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Abstract

The Multipath Transport Control Protocol (MPTCP) is undergoing a rapid

deployment after a recent and quick standardization. MPTCP allows a network

node to use multiple network interfaces and IP paths concurrently, which can

lead to several advantages for the user in terms of performance and reliability. In

this paper, we describe an MPTCP implementation in the Network Simulator

3 (ns3), comparing it with both the Linux implementation and previous ns3

implementations. We show that it is compatible with the Linux implementation

and that it has a desirable similar behavior in traffic handling. Our goal is

to allow researchers develop and evaluate new features of MPTCP using our

simulator in a much faster way than they would with a kernel implementation,

hence boosting MPTCP research.
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1. Introduction

Nowadays modern mobile devices are usually equipped with several network

interfaces: it may be WiFi and Ethernet for laptops, or WiFi and cellular

for smartphones. In this context, a user may want to leverage these different

interfaces into using concurrently several paths to achieve the following goals:5

1. Seamless mobility: with legacy TCP, losing an IP address means losing

active TCP sessions, which in a mobility scenario translates into a com-

munication delay necessary to setup a new connection. With multipath
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transport, one device can establish several connections in advance and

(re)transmit data on alternate paths when there is a partial or total fail-10

ure on one paths (see [1]).

2. Bandwidth aggregation: The ability to aggregate the bandwidth of several

links is also very appealing and appears as the most anticipated feature.

3. Higher confidentiality: if a flow of data is split over several paths, it may

become harder for an attacker to reconstitute the whole connection flow.15

4. Better average response time: sending duplicated packets on several paths

increases the probability for the data to follow uncongested paths. Hence,

More elaborate features can emerge from combining some of these tech-

niques. For instance, a smartphone user may enable both LTE and WiFi to

benefit from the mobility advantage and at the same time limit the cellular20

throughput to save some battery or because WiFi is actually cheaper. Some

other user may choose to trade some of the aggregation benefit in exchange for

higher confidentiality.

Yet a multipath protocol needs to address several problems to reach the

previous goals and deliver better than singlepath performance. Multipath com-25

munications lead to more out-of-order packet deliveries, which may lead to worse

performance than single path protocols [2], and question the fair usage of the

network. Information such as the Round Trip Time (RTT) or the packet se-

quence number are critical to mitigate these problems and are already available

at the transport layer. While the application layer could provide a similar or30

even better service, having a standard multipath transport protocol allows to

mutualize the knowledge and should ease multipath communications deploy-

ment.

MPTCP is such a multipath transport protocol attempt to address these

issues in a backward compatible way. As any new Internet protocol, MPTCP is35

confronted with an ossified Internet whose many middleboxes are typically con-

figured to block any unknown protocol extension or any new protocol. MPTCP

must also address the fairness issue, i.e. it should not get too much bandwidth
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compared to legacy users, otherwise the protocol could be blocked by Internet

providers. At the same time MPTCP ambitions to be as least as good as TCP40

in terms of throughput, which can prove challenging in some environments. In

the following, in Section 2, we detail our motivation to implement MPTCP in

ns3. In Section 3 we detail our implementation characteristics and qualify its

performance in different scenarii.

2. Multipath TCP45

MPTCP is a TCP extension formalized in RFC 6824 [3]; the MPTCP work-

ing group at the Internet Engineering Task Force (IETF) was formed in october

2009; since the beginning it emphasizes backwards compatibility with the net-

work and applications. This is an aspect to keep in mind when looking at some

design decisions that may seem as counter intuitive at first (for instance the50

creation of an additional sequence number space or the requirement to wait for

two levels of acknowledgements before being authorized to free the buffers). As

a result, TCP applications can run unmodified with MPTCP. This differs from

the Stream Control Transmission Protocol (SCTP) (SCTP [4]) that provides

more features but whose deployment is impeded by the many middleboxes on55

the Internet, blocking unknown protocols. 1

MPTCP must be pareto optimal, i.e. it must not harm any TCP user

while improving the situation for MPTCP users. Achieving pareto optimality

is still a problem for MPTCP [2] though improvements have been made [6].

