus,

buettikoferi, E. franqueti, H. monstrosus, M. pusillus,
eldkampii, and R. aegyptiacus. Among these taxa, two

 supposed to be the reservoir hosts of ZEBOV, i.e.
anqueti and H. monstrosus [8], whereas R. aegyptiacus is
sidered to be the major reservoir host for Marburgvi-
es [10].

aterials and methods

 Taxonomic sampling

Most of the fruit bat samples analysed in this study
re collected by the authors using mist-nets (Ecotone,
nia, Poland) during field trips to Cameroon (AH),
tral African Republic (AH, CN, EN and NN), Gabon (AH,

and XP), Ivory Coast (BK and NN), Katanga Province of
 DRC (AH, CPS, DT and NN), Liberia (BK), Orientale

Province of the DRC (AH, GCG and PMA), Republic of the
Congo (EL and XP), and Senegal (XP). Fruit bat species were
identified morphologically using the key of Bergmans
[20]. In addition, several tissue samples were obtained
from specimens housed in the following museums:
‘Muséum national d’histoire naturelle’ (MNHN; Paris,
France), ‘Muséum d’histoire naturelle’ of the City of
Geneva (MHNG; Switzerland), and ‘Naturmuseum Senc-
kenberg’ (SMF; Frankfurt, Germany). Names and geo-
graphical coordinates of all sampled localities are provided
in Appendix A (Supporting information).

The number of individuals sequenced per species was
50 for E. helvum, 59 for E. buettikoferi, 14 for Epomops sp.

(buettikoferi or franqueti) from West Africa, 146 for
E. franqueti from Central Africa, 1 for Epomops dobsonii,
1 for Epomophorus anselli, 1 for Epomophorus crypturus,
12 for E. gambianus, 1 for Epomophorus labiatus, 1 for
Epomophorus minimus, 76 for H. monstrosus, 79 for
M. pusillus, 26 for N. veldkampii, 1 for Plerotes anchietae,
and 47 for R. aegyptiacus (Appendices A and B). Eight Asian
species were also sequenced for phylogenetic and molec-
ular dating analyses (Fig. 2).

2.2. Molecular methods

Total DNA was extracted from muscle or patagium
samples using DNeasy Tissue Kit (Qiagen, Hilden,
Germany). The complete Cytb gene was amplified and
sequenced using the primers detailed in Nesi et al. [21] and
Hassanin [22]. The polymerase chain reactions (PCR) were
carried out in a volume of 20 ml containing 3 ml of PCR
buffer 10X with MgCl2, 2 ml of dNTPs (6.6 mM), 1 ml of each
of two primers (10 mM) and 0.1 ml of Taq polymerase
(2.5 U, Qiagen, Hilden, Germany). The PCRs were run using
the C1000 Touch thermal cycler (BIO-RAD) as follows:
4 min at 94 8C; the denaturation/annealing/elongation
process was set with five cycles of 30 s at 94 8C, 60 s at
60 8C, and 60 s at 72 8C, followed by 30 cycles of 30 s at
94 8C, 45 s at 50 8C, and 60 s at 72 8C. Final elongation
followed for 7 min at 72 8C. PCR products were sequenced
in both directions by the ‘Centre national de séquençage’
(Genoscope, Evry, France) or Eurofins MWG Operon
(Ebersberg, Germany). Sequences were edited and assem-
bled using Sequencher 5.1 (Gene Codes Corporation, Ann
Arbor, Michigan, USA). The 523 sequences generated for
this study were deposited in the GenBank database under
accession numbers KX822797–KX823319.

