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Abstract

The Multipath Transport Control Protocol (MPTCP) is undergoing a rapid
deployment after a recent and quick standardization. MPTCP allows a network
node to use multiple network interfaces and IP paths concurrently, which can
lead to several advantages for the user in terms of performance and reliability. In
this paper, we describe an MPTCP implementation in the Network Simulator
3 (ns3), comparing it with both the Linux implementation and previous ns3
implementations. We show that it is compatible with the Linux implementation
and that it has a desirable similar behavior in traffic handling. Our goal is
to allow researchers develop and evaluate new features of MPTCP using our
simulator in a much faster way than they would with a kernel implementation,
hence boosting MPTCP research.

Keywords: MPTCP, Network Simulator, Implementation Evaluation
2016 MSC: 20-70, 20-80

1. Introduction

Nowadays modern mobile devices are usually equipped with several network
interfaces: it may be WiFi and Ethernet for laptops, or WiFi and cellular
for smartphones. In this context, a user may want to leverage these different
interfaces into using concurrently several paths to achieve the following goals:5

1. Seamless mobility: with legacy TCP, losing an IP address means losing
active TCP sessions, which in a mobility scenario translates into a com-
munication delay necessary to setup a new connection. With multipath
transport, one device can establish several connections in advance and
(re)transmit data on alternate paths when there is a partial or total fail-10

ure on one path (see [1]). Bandwidth aggregation: The ability to aggregate
the bandwidth of several links is also very appealing and appears as the
most anticipated feature.

2. Higher confidentiality: if a flow of data is split over several paths, it may
become harder for an attacker to reconstitute the whole connection flow.15

3. Lower response time: sending duplicated packets on several paths can
increase the probability for the data to follow uncongested paths.
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More elaborate features can emerge from combining some of these tech-
niques. For instance, a smartphone user may enable both LTE and WiFi inter-
faces to benefit from the mobility advantage, and at the same time to limit the20

cellular throughput to save some battery or money. Or one may choose to trade
some of the aggregation benefit in exchange for higher confidentiality.

Yet a multipath protocol needs to address several problems to reach the
previous goals and deliver better than singlepath performance. Multipath com-
munications lead to an increased occurrence of out-of-order packet deliveries,25

which may generate worse performance than single path protocols [2], besides
questioning the fair usage of the network. Information such as the Round Trip
Time (RTT) or the packet sequence number are critical to mitigate these prob-
lems, and are already available at the transport layer. While the application
layer could provide a similar or even better service, having a standard multipath30

transport protocol allows to spread such a knowledge and should ease multipath
communications deployment.

MPTCP is such a multipath transport protocol that attempts to address
these issues in a backward compatible way. As any new Internet protocol,
MPTCP has to face an ossified Internet whose many middleboxes are typi-35

cally configured to block any unknown protocol extension or any new protocol.
MPTCP must also address the fairness issue, i.e., it should not get too much
more bandwidth compared to legacy users, otherwise the protocol could be
blocked by Internet providers. At the same time MPTCP ambitions to be as
least as good as TCP in terms of throughput, which can prove challenging in40

some environments.
In the following, in Section 2 we describe MPTCP, presenting its main com-

ponents, and describing its state machine. In Section 3 we motivate our effort,
detailing our implementation characteristics, and describing our design method-
ology and comparing it with existing implementations. Section 4 reports an45

experimental evaluation of the simulator. We open source the code of the sim-
ulator in [18].

2. Multipath TCP

MPTCP is a TCP extension formalized in RFC 6824 [3]; the MPTCP work-
ing group at the Internet Engineering Task Force (IETF) was formed in october50

2009; since the beginning, it emphasizes backwards compatibility with the net-
work and the applications. This is an aspect to keep in mind when looking at
some design decisions that may appear counter-intuitive at first (for instance
the creation of an additional sequence number space or the requirement to wait
for two levels of acknowledgements before being authorized to free the buffers).55

As a result, TCP applications can run unmodified with MPTCP. This differs
from the Stream Control Transmission Protocol (SCTP) [4], a previous IETF
effort, that provides more features but whose deployment is impeded by the
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many middleboxes on the Internet, blocking unknown protocols. 1

MPTCP should be pareto optimal, i.e., it should not harm any TCP user60

while improving the situation for MPTCP users. Achieving pareto optimality
is still a problem for MPTCP [2] though improvements have been made [6].
Several techniques exist in the literature, such as watching the loss correlation
between subflows to infer if they shared a bottleneck, but such methods make
assumptions about the network that prevent them from being holistic. The65

conservative approach is to consider that all subflows share the same bottleneck:
this is the so-called resource pooling principle [7]. Fairness violation and out-
of-order packet delivery are two problems that any multipath protocol shall to
solve.