Several techniques exist in the literature, such as watching the loss correlation60

between subflows to infer if they shared a bottleneck, but such methods make

assumptions about the network that prevent them from being holistic. The

conservative approach is to consider that all subflows share the same bottleneck:

1SCTP is now deployed mainly thanks to the WebRTC protocol but is tunneled over UDP

packets [5]. SCTP proposed to opt-out some TCP services on a per connection basis such as

in-order delivery. Ordering is indeed unnecessary when downloading an archive, head-of-line

blocking may slow the connection.
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this is the so-called resource pooling principle [7]. Fairness and the out of order

packet delivery are two problems that any multipath protocol have to solve.65

2.1. High level design of MPTCP

MPTCP consists in a shim layer as it can be seen on 1, it is built between

the application and the TCP stack that unifies several TCP connections, called

“subflows” in the MPTCP context. A subflow is a TCP connection characterized

by a tuple (IPsource, TCP portsource, IPdestination, TCP portdestination) and is70

assigned a unique subflow id generated by the MPTCP stack. MPTCP uses this

subflow id to convey subflow related advertisements since IPs are not reliable:

they may be rewritten by external middleboxes. We can alternatively define an

MPTCP connection as a set of one or many subflows aggregated to feature at

least the same set of service as a singlepath TCP communication.75

MPTCP signals information with its peer through the use of TCP options.

To reorder traffic striped on several subflows, MPTCP adds a global Data

Sequence Number (DSN) namespace shared among subflows and exchanged

through TCP options. The DSN are then mapped to relative Subflow Sequence

Number (SSN), i.e. the TCP subflow sequence numbers, through the Data80

Sequence Signal (DSS) (Data Sequence Signaling) and are acknowledged with

what we refer to as Data Ack in the rest of this paper, exchanged through the

same DSS option.

The RFC6182 [8] lists a few functional goals that are deemed mandatory

for a wide deployment of the protocol:85

1. MPTCP must support the concurrent use of multiple paths. The resulting

throughput should be no worse than the throughput of a single TCP

connection over the best among these paths.

2. MPTCP must allow to (re)send unacknowledged segments on any path to

provide resiliency in case of failure. It is advised to support “break-before-90

make” scenarii, e.g. buffer the data when a (mobile) user loses temporarily

all connectivity, to allow resuming the communication as soon as a new

subflow gets available.
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Figure 1: MPTCP: a shim layer in the stack. Subflows can share the IP address (using a

different port) or have different IPs.

Rather than adding new features as SCTP does, MPTCP guidelines focus at

not being worse than TCP and on wide deployment problems. [8] also lists95

three compatibility goals:

• The applications must be able to work with MPTCP without being changed,

for instance via an operating system upgrade. It also implies that MPTCP

keeps the in-order, reliable, and byte-oriented delivery. 2

• MPTCP should work with the Internet as it is composed today, that is100

with middleboxes blocking unusual payloads or even modifying the pay-

load such as internet accelerators, Network Address Translator (NAT) etc.

The best way to do this is to appear as a singlepath TCP flow to the mid-

dleboxes. Hence MPTCP relies on TCP options for signaling. TCP option

space is scarce (40 bytes maximum per packet).105

• MPTCP should be fair to single path TCP flows at shared bottlenecks,

i.e. not be greedier. At the same time, MPTCP still shall perform better.

As part of the network compatibility goal, MPTCP should provide an auto-

2Nevertheless an extended API is being standardized in [9] for applications to squeeze more

out of MPTCP.
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matic way to negotiate its use, and upon failure of such a negotiation, fall back

to legacy TCP. This fall back is also possible even after successful completion of110

the MPTCP handshake, in case no data ack is received during a certain time,

or checksums are invalid.

2.2. Connection process

Initiation. Supposing that the MPTCP extension is not disabled, and that the

application remained unchanged, the MPTCP connection is initiated through115

the TCP socket interface via the connect system call. As per the MPTCP Linux

system nomenclature, we call this first TCP connection the master connection.