2.3. Phylogenetic and dating analyses

The Cytb dataset used for phylogenetic analyses
contains 1140 nucleotides and 92 taxa. Our new Cytb

sequences were compared to those available in GenBank
for other species of the family Pteropodidae (77 additional
sequences; Appendix B). Ten outgroup species were used
to root the pteropodid tree, representing three other
mammal orders, i.e. Pholidota (Manis javanica), Cetartio-
dactyla (Bos javanicus), Perissodactyla (Ceratotherium

simum), and seven other bat families, i.e. Emballonuridae
(Taphozous melanopogon), Hipposideridae (Hipposideros

armiger), Megadermatidae (Megaderma lyra), Natalidae
ease cite this article in press as: A. Hassanin, et al., Comparative phylogeography of African fruit bats (Chiroptera,
eropodidae) provide new insights into the outbreak of Ebola virus disease in West Africa, 2014–2016, C. R. Biologies
016), http://dx.doi.org/10.1016/j.crvi.2016.09.005
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Fig. 2. Chronogram of the family Pteropodidae based on complete mitochondrial cytochrome b gene sequences. Phylogenetic relationships and divergence

times were first estimated using BEAST. The phylogeny was also inferred using MrBayes (see text for details). The ten outgroup taxa are not shown. For each
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talus major), Nycteridae (Nycteris javanica), Phyllosto-
ae (Artibeus jamaicensis) and Rhinolophidae (Rhinolo-

nolophus luctus). DNA sequences were aligned on Se–
2.0a11 (http://tree.bio.ed.ac.uk/software/seal/).

Divergence times were estimated using the Bayesian
roach implemented in BEAST v.2.1.3 [23]. As no

ficiently accurate calibration point (fossil record or
geographic event) is available for the family Pteropo-
ae, divergence times were estimated using a molecular
bration point corresponding to the age of the most
ent common ancestor of Nyctimene and Pteropus

bfamily Pteropodinae in Fig. 2) estimated at
5 � 1.5 Ma in Meredith et al. [24]. We applied a GTR + I + G
del of evolution for each of the three codon positions (as
cted under jModelTest 2.1.7 using the Akaike information
erion [25]) and a relaxed-clock model with uncorrelated
normal distribution for substitution rates. Node ages were
mated using a calibrated Yule speciation prior and 108

erations, with tree sampling every 2000 generations, and
rn-in of 10%. Adequacy of chain mixing and MCMC chain

vergence were assessed using the ESS values in Tracer
6. The chronogram was reconstructed with TreeAnnota-
v.1.7.5 and visualized with FigTree v.1.4.1 (http://www.
.bio.ed.ac.uk/software/).

For comparison, phylogenetic relationships were also
rred using MrBayes 3.2.1 [26]. The posterior probabili-

 (PP) were calculated using four independent Markov
ins run for 10,000,000 Metropolis-coupled MCMC
erations, with tree sampling every 1000 generations,

 a burn-in of 25%.

 Population genetic analyses

Phylogeographic analyses were performed on eight
cies using mitochondrial Cytb sequences: E. buettikoferi,
franqueti, E. gambianus, E. helvum, H. monstrosus,
pusillus, N. veldkampii, and R. aegyptiacus. Mitochondrial
A is particularly suitable for phylogeographic studies
ause it evolves with high rates of substitution and is
smitted maternally without recombination. However,
ordant patterns between mtDNA and nuDNA markers

 arise when mitochondrial introgression occurred due to
ondary contact between closely related species, or when
ersal rates were higher in males than in females [17,21].

For each dataset, population genetic indices, including
ber of haplotypes (H), haplotype diversity (h) and

leotide diversity (p), were calculated from Cytb

uences using DNASP v5.10 [27]. Mean, minimum,
 maximum K2P distances were calculated with PAUP 4
]. Networks of Cytb haplotypes were constructed with

 median joining method available in PopART 1.5 (http://
w.popart.otago.ac.nz/) using equal weights for all
tations.

The genetic differentiation between pairs of popula-
tions (e.g., Central versus West Africa) was measured
using both Fst and GammaST calculated with DNASP
v5.10 [27].

3. Results

3.1. A Molecular timescale for pteropodid evolution

The Bayesian chronogram of Fig. 2 shows that species of
the family Pteropodidae can be divided into four major
clades (PP = 0.9 – 1) that we consider here as correspond-
ing to the subfamilies Pteropodinae, Cynopterinae, Macro-
glossinae, and Rousettinae. According to our molecular
dating estimates, these four groups diverged rapidly from
each other during the Early Miocene, between 19.5 and
17.8 Mya.