2.1. High level design of MPTCP70

MPTCP consists in a shim layer, as represented in Figure 1. It is built
between the application and the TCP stack that unifies several TCP connec-
tions, called “subflows” in the MPTCP context. A subflow is a TCP con-
nection characterized by a tuple (IPsource, TCP portsource, IPdestination, TCP
portdestination) and is assigned a unique subflow id generated by the MPTCP75

stack. MPTCP uses such a subflow identifier to convey subflow related adver-
tisements; it does not use the IP addresses as identifiers because they can be
rewritten by external middleboxes. One can alternatively define an MPTCP
connection as a set of one or many subflows aggregated to feature at least the
same set of services as a singlepath TCP communication.80

MPTCP signals information with its peer through the use of TCP options.
To reorder traffic striped on several subflows, MPTCP adds a global Data
Sequence Number (DSN) namespace shared among subflows and exchanged
through TCP options. The DSN are then mapped to relative Subflow Sequence
Number (SSN), i.e., the TCP subflow sequence numbers, through the Data Se-85

quence Signal (DSS) (Data Sequence Signaling), and are acknowledged with
what we refer to as Data Ack in the rest of this paper, exchanged through the
same DSS option.

The RFC 6182 [8] lists a few functional goals that are deemed mandatory
for a wide deployment of the protocol:90

1. MPTCP must support the concurrent use of multiple paths. The resulting
throughput should be no worse than the throughput of a single TCP
connection over the best among these paths.

2. MPTCP must allow to (re)send unacknowledged segments on any path to
provide resiliency in case of failure. It is advised to support “break-before-95

make” scenarii, e.g., buffer the data when a (mobile) user loses temporarily

1SCTP is now deployed mainly thanks to the WebRTC protocol but is tunneled over UDP
packets [5]. SCTP proposed to opt-out some TCP services on a per connection basis such
as in-order delivery. Ordering is indeed unnecessary when downloading an archive, because
head-of-line blocking may slow down the connection.
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Figure 1: MPTCP: a shim layer in the stack. Subflows can share the IP address (using a
different port) or have different IPs.

all connectivity, to allow resuming the communication as soon as a new
subflow gets available.

[8] also lists three compatibility goals:

• The applications must be able to work with MPTCP without being changed,100

for instance via an operating system upgrade. It also implies that MPTCP
keeps the in-order, reliable, and byte-oriented delivery. 2

• MPTCP should work with the Internet as it is composed today, that is
with middleboxes blocking unusual payloads or even modifying the pay-
load such as internet accelerators, Network Address Translator (NAT) etc.105

The best way to achieve this is to appear as a singlepath TCP flow to the
middleboxes. Hence MPTCP relies on TCP options for signaling. TCP
option space is scarce (40 bytes maximum per packet).

• MPTCP should be fair to single path TCP flows at shared bottlenecks,
i.e., not be greedier. At the same time, MPTCP still shall perform better.110

As part of the network compatibility goal, MPTCP should provide an auto-
matic way to negotiate its use, and upon failure of such a negotiation, fall back
to legacy TCP. This fall back is also possible even after successful completion of
the MPTCP handshake, in case no data ack is received during a certain time,
or checksums are invalid.115

2.2. Connection process

Initiation. Supposing that the MPTCP extension is not disabled, and that the
application remained unchanged, the MPTCP connection is initiated through

2Nevertheless an extended API is being standardized in [9] for applications to squeeze more
out of MPTCP.
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the TCP socket interface via the connect system call. As per the MPTCP Linux
system nomenclature, we call this first TCP connection the master connection.120

This call must generate a random key to be used during the TCP handshake
as can be seen in Figure 2. This key is later hashed and used by MPTCP to
authenticate additional subflows.

