
HAL Id: hal-01382916
https://hal.sorbonne-universite.fr/hal-01382916

Submitted on 17 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of standing fronts in steady state fluid
flows: exact and approximate solutions for propagating

MHD modes
Filippo Pantellini, Léa Griton

To cite this version:
Filippo Pantellini, Léa Griton. Identification of standing fronts in steady state fluid flows: exact and
approximate solutions for propagating MHD modes. Astrophysics and Space Science, 2016, 361 (10),
�10.1007/s10509-016-2921-y�. �hal-01382916�

https://hal.sorbonne-universite.fr/hal-01382916
https://hal.archives-ouvertes.fr


Identification of standing fronts in steady state fluid flows: exact and

approximate solutions for propagating MHD modes.

Filippo Pantellini

and
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ABSTRACT

The spatial structure of a steady state plasma flow is shaped by the standing modes

with local phase velocity exactly opposite to the flow velocity. The general procedure

of finding the wave vectors of all possible standing MHD modes in any given point of

a stationary flow requires numerically solving an algebraic equation. We present the

graphical procedure (already mentioned by some authors in the 1960’s) along with the

exact solution for the Alfvén mode and approximate analytic solutions for both fast and

slow modes. The technique can be used to identify MHD modes in space and laboratory

plasmas as well as in numerical simulations.

Subject headings: Magnetohydrodynamics (MHD), Waves, planets and satellites: mag-

netic fields, methods: analytical

1. Introduction

For a characteristic plasma mode propagating at phase velocity uφ(θkB), where θkB is the angle

between the wave vector ~k and the local magnetic field ~B, standing planar fronts may be supported

in a plasma flowing at a given velocity ~uf . However, standing fronts can only exist under specific

circumstances. For example, in the case of ordinary sound waves for which the phase velocity is ±c,
independently of direction, standing modes can only exist if the flow velocity satisfies the condition

uf = c. For strongly angle dependent phase velocities, however, standing fronts can exist under

much less restrictive conditions. Let us consider the case of a mode with phase velocity uφ = ω/k in

the plasma rest frame (ω is the angular frequency and k the wave vector magnitude of the mode).

Let us further assume that the mode phase velocity only depends on its propagation angle θkB with

respect to the local magnetic field ~B, i.e.

uφ = uφ(θkB). (1)
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The Alfvén mode with a phase speed

u2φA = a2 cos2 θkB (2)

and the fast and slow modes with phase speeds:

u2φS,F = 1
2{1 + a2 ±

√
(1 + a2)2 − 4a2 cos2 θkB} (3)

are examples of the generic expression (1). In (3) the sign “−” (“+”) corresponds to the slow (fast)

mode. Also, note that in the above equations and throughout the whole paper velocities have

been normalized to the adiabatic sound speed c. In these velocity units a = cA/c =
√

2(βγ)−1/2 is

the normalized Alfvén speed where γ is the adiabatic index and β the local thermal to magnetic

pressure ratio of the plasma.

An illustration of the graphical procedure to identify standing modes in a flowing fluid (e.g.

Spreiter and Alksne 1970) is shown in Fig. 1. The graphical procedure is based on Thales’ theorem

which states that a circle inscribed triangle with one of its sides being equal to the diameter of the

circle is right-angled. Thus, the two triangles defined by the pairs of vectors (~uf ,~u1) and (~uf ,~u2)

in Fig. 1 are by construction right-angled. The tips of both ~u1 and ~u2 being located on the phase

velocity curve uφ, the two vectors do also represent the phase velocity of two modes (the dotted

lines showing the associated front) for which the propagation velocity is equal and opposite to the

flow velocity component normal to the fronts.

We note that ~u1 and ~u2 are merely particular solutions confined to plane defined by the vectors
~B and ~uf (the (x, z) plane). The general solution requires computing the intersection of a sphere

with the rotationally invariant surface defined by either (2) or (3). The sphere is the one obtained

by rotating the dashed circle of Fig 1 about the axis defined by the velocity vector ~uf .