This call must generate a random key to be used during the TCP handshake

as can be seen in Figure 2. This key is later hashed and used by MPTCP to

authenticate additional subflows.120

Once other subflows are established, the master subflow can be removed as

any other and holds no specificity. Upon SYN reception, the server generates

also a key which is reflected by the client in the final TCP handshake ack. This

allows the server to operate in stateless mode. Indeed an MPTCP stack needs

to allocate more data structures than a legacy TCP connection to save the key,125

the list of subflows, their ids etc. For efficiency, the allocation of these data

structures can be deferred until the moment the MPTCP negotiation succeeds.

Addition of other subflows. The host can open a new subflow as soon as a

DSS option with a data ack is received, which requires at least two RTTs since

the very first handshake. Hence, the choice of the initial subflow can have an130

impact on the throughput, all the more important for short connections. Both

the client and the server can create new subflows. Either the host initiates the

new connection or it advertises a couple (IP, port) that the peer can choose to

connect to. The policies are local and for instance in the Linux implementation,

the server advertises its ports but let the subflow creation initiative to the client135

because of NATs that could invalidate the client advertised addresses. It is

worth noting that several subflows can be created from the same IP address
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Figure 2: Illustration of used notations for two subflows.

with different ports. This may prove worthwhile to exploit the network path

diversity, in case the network runs load-balancing [10]. There is no standard

procedure and the subflow opening/closing strategy depends on local policies.140

It may be wiser to let clients initiate the connection though due to the presence of

NATs. Subflow control can also be delegated to a third party controller [10] [11].

2.3. Congestion control

TCP fairness can be a controversial topic: a malicious TCP user who wants

more bandwidth can create additionnal TCP connections (as many download145

accelerators do) to increase its share at the bottleneck. In the following, we

consider well-behaved hosts since this is the usual framework priori to any con-

gestion control reasoning.

Without specific congestion control algorithm, a multipath transport proto-

col would adopt a similar behavior at the bottleneck since being an end-to-end150

7



technology, it has no information over the topology. TCP users would see their

bandwidth decrease and MPTCP deployement hindered. Under these condi-

tions, how to achieve both the fairness and higher throughput ? Knowing if two

subflows share/make use of a same resource (e.g., a link or a router) would allow

to run a congestion control on sets of subflows. Clustering techniques ([12] and155

[13] for instance) have been developed to detect bottlenecks based on delay and

loss patterns. These techniques need to be foolproof as false negatives generate

bandwidth stealing. This is a difficult task without help from the network as

the heuristics need to work across a wide range of configurations, such as the

router buffering policies etc... Their efficiency is also difficult to evaluate for160

the same reasons but even if a perfect scheme existed, relying on it depends

on the fairness notion. MPTCP embraces the resource pooling principle (also

called network fairness) which makes a collection of resources behave like a single

pooled resource.

This conservative approach considers that all subflows share a bottleneck and165

that their additive component should be coupled. MPTCP congestion controls

modify the congestion avoidance phase of the TCP congestion control only: the

decrease phase remains the same as in TCP. Several congestion control have

been proposed such as Linked Increase Algorithm (LIA [14]) or Opportunistic

LIA [6] (OLIA). OLIA They couple the increase MPTCP congestion window170

with the congestion window of its subflows:

• wi = wi + min( a
wi

, 1
wr

) per acknowledgement on path i

• wi = wi

2 per congestion event on path i

with a being an aggressiveness factor updated once in a while (per window a

priori) and equal to:

a =
maxr( wi

rtt2i
)∑ wi

rtti

2 ∗
∑
i

wi

with : wi the window size on path i

rtti the round trip time on path i

(1)
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The min in the first equation ensures that MPTCP is never more aggressive175

than TCP on a single path. It is important to remember that the advertised

receive window is shared between subflows. As such there may be cases where

a subflow is capable of sending data, i.e. has free window, but there is no

more space in the receive window. This may happen when a feature called op-

portunistic retransmission is implemented [15], which in such cases retransmits180

data hoping to solve the head of line blocking. Opportunistic retransmission

can be used in conjunction with slow subflow penalization: if a subflow holds

up the advancement of the window, MPTCP can reduce forcefully its congestion

window along with its slow start threshold.