Once other subflows are established, the master subflow can be removed as
any other and holds no specificity. Upon SYN reception, the server generates125

also a key which is reflected by the client in the final TCP handshake ack.
This allows the server to operate in a stateless mode. Indeed an MPTCP stack
needs to allocate more data structures than a legacy TCP connection to save
the key, the list of subflows, their identifiers etc. For the sake of efficiency,
the allocation of these data structures can be deferred until the moment the130

MPTCP negotiation succeeds.

Addition of other subflows. The host can open a new subflow as soon as a DSS
option with a data ack is received, which requires at least two RTTs since the
very first handshake. Hence the choice of the initial subflow can have an impact
on the throughput, especially for short connections. Both the client and the135

server can create new subflows. Either the host initiates the new connection,
or it advertises a couple (IP, port) that the peer can choose to connect to. The
policies are local; for instance, in the Linux implementation, the server advertises
its ports, but it lets the subflow creation initiative to the client because of
NATs that could invalidate the client-advertised addresses. It is worth noting140

that several subflows can be created from the same IP address with different
ports. This may prove worthwhile to exploit the network path diversity, in case
the network runs load-balancing [10]. There is no standard procedure and the
subflow opening/closing strategy depends on local policies. It may be wiser
to let clients initiating the connection though, due to the presence of NATs.145

Subflow control can also be delegated to a third party controller [10] [11].

2.3. Congestion control

TCP fairness can be a controversial topic: a malicious TCP user who wants
more bandwidth can create additional TCP connections (as many download
accelerators do) to increase its share at the bottleneck. In the following, we150

consider well-behaved hosts since this is the usual framework priori to any con-
gestion control reasoning.

Without specific congestion control algorithm, a multipath transport proto-
col would adopt a similar behavior at the bottleneck since being an end-to-end
technology, it has no information over the topology. TCP users would see their155

bandwidth decrease and MPTCP deployement hindered. Under these condi-
tions, how to achieve both fairness and higher throughput? Knowing if two
subflows share a same resource (e.g., a link or a router) would allow to run
a congestion control on sets of subflows. Clustering techniques, e.g., [12] and
[13], have been developed to detect bottlenecks based on delay and loss patterns.160

Such techniques need to be foolproof as false negatives generate bandwidth steal-
ing. This is a difficult task without the help from the network, as the heuristics
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Figure 2: Illustration of used notations for two subflows.

need to work across a wide range of configurations, such as the router buffering
policies. Their efficiency is also difficult to evaluate for the same reasons but
even if a perfect scheme existed, relying on it depends on the fairness notion.165

MPTCP embraces the resource pooling principle, which makes a collection
of resources behave like a single pooled resource. This conservative approach
considers that all subflows share a bottleneck and that their additive component
should be coupled.

MPTCP congestion control algorithms modify the congestion avoidance phase170

of the TCP congestion control only: the decrease phase remains the same as in
TCP. Several congestion control algorithms have been proposed such as Linked-
Increase Algorithm (LIA [14]) or Opportunistic LIA [6] (OLIA). They couple the
increase MPTCP congestion window with the congestion window of its subflows:

• wi = wi + min( a
wi

, 1
wr

) per acknowledgement on path i.175

• wi = wi

2 per congestion event on path i.

with a being an aggressiveness factor updated once in a while (per window a
priori) and equal to:

a =
maxr( wi

rtt2i
)∑ wi

rtti

2 ∗
∑
i

wi
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with : {
wi the window size on path i

rtti the round trip time on path i
(1)

The min in the first equation ensures that MPTCP is never more aggressive
than TCP on a single path. It is important to remember that the advertised
receive window is shared between subflows. As such, there may be cases where180

a subflow is capable of sending data, i.e., it has a free transmission window but
there is no more space in the receive window - phenomenon known as Head-
of-Line (HoL) blocking. This may happen when a feature called opportunistic
retransmission is implemented [15], which in such cases retransmits data hoping
to solve the HoL issue. Opportunistic retransmission can be used in conjunction185

with slow subflow penalization: if a subflow holds up the advancement of the
window, MPTCP can reduce forcefully its congestion window along with its
slow start threshold.