All fruit bat species of Africa belong to the subfamily
Rousettinae, except Eidolon helvum, a member of the
subfamily Pteropodinae that is closely related to
E. dupreanum (PP = 1), its congeneric species in Madagas-
car. The African species of the subfamily Rousettinae are
further subdivided into three robust clades (PP = 1), here
treated as three different tribes: (1) the tribe Scotonycte-
rini, which contains six African species arranged into two
genera, Scotonycteris and Casinycteris; (2) the tribe
Rousettini, which includes a single genus, Rousettus, with
only one African species, R. aegyptiacus, and several species
from Asia (R. amplexicaudatus and R. leschenaultii), Mada-
gascar (R. madagascariensis), and the Comoro Islands
(R. obliviosus); (3) the tribe Epomophorini sensu lato, a
large African clade composed of the four subtribes
Epomophorina (with species of Epomophorus, Epomops,
Hypsignathus, Micropteropus, and Nanonycteris), Myonyc-
terina (with species of Myonycteris and Megaloglossus),
Plerotina (Plerotes anchietae), and Stenonycterina (Steno-

Stenonycteris lanosus). Our molecular estimates suggest
that the three tribes Scotonycterini, Rousettini, and
Epomophorini diversified synchronously during the Late
Miocene, at around 8–7 Mya.

3.2. Phylogeographic networks

We analysed the nucleotide variation of 675 Cytb

sequences (Appendix A) to explore the phylogeography of
eight species of Pteropodidae. The number of sequences,
segregating sites, haplotypes, as well as haplotype
diversity, nucleotide diversity, and K2P distances are
described for each taxon in Appendix C. Finally, a network
of Cytb haplotypes was constructed for only six different
datasets (Fig. 3). Indeed, preliminary analyses revealed
that two pairs of species cannot be distinguished on the

e, the value in bold is the mean divergence time in millions years (grey bars indicate highest posterior density [HPD] intervals at 95%), whereas other

es correspond to posterior probabilities calculated using either BEAST (at the left of the slash) or MrBayes (at the right of the slash). The symbol ‘‘–’’

cates that the node was not found in the MrBayes analysis, but no alternative hypothesis was supported by PP > 0.8. The asterisk (*) shows that the node

 supported by PP > 0.95 in both Bayesian analyses. A dotted branch indicates that the node was not highly supported (PP < 0.8) in the two Bayesian

yses. African species are highlighted with red branches, and those found (even occasionally) in the rainforests, UG (Upper Guinea) and/or Gabon-DRC,

ndicated with green text. Red immunoglobulin symbols indicate taxa in which anti-ZEBOV antibodies were detected in previous studies (see main text
eferences). Pictures of Ebola virus show the three species from which ZEBOV RNA polymerase was sequenced [8].
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Fig. 3. Phylogeographic patterns of fruit bat species distributed in both West and Central Africa. Median joining networks based on cytochrome b

haplotypes were reconstructed for the six following datasets: (A) Micropteropus pusillus and Epomophorus gambianus (212 individuals); (B) Nanonycteris

veldkampii (27 individuals); (C) Epomops buettikoferi and Epomops franqueti (221 individuals); (D) Hypsignathus monstrosus (76 individuals); (E) Eidolon

helvum (88 individuals); (F) Rousettus aegyptiacus (51 individuals). The geographic distribution maps were extracted from the IUCN [14]. Localities of the

haplotypes were classified in nine biogeographic regions (see details in Appendix A): Senegal (orange), Upper Guinean rainforest (red or pink), Cameroon

(yellow), western Equatorial African rainforest (green), Central African Republic (light blue), eastern Equatorial African rainforest (navy blue), Uganda

(pink), southeastern Africa (purple), and Mediterranean region (beige). In (C), white haplotypes were obtained from West African individuals that cannot be

assigned to either E. franqueti or E. buettikoferi on the basis of the third palatal ridge.
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basis of their mitochondrial sequences: E. gambianus/