2.4. Scheduling185

The scheduler chooses when and on which subflow to send which packets. A

good scheduler should attempt to reduce the probability of head of line blocking

(HoL). For instance opportunistic retransmission and penalization are reactive

mechanisms that waste bandwidth. The Linux implementation we used included

two schedulers:190

• The ‘default ’scheduler sorts subflows according to their RTT and sends

packets on the first subflow with free window.

• A round robin scheduler that forwards packets in a cyclic manner on the

first subflow with free window available.

Retransmission timeouts (RTO and delayed acks) need to be chosen with195

great care since a subflow RTO or out of order arrivals can provoke HoL blocking

faster than in the single path case, as also explained in [16]. For instance, some

of the state of the art schedulers propose to send packets out of order so that

they can arrive in order [17].

2.5. MPTCP state machine200

As a preliminary step before implementing MPTCP in ns3, it is needed to

formalize the current status of the specifications. We extended the connection
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closure Finite State Machine (FSM) described in [3] to cover the whole protocol

in Figure 3, i.e. while the active and passive close are presented as a diagram

in [3], we extended the visual description to our interpretation of the standard.205

While being similar to TCP, we chose to split the ESTABLISHED state into

the M ESTA WAIT and M ESTA MP states to distinguish between a state

where MPTCP waits for a first Data acknowledgement (DACK) can create

additionnal subflows and We also mapped for each MPTCP state the states in

which TCP subflows can be as well as which MPTCP options could possibly be210

sent. The tabulated study report is available online [18].

2.6. Associated challenges

We already mentioned a few challenges in the previous sections. Our stance

is that MPTCP is already robust enough by design to fulfill the network and

application compatibility goals (as confirmed by the trust of several companies215

such as OVH, Apple, Citrix that developed MPTCP-based products).

The resiliency goal 2. mentioned in Section 2.1 has also been proven to

work, i.e. when one link fails, retransmission of the packets is done on another

subflow. The main obstacle to MPTCP and multipath deployment protocols

today remains the throughput and fairness goals. While there are examples220

of increased throughput through the use of MPTCP (e.g., the fastest TCP

connection was done with MPTCP [19]), this requires specific conditions such

as enough buffer and homogeneous paths; there are also cases, as in [2], where

MPTCP performs worse than TCP on the best available path. This does not

comply with the objective of doing always better than TCP. MPTCP must225

acquire the intelligence to distinguish when and which subflows to use to perform

well. Reaching this goal is made even harder with the throughput goal since

MPTCP is less aggressive than TCP on every subflow.

Path management is also a problem - though less studied - since creating

many subflows with the hope of exploiting path diversity can hurt the perfor-230

mance (due to competition between subflows [10]). The problem is two-fold:

1. transport protocols being end-to-end, hosts do not know the topology;
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2. even if the hosts knew the topology, they can not enforce a forwarding

path. Segmented routing may provide a partial solution in this regard.

As for wide area networks topologies, there usually is more than one path be-235

tween source and destination. It can be because of intra-redundancy or because

several ISPs compete on the same path. There is ongoing work to exchange

topology information between nodes that could solve point 1) above, for in-

stance Path Computation Elements or at the ALTO (Application Layer Traffic

Optimization) working group [20].240

Topology is a critical information that operators may not be fond of leaking,

hence some approaches look at how to provide an overview of the topology

through sparsification techniques [21]. From the previous technologies, a host

can deduce an optimal number of subflows, but this may prove pointless if

the forwarding problem (point 2) above) is not solved. As such, solutions in245

locally controlled environments such as an SDN (Software Defined Network)

datacenters seem appropriate.

Thus it is advised to use the correct number of subflows (MPTCP can create

more subflows but mark them as backup subflows), no more no less, to reach the

optimal throughput. The path management problem also explains why many of250

the commercial products embed MPTCP into proxy middleboxes (Gigapath3,

OVH4, Tessares5); certainly they grant the benefits of MPTCP to legacy clients,

but the middle boxes also know more about the network diversity.