2.4. Scheduling

. The scheduler chooses when and on which subflow to send which packets.190

A good scheduler should attempt to reduce the probability of HoL blocking.
For instance, opportunistic retransmission and penalization are reactive mecha-
nisms that waste bandwidth. The Linux implementation currently includes two
schedulers:

• The ‘default’ scheduler sorts subflows according to their RTT and sends195

packets on the first subflow with free window.

• A round robin scheduler that forwards packets in a cyclic manner on the
first subflow with free window available.

Retransmission timeouts (RTO and delayed acks) need to be chosen with
great care since a subflow RTO or out of order arrivals can provoke HoL blocking200

faster than in the single path case, as also explained in [16]. For instance, some
of the state of the art schedulers propose to send packets out of order so that
they can arrive in order [17].

2.5. MPTCP state machine

As a preliminary step before implementing MPTCP in ns3, we needed to205

formalize the current status of the standard to have a precise specification.
In particular, we had to extend the connection closure Finite State Machine

(FSM) described in [3] to cover the whole protocol, i.e., while the active and
passive close are presented as a diagram in [3], we extended the visual description
to our interpretation of the standard. The result is depicted in Figure 3, which210

represents what appears to be the single full representation of the finite state
machine of MPTCP.

While being similar to TCP, we chose to split the ESTABLISHED state
into the M ESTA WAIT and M ESTA MP states to distinguish between
a state where MPTCP waits for a first Data acknowledgement (DACK) and215
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a state where MPTCP can create additional subflows. We also mapped for
each MPTCP state the states in which TCP subflows can be, as well as which
MPTCP options could possibly be sent. The tabulated study report is available
online [18].

2.6. Associated challenges220

We already mentioned a few challenges in the previous sections. Our stance
is that MPTCP is already robust enough by design to fulfill the network and
application compatibility goals (as confirmed by the commercialization of suc-
cessful MPTCP-based products developed by several large corporations such as
OVH, Apple, Citrix).225

About the requirements described in Section 2.1, the current specification
and implementations adequately meet the resiliency requirement; when one link
fails, retransmission of the packets is straightforwardly done on another subflow
as per the basic scheduler behavior. The main obstacle to MPTCP deployment
today remains the throughput and fairness goals. While there are examples230

of increased throughput through the use of MPTCP (e.g., the fastest TCP
connection was done with MPTCP [19]), this requires specific conditions such
as enough buffer and homogeneous paths; there are also cases, as in [2], where
MPTCP performs worse than TCP on the best available path. This does not
comply with the objective of doing always better than TCP. MPTCP must235

acquire the intelligence to distinguish when and which subflows to use to perform
well. Reaching this goal is made even harder with the throughput goal since
MPTCP is less aggressive than TCP on every subflow.

Path management is also a problem - though less studied - since creating
many subflows with the hope of exploiting path diversity can hurt the perfor-240

mance (due to competition between subflows [10]). The problem is two-fold:

1. transport protocols being end-to-end, hosts do not know the topology;
2. even if the hosts knew the topology, they cannot enforce a forwarding

path. Segmented routing may provide a partial solution in this regard.

As for wide area networks topologies, there usually is more than one path245

between source and destination. It can be because of intra-domain redundancy
or because several ISPs compete on the same path. In this direction, there
is ongoing work to exchange topology information between nodes that could
solve point 1) above, for instance Path Computation Elements or at the ALTO
(Application Layer Traffic Optimization) working group [20].250

Topology is a critical information that operators may not be fond of leaking,
hence some approaches look at how to provide an overview of the topology
through sparsification techniques [21]. From the previous technologies, a host
can deduce an optimal number of subflows, but this may prove pointless if the
forwarding problem (point 2) above) is not solved. As such, solutions in locally255

controlled environments such as an SDN (Software Defined Network) datacenter
seem appropriate.