M. pusillus [21] and E. franqueti/E. buettikoferi.
The network reconstructed from the E. gambianus/

M. pusillus dataset (Fig. 3A) revealed high genetic diversity,
with 21 Cytb haplotypes for Epomophorus and 94 Cytb

haplotypes for Micropteropus. There is no taxonomic
coherence, as the haplotypes do not cluster according to
species names, and there is no geographical structure
among sampled populations. In addition, we found two
Cytb haplotypes shared between the two species. In
Micropteropus, we detected higher levels of nucleotide
diversity (0.0171 versus 0.0094), with the existence of two
highly divergent Cytb haplogroups differing by 44 muta-
tions (named H1 and H2 in Fig. 3A): H1 was found in both
northern populations (Ivory Coast and Central African
Republic) and southern populations (Gabon and Katanga
Province of the DRC); H2 was detected only in southern
populations (Gabon and Katanga). All the four H2 Cytb

haplotypes share 99–100% of identity with Cytb haplotypes
of Epomophorus crypturus and E. wahlbergi collected in DRC
(Katanga) and South Africa (unpublished data).

The dataset for E. franqueti and E. buettikoferi (Fig. 3C)
also revealed high genetic diversity, with 91 Cytb

haplotypes for E. franqueti and 35 Cytb haplotypes for
E. buettikoferi. It was not possible to assign 14 individuals
collected in West Africa to either E. franqueti or
E. buettikoferi. The network of Epomops Cytb sequences
revealed the existence of two divergent haplogroups
separated by 21 mutations and geographically highly
segregated: the first one includes all individuals of
E. franqueti collected in Central Africa (Cameroon, Central
African Republic, Gabon, Congo, and DRC), whereas the
second one contains all individuals identified as E. franqueti

or E. buettikoferi from West Africa (Liberia and Ivory Coast),
with three haplotypes shared by the two species.

In all other species, there is no strong genetic structure
between Central and West Africa, suggesting that popu-
lations were able to migrate extensively between the two
regions. For N. veldkampii, the mtDNA analysis showed a
star-like network (Fig. 3B), typical of recently expanded
populations. The two Cytb haplotypes from Central Africa
(Cameroon and Central African Republic) were found to be
identical to the most common Cytb haplotype of West
Africa. In R. aegyptiacus, the individuals collected in the
eastern Mediterranean region (Cyprus and Egypt) differ by
13 mutations from populations of sub-Saharan Africa. In
addition, some Cytb haplotypes of southeastern Africa
were found to be highly divergent from the others
(19 mutations) (Fig. 3F). By contrast, the population from
West Africa does not differ significantly from that of
Central Africa, as indicated by the low values of Fst and
GammaST (< 0.1) (Appendix C). In both H. monstrosus and
E. helvum (Fig. 3D and E), we found no evidence of
geographic structure, and Fst and GammaST values
confirmed the absence of differentiation between popu-
lations from Central and West Africa. This observation was
corroborated by the discovery of shared Cytb haplotypes
for each of the two species between these two regions of
Africa. In Eidolon, one Cytb haplotype is shared by
individuals from Senegal and Katanga (DRC). In Hypsigna-

thus, one Cytb haplotype is shared between two individuals

from Ivory Coast (collected in 2009) and an individual from
Gabon (G5CHA068), from which Leroy et al. [8] sequenced
a ZEBOV RNA polymerase.

4. Discussion

4.1. Out of Asia: multiple origins of fruit bats in Africa

The fruit bats of the family Pteropodidae are only
distributed in the Old World, and most of the species are
found in the equatorial regions, where fruits are abundant
throughout the seasons (Appendix D). Three different lines
of evidence support a Southeast Asian origin of the family:
(1) 94 species of Pteropodidae are found in this region [14],
which represents more than 50% of the total diversity; (2)
Sumatra, Borneo and Sulawesi contain the highest species
density (> 15) (Appendix D); and (3) the oldest fossil of
fruit bats has been described in the Late Eocene/Early
Oligocene of Thailand [29].