In this paper, we do stick to the reference frame of Fig. 1 where the expressions for the phase

velocities of the MHD modes are particularly simple. However, this frame is not the most practical

one in most applications as both the magnetic field and the flow velocity orientations are generally

a function of position. The construction of the matrix M which transforms the vector components

from an arbitrary frame of reference (where the flow is stationary) into the frame of Fig. 1 is

described in Appendix A.

2. General solution

Basically, the problem of finding the standing modes in a flowing plasma reduces to the problem

of finding the intersection in velocity space of the surface of a sphere of radius uf/2 passing through

the origin O and the surface of revolution defined by the phase velocity u2φ(θkB). Let us assume

(with no loss of generality) that the flow velocity vector is in the (ux, uz) plane so that the equation

of the sphere is

(ux − ux0)2 + u2y + (uz − uz0)2 = (12uf )2. (4)
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Fig. 1.— Graphical procedure to identify standing modes in a plasma flowing at velocity ~uf . In

the figure, uφ represents the phase velocity of the selected mode in the plasma frame of reference.

The magnetic field points along the z axis and the angle θkB in equation (3) represents the angle

with respect to z. The orientation of the z axis is such that the z component of the flow speed ~uf
(measured in the frame where the flow is stationary) is zero or negative. The x axis is such that

~uf has negative x and no y component. The Bz component of the magnetic field may be positive

or negative. The two vectors ~u1 and ~u2 (given by the intersection of a circle defined by ~uf and the

phase velocity uφ) are the phase velocities and propagation direction (in the plasma frame) of the

two standing slow mode fronts with wave vectors in the (x, z) plane. ∆f is the angle between the

z axis and ~uf .

Denoting ∆f as the angle between the flow velocity ~uf and the z axis (cf Fig 1), it follows that the

velocity components of the center of the sphere are given by

ux0 = 1
2 uf sin ∆f (5)

uz0 = 1
2 uf cos ∆f (6)

where the z axis is oriented such to have 0 < ∆f ≤ π/2, meaning that the magnetic field can be

either parallel or anti-parallel with respect to the z axis. Setting u2 = u2x + u2y + u2z the squared

velocity with respect to the origin, we write the velocity components of an arbitrary point in velocity
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space as

ux = |u| sin θ cosϕ (7)

uy = |u| sin θ sinϕ (8)

uz = |u| cos θ (9)

where 0 < θ < π is the polar angle with respect to the z axis and 0 ≤ ϕ < 2π is the azimuthal

angle with respect to the x axis. One can then describe the surface of the sphere given by (4) in

the more explicit form:

|u| = uf{sin ∆f sin θ cosϕ+ cos ∆f cos θ}. (10)

The solution of the problem consists in searching the family of modes for which the phase velocity

|uφ(θ)| along the direction θ is located on the spherical surface defined by (10), i.e.

|uφ(θ)| = uf{sin ∆f sin θ cosϕ+ cos ∆f cos θ}. (11)

The potentially difficult step is the determination of the propagating direction θ = θ(∆f , uf , a, ϕ)

defined by (11). Once the propagation direction θ(ϕ) of the standing mode is known, the module

of the associated phase velocity is trivially given by the phase velocity uφ(θ) of the corresponding

mode given by either (2) or (3).

3. Solution for the Alfvén mode

For the Alfvén mode one has to solve (11) with the corresponding mode’s phase velocity (2),

i.e.

a| cos θ| = uf{sin ∆f sin θ cosϕ+ cos ∆f cos θ}. (12)

As illustrated in Fig. 1, two solutions do generally exist on either the upper (cos θ > 0) or the lower

(cos θ < 0) lobe of the phase velocity surface.

3.1. Solution A1 for cos θ < 0 :

In this case the intersection curve is located on the lower lobe of the phase velocity surface

and the left hand side of (12) can be written as −a cos θ. Solving (12) for θ leads to

A1: tan θ1 = −
a/uf + cos ∆f

sin ∆f cosϕ
, with ϕ ∈]− π/2, π/2[. (13)

We note that the condition cosϕ > 0 in (13) is a consequence of tan θ1 < 0 (lower lobe). The

orientation angle θ1 (corresponding to solution ~u1 in Fig. 1) is obtained by setting ϕ = 0 in (13).
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Fig. 2.— Three dimensional view showing both the upper and lower lobes of the phase velocity uφS
and the sphere of radius uf/2 centered in −~uf/2. The red line represents the −~uf direction and

the black lines the axes of the coordinate system. Generally, the intersection of the sphere with the

uφS surface splits into two curves characterized by uz > 0 and uz < 0, respectively. These curves

represent the phase velocity of all possible modes (in this case slow modes) which are standing in

the flow ~uf .