If the throughput goal mentioned in Section 2.1, one can imagine a realm

of other possibilities for multipath protocols. Multipath incentives do not stop255

to throughput aggregation and as such one could imagine modes where the

cost of an interface helps choosing over which interface to send packets as in

[22]. The cost could be given by the energy consumption of the interface or

depending on its fare rate. The user could also set tradeoffs such as losing 30%

3https://www.ietf.org/proceedings/91/slides/slides-91-mptcp-5.pdf
4https://www.ovhtelecom.fr/overthebox/
5http://www.tessares.net
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Figure 3: MPTCP state machine.
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of the optimal throughput if it allows for a fairer distribution between subflows.260

Ledbat-multipath [23] is one of such alternative modes. Information that used

to be of little interest with one path are now helpful in a multipath context. For

instance, if the MPTCP layer is aware of the data emission profile, it can adapt

the scheduling to favor throughput (bulk transfer) or schedule packets so that

they arrive early at the receiver (at the end of a burst).265

3. An MPTCP implementation in ns3

A few MPTCP implementations already exist, some used in production envi-

ronments such as Apple’s voice recognition system Siri. Among the implemen-

tations, Linux6 is the oldest one with some impressive achievements (Fastest

TCP connection [19]) and is used in all the commercial products presented in270

Section 2.6. Work is also done to improve the MPTCP support on other op-

erating systems such as Solaris7 and FreeBSD8, Hence asking why developing

a MPTCP simulator is a legitimate question. In this section we describe our

motivations and the technical aspects of the implementation. We also present

a few tools we developed to ease testing and analysis of related MPTCP traces.275

3.1. Presentation of ns3 and Direct Code Execution

Ns3 [24] is a popular network simulator in the research community as is

confirmed by the two previous implementations. Its success is likely due to

its General Public License and also because the technical base as well and the

support team are trustworthy. It is best described as a C++ discrete time280

simulator, i.e. events are scheduled in the simulator time and once all events

at the specific time are processed, the simulator updates the current time with

the time of the next scheduled events. It allows the simulator clock to be

independent from the wall clock, most of the times faster.

6http://multipath-tcp.org
7https://mailarchive.ietf.org/arch/msg/multipathtcp/ugMIu566McQMn8YCju-

CTjW9beY
8http://caia.swin.edu.au/urp/newtcp/mptcp/
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Figure 4: Implementation structure in ns3 code.

Direct-Code Execution (DCE) is an ns3 extension that allows to load ap-285

plications compiled with specific options (as well as a fork of the Linux kernel

[25]) within the ns3 environment. The advantage is that the simulation runs

in discrete time and thus provides results independently of the host CPU. As a

comparison, mininet’s fidelity, a container based simulator, decreases inversely

with the processing load [26].290

3.2. Why a simulator ?

Simulation traditionally comes handy for two reasons:

1. Running experiments in a simulated testbed allows for faster reproducibil-

ity avoiding hardware costs.

2. Focusing on the algorithmic part rather than implementation complexity.295

Implementation details can have an impact on the overall fidelity of the

model. Hence being able to compare with a simpler model beforehand can

help find out if the difference in performance stems from implementation

details or from the algorithm.

Experimenting with MPTCP in the real world can be complex depending300

on the scenario. Mobility is a major use case and usually requires access to LTE

and wifi. Not only does it have a cost but LTE is not ubiquitous and experiments
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involving wireless channels are time consuming because of the variability and

care their setup require. Other experiments rely on accurate time measurements

(e.g. to measure one-way delays as in [27]), which can prove challenging in real305

setups but are straightforward in discrete time simulators.

Simulations can help find and solve a problem before the real test and result

in a huge time gain. Running an experiment in a time discrete event simulator

such as ns3 can also be faster than running its real time equivalent.

Point 1) alone does not justify yet another implementation since testing can310

also be realized through alternative means. In simple cases, container-based

simulations such as Mininet testbeds can be enough but at higher throughput,

hardware limits (e.g. processor speed) can spoil the results: switching to discrete

time solution such as DCE (see 3.1) makes sense in that case.