With our expanded taxonomic coverage with respect to
previous studies [30,31], the molecular analyses presented
herein confirm the existence of four independent lineages
of African fruit bats, all of which occupying a derived
position with respect to species from Asia and Oceania (see
red branches in Fig. 2): E. helvum is the sole African
representative of the subfamily Pteropodinae, whereas the
three other African lineages, i.e. R. aegyptiacus, Epomo-
phorini and Scotonycterini, belong to the subfamily
Rousettinae. The chronogram in Fig. 2 suggests that the
African continent was colonized by at least four Asian
ancestors: between 2.0 and 1.7 Mya for Rousettus, between
11.6 and 3.4 Mya for Eidolon, between 11.2 and 7.6 Mya for
Epomophorini, and between 16.6 and 6.8 Mya for
Scotonycterini. Anti-Ebolavirus antibodies have been pre-
viously detected in eight African species of Pteropodidae,
representing three of these four lineages: E. franqueti,
E. helvum, E. gambianus, H. monstrosus, M. pusillus,
M. torquata, N. veldkampii, and R. aegyptiacus [8,11,12].
These results suggest therefore that several unrelated
pteropodid taxa have developed a specific immunological
response to Ebolavirus, and that the transmission of
Ebolavirus between fruit bat species may have occurred
through contacts in fruit trees.

4.2. Which are the fruit bat species able to disperse between

Central and West Africa?

All species of Pteropodidae are highly dependent on
plants for food. This explains why the species richness of
fruit bats is higher in equatorial regions (Appendix D),
where fruits and flowers are more diverse and available
most of the year. Since pteropodids do not hibernate, they
need abundant food all year round. To exploit seasonal
food resources, some species have developed the ability for
migrations or nomadic movements. Among African pte-
ropodids, only E. helvum and N. veldkampii are considered
as being migratory species, which means that they travel
seasonally from one habitat to another using predetermi-
ned routes [32]. Populations of N. veldkampii are resident of
the rainforest during the dry season, and both sexes
Please cite this article in press as: A. Hassanin, et al., Comparative phylogeography of African fruit bats (Chiroptera,
Pteropodidae) provide new insights into the outbreak of Ebola virus disease in West Africa, 2014–2016, C. R. Biologies
(2016), http://dx.doi.org/10.1016/j.crvi.2016.09.005

http://dx.doi.org/10.1016/j.crvi.2016.09.005


mig
dur
an 

[32
ran
five
dur
[33

ere
tha
dic
E. 

and
Lue
E. f

aw
ind
our
beh
Pte
i.e. 

the
ted
leas

imp
bet
stu
ide
the
Gui
fore
des
M. 

and
M. 

the
ma
1.8
dist
wa
C. 

My

the
spe
mig
a t
stru
The
disp
wit
Afr
nom
R. 

div
eas
Kat
pop
sev

A. Hassanin et al. / C. R. Biologies xxx (2016) xxx–xxx 9

G Model

CRASS3-3474; No. of Pages 12

Pl
Pt
(2
rate northwards towards savannah habitat types
ing the wet season. This small species seems to make

annual round-trip migration of 300–1100 km
]. Males of E. helvum are known to make very long-
ge migrations across Central Africa (� 2500 km over

 months), but the routes used by the populations
ing their annual migration remain to be discovered
].
The following pteropodid species of Africa are consid-
d to be nomadic rather than migratory, which means
t their seasonal movements are irregular and unpre-
table: most species of Epomophorus (including
gambianus), M. pusillus, M. leptodon, M. woermanni,

 R. aegyptiacus [32,34]. In addition, local hunters of
bo and Mweka villages (DRC) have reported that
ranqueti and H. monstrosus have annual movements
ay from these regions [35]. Although field studies have
icated seasonal movements for H. monstrosus [36,37], to

 knowledge, nothing was published on the migratory
aviour of E. franqueti. Only two species of African

ropodidae have been the subjects of telemetry studies,
E. helvum and R. aegyptiacus [12,33,38], and even for
se taxa, seasonal movements remain poorly documen-
, as the marked individuals could not be tracked for at
t one annual cycle.