Thus it is advised to use the correct number of subflows (MPTCP can create
more subflows but mark them as backup subflows), no more no less, to reach the
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Figure 3: MPTCP state machine.
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optimal throughput. The path management problem also explains why many of260

the commercial products embed MPTCP into proxy middleboxes (Gigapath3,
OVH4, Tessares5); certainly they grant the benefits of MPTCP to legacy clients,
but the middleboxes can also be better informed of the available path diversity
thanks to their topological position.

Multipath transport incentives are not limited to throughput aggregation265

or reliability goals, and as such one could imagine modes where the cost of an
interface can affect packet scheduling over interfaces as suggested in [22]. The
cost could be given by the energy consumption of the interface or depending
on its fare rate. The user could even set trade-off levels such as losing 30% of
the optimal throughput if it allows for a fairer distribution between subflows.270

LEDBAT-multipath [23] is one of such alternative modes. Information that used
to be of little interest with one path are now helpful in a multipath context. For
instance, if the MPTCP layer is aware of the data emission profile, it can adapt
the scheduling to favor throughput (bulk transfer) or schedule packets so that
they arrive early at the receiver (at the end of a burst).275

3. An MPTCP implementation in ns3

A few MPTCP implementations already exist, some of which already used in
production environments such as Apple’s voice recognition system Siri. Among
the implementations, the Linux one6 is the oldest one with some impressive
achievements (Fastest TCP connection [19]) and likely used in all the commer-280

cial products presented in Section 2.6. Work is also done to improve the MPTCP
support on other operating systems such as Solaris7 and FreeBSD 8. Hence ask-
ing why developing a MPTCP simulator is a legitimate question. In this section
we describe our motivations and the technical aspects of our implementation.
We also present a few tools we developed to ease testing and analysis of related285

MPTCP traces.

3.1. Presentation of ns3 and Direct Code Execution

Ns3 [24] is a popular network simulator in the networking research commu-
nity as is confirmed by the two previous implementations. Its success is likely
due to its General Public License and also because the technical base as well290

and the support team are trustworthy. It is best described as a C++ discrete
time simulator, i.e., events are scheduled in the simulator time and once all
events at the specific time are processed, the simulator updates the current
time with the time of the next scheduled events. It allows the simulator clock
to be independent from the wall clock, most of the times faster.295

3https://www.ietf.org/proceedings/91/slides/slides-91-mptcp-5.pdf
4https://www.ovhtelecom.fr/overthebox/
5http://www.tessares.net
6http://multipath-tcp.org
7https://mailarchive.ietf.org/arch/msg/multipathtcp/ugMIu566McQMn8YCju-CTjW9beY
8http://caia.swin.edu.au/urp/newtcp/mptcp
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Figure 4: Implementation structure in ns3 code.

Direct-Code Execution (DCE) is an ns3 extension that allows to load ap-
plications compiled with specific options (as well as a fork of the Linux kernel
[25]) within the ns3 environment. The advantage is that the simulation runs
in discrete time and thus provides results independently of the host CPU. As
a comparison, the fidelity of mininet9, a container-based simulator, decreases300

inversely with the processing load [26].

3.2. Why an MPTCP simulator?

Simulation traditionally comes handy to (i) run experiments faster, and to
(ii) focus the research efforts on the algorithmic part rather than implementation
complexity.305

Experimenting with MPTCP in the real world can be complex depending on
the scenario. Mobility is a major use case and usually requires access to cellular
(4G) and WiFi interfaces. Not only does it have a cost but 4G is not ubiquitous
and experiments involving wireless channels are time consuming because of the
variability and care their setup require. Other experiments may want to assess310

the behavior under realistic circumstances in terms of subflow latencies, and one
way to do so is to rely on accurate path time and latency measurements (e.g.,
to measure one-way delays as in [27]). Exploiting such traces can prove very
challenging in real setups, but are straightforward in discrete time simulators.

Besides the obvious huge time gain in both experiments design and execution315

time, focusing the research effort on the algorithmic details, e.g., the congestion
control algorithm, the scheduler, the buffer dimensioning, is also an important
factor when deciding whether using a simulator or a real operating system im-
plementation, especially when looking back at the number of use cases described
in Section 2.6. Implementing such solutions into current operating systems usu-320

ally means adding the features into the kernel. While simulation results may

9http://mininet.org/
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Chihani Kheirkhah Our
Features et al. [28] et al. [29] implement.