The point 2) can be considered as the stronger motivation, especially when315

looking back at the number of use cases described in Section 2.6. Implementing

such solutions into current operating systems usually means adding the features

into the kernel. While simulation results may lose fidelity compared to a rea-

sonable kernel implementation, we argue that kernel development complexity

can generate bad implementations that can not be easily verified and may not320

be representative of expected results/analytical models. In those cases, devel-

oping a simulation model beforehand is reasonably faster and can help realize

problems ahead of time.

As a side effect, we also think the implementation can serve for education

purposes since the model only deals with MPTCP essentials, thus reducing the325

learning complexity.

3.3. Related work

We have been able to access two previous MPTCP implementations, [28]

and [29], both done using ns3 as well. These two implementations are similar

in many aspects and are compared with ours in Table 1.330

Recent developments in ns3 such as TCP option support and generic packet

serialization in a wire format made it possible for ns3 to communicate with real
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Chihani Kheirkhah Our

Features et al. [28] et al. [29] implement.

Option Partial Partial Full

serialization

Standard Connection Connection Full

compliance phase phase

Backward No No Yes

Compatibility

Ack-aware No No Yes

buffer mgnt

Comparison No No Yes

to OS implem.

Table 1: Comparison between ns3 MPTCP simulators.

stacks. Contrary to previous ns3 implementations that support a subset of the

options, ours support full (de)serialization of MPTCP options, which means it

can handle a higher variety in options (e.g., 32 and 64 bits encoding for DSNs).335

To allow the communication with an external stack such as the linux one,

we also implemented standard compliant connection and closing phases, which

is another differentiating point from [28] & [29]. Thus our implementation is

capable of generating valid tokens based on the sha1 hash of a random key, and

closing a connection requires the sending and acknowledgement of a DSS with340

the data fin bit. While the implementation is not robust enough yet to handle

all cases, it managed to exchange a file with an external linux MPTCP stack

with the use of DCE as reported hereafter.

Contrary to [28] & [29], our implementation is backward compatible with

existing ns-3 TCP scripts, following MPTCP’s spirit. Thus in our implemen-345

tation, the connection phase starts with a legacy TCP socket (more precisely

a ’TcpSocketBase’ see Figure 4) and only once an MPTCP option is received

it evolves into an MPTCP socket (see ’MPTCPTcpSocketBase’ in Figure 4).

This allows for better integration with the general framework, and adds the

additional benefit of allowing the MPTCP connection to fall back to TCP. Our350
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hope is to be able to upstream this implementation so that improvements can

then be added incrementally.

We also respected an aspect of the specification that could affect the simu-

lation fidelity, i.e., data can not be removed from the subflow sockets until it is

acknowledged at both the TCP and MPTCP levels.355

Finally, our implementation is also the first to our knowledge to be evaluated

against an operating system stack in comparable conditions as described later

in Section 4.

3.4. Supported and missing features

The implementation was developed in ns-3.23 while giving care to perfor-360

mance and algorithmic aspects. As such, the fallback capabilities (MP FAIL

option, infinite mapping and checksums) of the protocol have not been imple-

mented with the exception of the initial fallback, when the server does not

answer with an MP CAPABLE option, i.e. it does not support MPTCP and

the client falls back to legacy TCP. This was made possible by extending the365

existing ns3 code infrastructure; for instance in Figure 4, only the structures

starting with “MpTcp ” were added. It also spares some resources during the

simulation. Indeed the ability to enable dynamically MPTCP on a per connec-

tion basis means that our implementation works with all the other TCP scripts.

We focused our work on implementing the aspects that could have an impact370

on the performance such as how data is freed from the buffers: MPTCP re-

quires the full mapping to be received before being able to free the buffer. We

established a list of the key features of our implementation in Table 2.

Compared to the linux implementation, a major shortcoming of the Network

Simulator 3 (NS-3) mptcp implementation is the lack of the penalization mech-375

anism reducing the window of a subflow that blocks the MPTCP window and

the opportunistic retransmission feature.