Phylogeographic analyses therefore are particularly
ortant to provide insight into which species disperse

ween Central and West Africa. Previous molecular
dies on Myonycterina [16] and Scotonycterini [17] have
ntified a strong separation between populations from

 two main blocks of African rainforest, the Upper
nea forest in West Africa and the large Congo Basin
st in Central Africa. Accordingly, several species were

cribed as endemic to each of these forest blocks:
azagnyi, M. leptodon, and S. occidentalis in West Africa,

 their sister-species in Central Africa, i.e. M. woermanni,
torquata, and S. zenkeri/S. bergmansi, respectively. All
se sister taxa have diverged in allopatry during two
jor glacial periods of the Pleistocene, at 2.8–2.5 Mya and
–1.6 Mya. By contrast, a greater capacity for long-
ance dispersals between these two rainforest blocks

s proposed for the largest species of Scotonycterini,
ophiodon, and for the sole cave-dwelling species of
onycterina, M. angolensis [16,17].
Here, we used mitochondrial Cytb sequences to compare

 phylogeography of E. helvum, R. aegyptiacus, and six
cies of the subtribe Epomophorina. For the two
ratory species, E. helvum and N. veldkampii, we obtained
ypical star-like network pattern, with no genetic
cture across their geographic range (Fig. 3B and E).
se results confirm that these two species have high
ersal capacity. Similar phylogeographic patterns,

h no geographic structure between Central and West
ica, were also found for most species considered to be

adic, i.e. E. gambianus, H. monstrosus, M. pusillus, and
aegyptiacus. In R. aegyptiacus, we detected, however,
ergent Cytb haplotypes in all individuals from the
tern Mediterranean, and in some individuals from
anga (DRC) and Malawi, suggesting that these distant
ulations tend to be more isolated from the others. For
eral individuals from southern populations of M. pusillus

(Gabon and Katanga; Fig. 3A), we detected very divergent
H2 Cytb haplotypes (4.68–6.04%), which share 99–100% of
identity with individuals of E. crypturus and E. wahlbergi

collected in DRC (Katanga) and South Africa (unpublished
data). Combined with the fact that the H1 Cytb haplotypes
of M. pusillus cannot be differentiated from those of
E. gambianus (Fig. 3A; see also Nesi et al. [21]), we suggest
that several events of inter-specific hybridization have
occurred between the different species of the Epomopho-

rus–Micropteropus complex. We plan to further explore this
issue with RADSeq data. Taxonomically, we recommend
placing M. pusillus in the genus Epomophorus, as originally
proposed by Peters in 1867 [39]. Our phylogenetic tree in
Fig. 2 also indicates that the species E. dobsoni should be
excluded from Epomops and rather treated as a species of
Epomophorus. Morphologically, it is important to note that
both M. pusillus and E. dobsoni have six thick palatal ridges
(considering that the second and third ridges are partially
fused in E. dobsoni), as in all other species of Epomophorus,
whereas the species of Epomops (E. buettikoferi and
E. franqueti) have only three thick palatal ridges [20]. Eco-
logically, both M. pusillus and E. dobsoni are more common
in woodland savannahs, as all species of Epomophorus,
whereas other species of Epomops (E. buettikoferi and
E. franqueti) occur mainly in rainforest habitats.

Within Epomops sensu stricto, our Cytb analyses do not
support the monophyly of the two species, E. franqueti and
E. buettikoferii: all individuals from West Africa, identified
as either E. franqueti or E. buettikoferii, share very similar or
identical haplotypes, which are divergent from those
sequenced for all individuals of E. franqueti collected in
Central Africa (K2P distances: 2.24–3.63%). Taxonomically,
this result shows that the single discrete character used in
the key of Bergmans [20] for distinguishing E. buettikoferi