Option Partial Partial Full
serialization

Standard Connection Connection Full
compliance phase phase
Backward No No Yes

Compatibility
Ack-aware No No Yes

buffer mgnt
Comparison No No Yes

to OS implem.

Table 1: Comparison between ns3 MPTCP simulators.

lose fidelity compared to a reasonable kernel implementation, we argue that
kernel development complexity can generate bad implementations that can not
be easily verified and may not be representative of expected results/analytical
models. In those cases, using a simulator model beforehand is reasonably faster.325

The usage of an MPTCP simulator can ease reproducibility and can help realize
problems ahead of time.

Last but not least, we also think the implementation can serve for education
purposes since the model only deals with MPTCP essentials, thus reducing the
learning complexity.330

3.3. Related work

We have been able to access two previous MPTCP implementations, [28]
and [29], both done using ns3 as well. These two implementations are similar
in many aspects and are compared with ours in Table 1.

Recent developments in ns3 such as TCP option support and generic packet335

serialization in a wire format made it possible for ns3 to communicate with real
stacks. Contrary to previous ns3 implementations that support a subset of the
options, ours support full (de)serialization of MPTCP options, which means it
can handle a higher variety in options (e.g., 32 and 64 bits encoding for DSNs).

To allow the communication with an external stack such as the linux one,340

we also implemented standard compliant connection and closing phases, which
is another differentiating point from [28] & [29]. Thus our implementation is
capable of generating valid tokens based on the (sha1) hash of a random key,
and closing a connection requires the sending and acknowledgement of a DSS
with the data FIN bit. While the implementation is not robust enough yet to345

handle all cases, it managed to exchange a file with an external linux MPTCP
stack with the use of DCE as reported hereafter.

Contrary to [28] & [29], our implementation is backward compatible with
existing ns-3 TCP scripts, following the MPTCP standardization spirit. Thus
in our implementation, the connection phase starts with a legacy TCP socket350

(more precisely a ’TcpSocketBase’ see Figure 4) and only once an MPTCP op-
tion is received it evolves into an MPTCP socket (see ’MPTCPTcpSocketBase’
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in Figure 4). This allows for better integration with the general framework, and
adds the additional benefit of allowing the MPTCP connection to fall back to
TCP. Our hope is to be able to upstream this implementation so that improve-355

ments can then be added incrementally.
We also respected an aspect of the specification that could affect the simu-

lation fidelity, i.e., data can not be removed from the subflow sockets until it is
acknowledged at both the TCP and MPTCP levels.

Finally, our implementation is also the first to our knowledge to be evaluated360

against an operating system stack in comparable conditions as described later
in Section 4.

3.4. Supported and missing features

It is worth noting that Table 1 does compare the three implementations
with respect to high-level aspects, without delving in a precise list of features.365

It is however worth mentioning the lack of support in [28, 29] of many key
features needed to draw realistic settings, such as asymmetric routing, subflow-
level buffer management, the possibility to select single-path TCP congestion
control algorithms, and the existence of an interface for the scheduler. All these
features are supported by our implementation.370

The implementation was developed in ns-3.23 while giving care to perfor-
mance and algorithmic aspects. As such, the fallback capabilities (MP FAIL
option, infinite mapping and checksums) of the protocol have not been imple-
mented with the exception of the initial fallback, when the server does not
answer with an MP CAPABLE option, i.e., it does not support MPTCP and375

the client falls back to legacy TCP. This was made possible by extending the
existing ns3 code infrastructure; for instance in Figure 4, only the structures
starting with “MpTcp” were added. It also spares some resources during the
simulation. Indeed the ability to enable dynamically MPTCP on a per connec-
tion basis means that our implementation works with all the other TCP scripts.380

This obviously implies that we inherit the legacy behavior of TCP in ns3, in-
cluding desirable features such as the possibility to configure asymmetric link
and routing properties. Moreover, one can infer from Figure 4 that new sched-
ulers can be easily interfaced to the simulator and that MPTCP-level buffers
can be reconfigured too.385

We focused our work on implementing the aspects that could have an impact
on the performance such as how data is freed from the buffers: MPTCP requires
the full mapping to be received before being able to free the buffer. We detail
and describe a list of supported key features of our implementation in Table 2.