Also contrary to linux that generates DSS mappings just in time to be able

to adapt to network conditions, we designed the scheduler to be able to delay

the decision until the last minute or to create mappings in advance. Creating380
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SHA1 support We added an optional SHA1 support in ns3 to generate valid

MPTCP tokens and initial DSNs. This allows to communicate

with a real stack and also proved necessary for wireshark to be

able to analyze the communication.

Scheduling The fastest RTT and round robin schedulers are available.

Congestion control Subflows can be configured to run TCP ones such as NewReno or

LIA.

Mappings As in the standard, data is kept in-buffer as long as the full map-

ping is received. This is necessary when checksums are used, oth-

erwise this can be disabled to forward the data faster.

Subflow handling It is done directly by the application that can choose to adver-

tise/remove/initiate/close a subflow at anytime if it is permitted

by the protocol.

Packet

(de)serialization

Packets generated along with MPTCP options can be

read/written to a wire, allowing an ns3 MPTCP stack to interact

with other MPTCP stacks, such as a linux one.

Fallback If the server does not answer with an MP CAPABLE option, the

client falls back to legacy TCP. Other failures are not handled,

e.g. infinite mapping or MP FAIL handling as simulating these

features is of little interest.

Buffer space Buffer space is not shared between subflows, data is replicated

between the subflow and the meta send/receive buffers rather than

moved.

Path management We drifted away from the specifications in order to be able to

identify a subflow specifically, i.e., we associate a subflow id to

the combination of the IP and the TCP port. Nevertheless the

implementation is modular so it is possible to replace the subflow

id allocation with a standard scheme.

Table 2: List of supported and missing features.
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mappings in advance has the advantage of being able to generate mappings that

cover several packets. While the throughput gain is negligible, it can spare some

of the scarce TCP option space.

4. Evaluation

We present a simple use case where we compare the linux version to our385

NS-3 stack. We chose not to run quantitative tests with the previous NS-3

implementations since they are based on NS-3 versions that date back from

late 2009 for [28] (ns-3.6) and December 2013 for [29] (ns-3.19). This gap in

versions make the practical evaluation a challenge as well as the interpretation of

results as the ns-3 TCP implementation evolved a lot in the meantime. Hence390

we tried to choose tools that would allow for seamless testing and analysis

between the kernel and ns3 stacks to lighten the burden analysis. We had to

do some more development to unify the linux and ns3 evaluation, leveraging on

the standardized “pcap ”format.

4.1. Tools used395

As far as MPTCP signaling and data analysis is concerned, there is currently

little choice with only one tool we are aware of: mptcptrace [30]. Mptcptrace

is interesting for bulk analysis but we wanted to be able to look at the packet

level to ease debugging. Thus we chose to improve the MPTCP support of

wireshark [18], which specializes in packet-level network protocol analysis. A400

capture is on Figure 5. We mainly added the following features:

• MPTCP connection identification: ability to map TCP subflows together

based on the key and tokens respectively sent in the MP CAPABLE and

MP JOIN options.

• Verification of the initial DSN based on the MPTCP key.405

• Display relative DSN, i.e. the first MPTCP sequence number sent being

considered as 0.
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Figure 5: The wireshark MPTCP analysis section. Framed in red some of our additions.

• Computation of the latency between the arrival of new data throughout

all subflows.

• Detection of DSS mappings spanning several packets.410

• Detected retransmissions across subflows.

We wrote a tool called mptcpanalyzer [31] that leverages these results to

produce the plots presented in the next section.

4.2. Comparison with linux MPTCP on a 2-link topology

We present in the following a few simulations to compare the linux kernel415

running in DCE 1.7 to our NS-3 implementation. In order to minimize the

differences due to the environment and for the ease of reproducibility, we chose

to compare the linux and ns3 MPTCP implementations within the DCE frame-

work. This means that nodes, routers and links are created by ns3. Every node

can be configured with a specific network stack. We always install linux stacks420

in the routers.
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Figure 6: The topology used for the simulations. First hop is the 1Mbps bottleneck, with a

variable propagation delay.