from E. franqueti, i.e. the medial division of the third ridge
in the palate, is not dependable. In agreement with that, it
must be noted that the palatal pattern supposed to
characterize E. buettikoferi has been previously described
in some individuals of E. franqueti collected in Cameroon
and Gabon [39]. To better understand the taxonomy of
Epomops, we sequenced all the 12 nuclear introns analysed
in Hassanin et al. [17] for two individuals representing
each putative species and each geographic group, i.e.
E. buettikoferi from West Africa and E. franqueti from
Central Africa (data not shown). The nuclear divergence
was only 0.08%, which is in the range of intraspecific
distances found in other groups of Laurasiatheria, such as
Myonycterina (< 0.21%) [16], Scotonycterini (< 0.13%)
[17], or cattle and bison of the tribe Bovini (< 0.18%)
[40]. The analyses of mitochondrial and nuclear data
suggest therefore that the genus Epomops contains only
one species, which can be divided into two subspecies:
E. franqueti franqueti in Central Africa and E. f. buettikoferi in
West Africa [32].

To summarize, our phylogeographic results suggest
that all migratory or nomadic species known to be
common in savannah woodland habitats, can disperse
between Central and West Africa: E. gambianus, E. helvum,
M. pusillus, N. veldkampii, and R. aegyptiacus. By contrast, all
species restricted or largely restricted to the rainforests
(C. argynnis, E. franqueti, M. azagnyi, M. leptodon,
ease cite this article in press as: A. Hassanin, et al., Comparative phylogeography of African fruit bats (Chiroptera,
eropodidae) provide new insights into the outbreak of Ebola virus disease in West Africa, 2014–2016, C. R. Biologies
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M. torquata, M. woermanni, S. bergmansi, and
S. occidentalis), with the exception of H. monstrosus, do
not disperse long distances, specifically across the
Dahomey Gap, i.e. the savannah corridor in Ghana, Togo
and Benin that separates the rainforest blocks of West and
Central Africa [16,17]. Because of its larger body size,
muscular strength, and higher wing loading [41],
H. monstrosus can fly much faster and therefore farther
than other fruit bats present in African rainforests, which
may explain its greater dispersal capacity.

4.3. Consequences for the origin of ZEBOV in West Africa

On 21 March 2014, a circulating virus in humans was
identified by the Institut Pasteur in Lyon (France) as ZEBOV,
a strain previously detected in only three Central African
countries (DRC, Gabon and Congo) between 1976 and 2014
[42]. Epidemiologic investigations have suggested that the
first case of the West African outbreak was a 2-year-old
child who died on 6 December 2013 in Meliandou, a small
village in Guinea [43]. Subsequently, Guinea, Liberia, and
Sierra Leone experienced the largest outbreak of Ebola ever
recorded, with widespread and intense transmission
between August 2014 and December 2014, after which
case incidence declined. In total, 28,603 cases were
identified, with deaths (as of 10 June 2016) [44].

Phylogenetic analyses of Ebola virus genomes have
suggested that the new ZEBOV variant from West Africa
diverged from lineages of Central Africa around 2003–
2004 [45,46]. An introduction into Guinea from a human
traveller seems unlikely, because the epicentre region of
Guéckédou is a remote area of the Upper Guinean
rainforest, which is far from the Congo rainforest where
all previous ZEBOV outbreaks occurred [47]. By contrast,
migratory bats may have carried ZEBOV from Central
Africa to Guinea. Among fruit bats, eight species are
commonly found in the Congo rainforest [14,15]:
C. argynnis, E. helvum, E. franqueti, H. monstrosus,
M. woermanni, M. torquata, R. aegyptiacus, and
S. bergmansi. In 2005, Leroy et al. [8] obtained ZEBOV
RNA polymerase sequences from liver and spleen samples
of H. monstrosus (19%; 4/21), E. franqueti (4.3%; 5/117), and
M. torquata (2.8%; 4/141), suggesting that these three
species represent natural reservoir hosts of Ebola viruses.
In Gabon and Congo, ZEBOV-specific antibodies were
detected in all fruit bat species tested for a sample
size > 125 individuals: R. aegyptiacus (7.8%; 24/307),
H. monstrosus (7.2%; 9/125), E. franqueti (4.5%; 36/805),
M. torquata (3.3%; 19/573), and M. pusillus (2.0%; 4/197). In
addition, two insectivore bat species were found to be
ZEBOV positive: Hipposideros gigas and Mops condylurus