Compared to the linux implementation, a major shortcoming of the Net-390

work Simulator 3 (NS-3) MPTCP implementation is the lack of the penaliza-
tion mechanism, which reduces the window of a subflow that blocks the MPTCP
window and the opportunistic retransmission feature.

Also contrary to the linux implementation that generates DSS mappings just
in time to be able to adapt to network conditions, we designed the scheduler395

to be able to delay the decision until the last minute or to create mappings
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SHA1 support We added an optional SHA1 support in ns3 to generate valid
MPTCP tokens and initial DSNs. This allows to communicate
with a real stack and also proved necessary for wireshark to be
able to analyze the communication.

Scheduling The fastest RTT and round robin schedulers are available.
Congestion control Subflows can be configured to run TCP ones such as NewReno or

LIA.
Mappings As in the standard, data is kept in-buffer as long as the full map-

ping is received. This is necessary when checksums are used, oth-
erwise this can be disabled to forward the data faster.

Subflow handling It is done directly by the application that can choose to adver-
tise/remove/initiate/close a subflow at anytime if it is permitted
by the protocol.

Packet
(de)serialization

Packets generated along with MPTCP options can be
read/written to a wire, allowing an ns3 MPTCP stack to interact
with other MPTCP stacks, such as a linux one.

Fallback If the server does not answer with an MP CAPABLE option, the
client falls back to legacy TCP. Other failures are not handled,
e.g., infinite mapping or MP FAIL handling as simulating these
features is of little interest.

Buffer space Buffer space is not shared between subflows, data is replicated
between the subflow and the meta send/receive buffers rather than
moved.

Path management We drifted away from the specifications in order to be able to
identify a subflow specifically, i.e., we associate a subflow id to
the combination of the IP and the TCP port. Nevertheless the
implementation is modular so it is possible to replace the subflow
id allocation with a standard scheme.

Table 2: List of supported and missing features.
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in advance. Creating mappings in advance has the advantage of being able to
generate mappings that cover several packets. While the throughput gain is
negligible, it can spare some of the scarce TCP option space.

4. Evaluation400

We present a simple use case where we compare the linux MPTCP imple-
mentation to our NS-3 stack. We chose not to run quantitative tests with the
previous NS-3 implementations since they are based on NS-3 versions that date
back from late 2009 for [28] (ns-3.6) to late 2013 for [29] (ns-3.19). This gap in
versions make the practical evaluation a challenge as well as the interpretation405

of results, because the ns-3 TCP implementation significantly evolved in the
meantime. Hence we tried to choose tools that would allow for seamless testing
and analysis between the kernel and ns3 stacks to lighten the burden analysis.
We had to do some more development to unify the linux and ns3 evaluation,
leveraging on the standardized “pcap ”format.410

4.1. Used tools
As far as MPTCP signaling and data analysis is concerned, there is currently

little choice, with only one tool we are aware of: mptcptrace [30]. Mptcp-
trace is interesting for bulk analysis but we wanted to be able to look at the
packet level to ease debugging. Thus we chose to improve the MPTCP support415

of wireshark [18], which specializes in packet-level network protocol analysis. A
capture is on Figure 5. We mainly added the following features:

• MPTCP connection identification: ability to map TCP subflows together
based on the key and tokens respectively sent in the MP CAPABLE and
MP JOIN options.420

• Verification of the initial DSN based on the MPTCP key.

• Display relative DSN, i.e., the first MPTCP sequence number sent being
considered as 0.

• Computation of the latency between the arrival of new data throughout
all subflows.425

• Detection of DSS mappings spanning several packets.

• Detected retransmissions across subflows.

We wrote a tool called mptcpanalyzer [31, 18] that leverages these results
to produce the plots presented in the next section.

We present in the following a few simulations to compare the linux kernel im-430

plementation to our NS-3 implementation. In order to minimize the differences
due to the environment and for the ease of reproducibility, we chose to compare
the linux and ns3 MPTCP implementations within the DCE 1.7 framework.
This means that nodes, routers and links are created by ns3. Every node can
be configured with a specific network stack. We always install linux stacks in435

the routers.
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Figure 5: The wireshark MPTCP analysis section. Framed in red some of our additions.