The Bandwidth Delay-Product (BDP) refers to the number of unacknowl-

edged bytes that can be inflight. It is generally advised to set the glsbdp higher

than RTT ∗ bottleneck capacity to account for queuing delays in both the net-

works and the hosts. Note that in this case, as DCE runs in discrete time,425

kernel operations are virtually instantaneous if not programmed otherwise so

only network latency impact the RTT. On one path with a bottleneck of 2Mbps

and a RTT of 60ms, the glsbdp is 120kbits. We run the experiments with

“libos” [25] applied against the linux mptcp kernel v0.89. Moreover:

• Scheduler is set to round robin.430

• Number of paths is set to one (Figure 7a), then two (Figure 7b).

• Forward and backward one way delays are set to 30ms on each path.

• We launch several runs with different receiver windows.

We ran five seconds iperf2 9 sessions between the two hosts without any

background traffic on the topology of Figure 6.435

The size of the router buffers is the default linux one.

On Figure 7a, we notice that both stacks make the maximum use of the

paths except when it is window limited as for the 10KB case. We can also

9http://iperf.sourceforge.net/
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(a) Single path.

(b) Two paths.

Figure 7: MPTCP linux kernel and ns3 iperf2 throughputs.
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(a) In ns3. (b) In linux.

Figure 8: Repartition of sequence numbers across two subflows with the round robin scheduler.

notice that the throughput is a little more than the maximum throughput. We

believe it is due to iperf2. Compared to the one path case, we can the expected440

doubling in throughput in the two paths case on Figure 7b when we add a path

when the window is big enough. It also seems that the ns3 version is greedier

as in the 30KB window.

In order to check the behavior of the scheduler and thanks to mptcpana-

lyzer [18], we were able to plot the relative MPTCP sequence numbers trans-445

mitted on every subflow for a 40KB setup. We establish that DSNs are indeed

sent in a round robin manner in both both the linux (Figure 8b) and the ns3

cases (Figure 8a). There are more sequence number for the ns3 case because

the throughput was higher for that setup.

Finally we plot the delay between the arrival of consecutive bytes for both450

the ns3 (Figure 9b) and the linux cases (Figure 9a). Out of order arrival would

be noted as negative values but there is none in this setup. We note that the

order of magnitude are similar between the stacks but that the ns3 stack result

is bimodal. We suppose it is due to an implementation detail on how events are

scheduled..455

4.3. Open Problems

Limitations of the current simulations. The current buffer handling in ns3 cur-

rently copies data back and forth between the subflows and the meta socket

instead of sharing a pool of memory. This is the main difference with other
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(a) In linux. (b) In ns3.

Figure 9: Interarrival DSN latencies in a two path network with the round robin scheduler.

implementations and could impact the simulation fidelity in tight buffer simula-460

tions. One promising solution is Non-Renegotiable Selective Acknowledgements

(NR-SACK) [32]; sadly the source is not available and this would require ns3 to

implement SACK first.

Future work. Paasch et al. made an important contribution in applying ex-

perimental design [33] to test the Linux stack over a large combination of465

configurations (buffer size, delay, loss, etc): we hope the experiment could be

ported to work with DCE, which would remove the CPU bias for high loads

in mininet. Network coding is an active area of research, which could improve

MPTCP characteristics [34]. While operating system seem to remain oblivious

to network coding, there exists a detailed library for ns3 10.470

5. Conclusion

We presented the MPTCP protocol and its new implementation in the net-

work simulator ns3 that conforms to many of the features described by the

standard. We hope our effort will allow to develop new schemes in an easier

way to improve or find new ways of using a multipath communication. In-475

deed MPTCP represents a subset of how multipath protocols could improve

our future communications and may represent a turning point between TCP

10http://kodo-ns3-examples.readthedocs.org
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and SCTP for instance. Relaxing some constraints such as the ordered delivery

makes sense for bulk transfers and hopefully network programming interfaces

will evolve to provide a smooth transition to multipath protocols.480
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