[11]. In West Africa, ZEBOV antibodies were detected in
four pteropodid species: E. gambianus (13.5%; 5/37),
H. monstrosus (12.5%; 2/16), E. franqueti (10.7%; 3/28),
and E. helvum (0.4%; 1/262) [12,48]. All these data suggest
that ZEBOV is a circulating virus across Africa and that it
was transmitted not only in bats endemic to rainforests,
but also to those generally found in savannah woodlands,
such as E. gambianus and M. condylurus. Transmission of
ZEBOV between bat species may have occurred through
contacts in fruit trees, involving either fighting for food

resources, or indirect contamination via infected body
fluids (saliva, blood, faeces, and urine) deposited on
branches and fruits [6].

Our phylogeographic analyses revealed that only three
fruit bat species were able to disperse directly ZEBOV from
the rainforests of Central Africa (where ZEBOV was
endemic until sometime before 2014) to those of West
Africa (where ZEBOV suddenly appeared in 2014):
E. helvum, H. monstrosus, and R. aegyptiacus (Fig. 3). The
species E. helvum seems, however, to be associated with
secondary transmissions from a zoonotic reservoir: it
showed a very low ZEBOV prevalence (0.4%); and its
implication in human outbreaks appears unlikely, because
it typically lives in large urban colonies (e.g., Bangui,
Yaoundé) and is a source of bushmeat in many African
regions [49]. By contrast, H. monstrosus and R. aegyptiacus

represent the two leading candidates for explaining the
dispersal of ZEBOV from Central to West Africa. First of all,
H. monstrosus was identified as one of the three reservoir
hosts of ZEBOV in the rainforests of Central Africa [8,35],
whereas R. aegyptiacus was identified as the main reservoir
host of Marburgviruses [10]. The highest seroprevalences
against ZEBOV were found for R. aegyptiacus and
H. monstrosus (7.8 and 7.2%, respectively) [11]. In Uganda,
the study of a large population of Marburg-virus-infected
R. aegyptiacus fruit bats has evidenced that the two
biannual birthing seasons represent times of increased
infection among older juvenile bats (� six months of age)
that roughly coincide with historical dates of Marburg
virus spillover into humans [50]. In Gabon and Congo, most
human ZEBOV outbreaks have occurred through contact
with infected animal carcasses, especially great apes and
duikers. It has been suggested that the transmission to
great apes and duikers have been initiated by the
consumption of fruits contaminated with blood and
placentas during parturition of infected fruit bats
[11]. All these elements suggest that the parturition of
infected fruit bats may have increased ZEBOV prevalence
in fruit bat populations, and therefore the contamination of
other species, including humans. This hypothesis is also
supported by the fact that the first case of the West African
ZEBOV outbreak was infected in November or December, a
period that coincides perfectly with one of the two birthing
seasons of H. monstrosus and R. aegyptiacus in West Africa
[32,51].

5. Conclusion

Our genetic analyses have shown that three fruit bat
species have dispersal movements between Central and
West Africa, and, hence, are capable of acting as dispersal
agents for this virus. Among them, only H. monstrosus is
restricted to rainforest habitats, where all ZEBOV out-
breaks have occurred, while E. helvum and R. aegyptiacus

are also commonly found in savannah woodlands. Since
fruit bats often eat on the same trees, inter-species
infections of ZEBOV are expected to be frequent, in
particular during the two biannual birthing seasons of
the main reservoir host species. Because of that, we cannot
completely rule out the hypothesis involving that ZEBOV
was dispersed indirectly in West Africa, i.e. through
Please cite this article in press as: A. Hassanin, et al., Comparative phylogeography of African fruit bats (Chiroptera,
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marteau, Hypsignathus monstrosus H. Allen, 1861 dans la commune
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