4.2. Comparison with linux MPTCP implementation on a 2-link topology

The BDP refers to the number of unacknowledged bytes that can be inflight.
It is generally advised to set the BDP higher than RTT ∗bottleneck capacity to
account for queuing delays in both the networks and the hosts. Note that in this440

case, as DCE runs in discrete time, kernel operations are virtually instantaneous
if not programmed otherwise, so only the network latency impacts the RTT. On
one path with a bottleneck of 2 Mbps and a RTT of 60 ms, the BDP is about
120 kbits. We run the experiments with libos [25] applied against the linux
MPTCP kernel v0.89.445

Moreover:

• The scheduler is set to the round robin one.

• The number of paths is set to one (Figure 7a), then two (Figure 7b).

• The forward and backward one-way delays are set to 30 ms on each path.

• We execute using different receiver windows.450

We ran 5-second iperf2 10 sessions between the two hosts without any
background traffic on the topology of Figure 6. The size of the router buffers is
the default linux one.

10http://iperf.sourceforge.net
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Figure 6: The topology used for the simulations.

In Figure 7a, we notice that both stacks make the maximum use of the paths
except when it is window limited as for the 10 KB case. We can also notice455

that the throughput is a little more than the maximum throughput, which is
likely due to iperf2. Compared to the one path case, in the two paths case
in Figure 7b we get the expected doubling in throughput when the window is
big enough. It also seems that the ns3 version is greedier, namely in the 30 KB
window case.460

In order to check the behavior of the scheduler and thanks to mptcpana-
lyzer, we were able to plot the relative MPTCP sequence numbers transmitted
on every subflow for a 40 KB setup. We establish that DSNs are indeed sent
in a round robin manner in both both the linux (Figure 8b) and the ns3 cases
(Figure 8a). There are more sequence number for the ns3 case because the465

throughput was higher for that setup.

4.3. Open Problems

Limitations of the current simulations. The current buffer handling in ns3 cur-
rently copies data back and forth between the subflows and the meta socket
instead of sharing a pool of memory. This is the main difference with other im-470

plementations, which could impact the simulation fidelity in tight buffer simula-
tions. One promising solution is Non-Renegotiable Selective Acknowledgements
(NR-SACK) [32]; but sadly the source is not available and this would require
ns3 to implement SACK first.

Future work. Authors of [33] made an important contribution in applying exper-475

imental design to test the Linux stack over a large combination of configurations
(buffer size, delay, loss, etc): we hope the experiment could be ported to work
with DCE, which would remove the CPU bias for high loads.

Moreover, another interesting usage of our simulator may be on network
coding usage within MPTCP. Network coding is an active area of research,480

which could improve MPTCP characteristics [34]. While operating system seem
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(a) Single path.

(b) Two paths.

Figure 7: MPTCP linux kernel and ns3 throughput comparison using iperf2. Each boxplot
indicates the min, 1st quartile, median, 3rd quartile and maximum. The x-label indicates the
system used and the window size in KB.
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(a) ns3.

(b) linux kernel.

Figure 8: Repartition of sequence numbers across two subflows with the round robin scheduler.
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to remain oblivious to network coding, there exists a detailed library for ns3 11.

5. Conclusion

We presented the MPTCP protocol and its new implementation we devel-
oped in the network simulator ns3. We described the MPTCP state machine485

we implemented and how our implementation conforms to many of the features
described by the standard. We qualitatively compared our implementation to
previous ns3 available implementations. We quantitatively compared it to the
linux kernel implementation.

We hope our effort will allow to develop and experiment new schemes and490

features in an easier way, in order to improve or find new ways of using a
multipath transport communication. Indeed MPTCP represents a subset of how
multipath protocols could improve our future communications; it may represent
a turning point between TCP and SCTP for instance. Relaxing some constraints
such as the ordered delivery makes sense for bulk transfers and hopefully network495

programming interfaces will evolve to provide a smooth transition to multipath
protocols.

We open source the code of the simulator in [18].
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