3.2. Solution A2 for cos θ > 0:

In this case the intersection curve is located on the upper lobe of the phase velocity surface

but no restrictions on the sign of cosϕ can be assumed in this case (see below). The left hand side

of (12) can be written as a cos θ. Again, solving (12) for θ leads to

A2: tan θ2 =
a/uf − cos ∆f

sin ∆f cosϕ
. (14)

The requirement tan θ2 > 0 implies two distinct cases:

1. uf > a/ cos ∆f and cosϕ < 0 (i.e. ux < 0)

2. uf < a/ cos ∆f and cosϕ > 0 (i.e. ux > 0, as for solution A1)
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4. Approximate solution for the slow mode

Adopting the general slow mode phase velocity expression (3) with the ”−“ sign does not allow

to produce analytic solutions for the standing modes as in the case of the Alfvén mode. However,

in the limit
4a2

(1 + a2)2
cos2 θkB ≤ cos2 θkB � 1 (15)

the slow mode phase velocity can be approximated as

u2φS ' A2 cos2 θkB, where A2 ≡ a2

1 + a2
. (16)

This is the same dispersion relation as for the Alfvén mode with the velocity A replacing the Alfvén

velocity a. The standing modes solutions for the Alfvén mode do therefore work for the slow mode

as well as long as its phase velocity can be approximated by an expression of the form (16). The

dotted curves in Fig. 3 illustrate the quality of the approximation in the less favorable domain

a ∼ 1.

Fig. 3.— Approximations of the slow mode phase velocity for three different values of the Alfvén

velocity a. The two approximations do asymptotically approach the exact solution for either a→ 0

or a→∞.

Using the approximated dispersion for the slow mode (16) the solutions S1 and S2 are trivial

transcriptions of the A1 and A2 solutions for the Alfvén mode:

S1: tan θ1 = −
A/uf + cos ∆f

sin ∆f cosϕ
, with ϕ ∈]− π/2, π/2[ (17)
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and

S2: tan θ2 =
A/uf − cos ∆f

sin ∆f cosϕ
. (18)

As for the Alfvén solution A2, the slow mode solution S2 with the requirement tan θ2 > 0 admits

two cases:

1. uf > A/ cos ∆f and cosϕ < 0 (i.e. ux < 0)

2. uf < A/ cos ∆f and cosϕ > 0 (i.e. ux > 0, as for solution S1).

A representative example illustrating the shape of both S1 and S2 curves in velocity space is

shown in Fig. 4.

Fig. 4.— Figure format is the same as in Fig. 2. In this particular example, the approximate curves

S1 and S2 from (17) and (18) do closely follow the exact solutions defined by the intersection of the

flow velocity sphere (gridded sphere) with the two lobes of the slow mode phase velocity surface.

We conclude this section by noting that a different approximation than (16) can be obtained by

assuming a� 1 and a� 1. The resulting slow mode phase velocity has the same θkB dependence

as (16) with the coefficient A2 replaced by min(1, a2). Both approximations do an excellent job for

a � 1 and a � 1. For a ' 1, the two approximations are mediocre, the one given by (16) having

the advantage of doing well (by construction) for cos2 θkB � 1.
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In the next section, we show contour plots of the error of S1 and S2 resulting from the use

of the slow mode phase speed approximation (16) for a close to unity where the phase speed

approximation (16) is poorest.

4.1. Error of the approximation for the slow mode

Fig. 5 shows the difference δθ ≡ θex − θapp between the approximate solution θapp (from

equations (17) and (18)) and the exact solution θex obtained by numerically solving (11) with the

exact expression of the slow mode phase velocity (3). Error profiles have been computed for the

two standing modes in the (x, z) plane (which can take values ϕ = 0 for S1 and either ϕ = 0 or

ϕ = π for S2). The (x, z) plane is the plane where the errors are largest.

Fig. 5.— Slow mode: Error on the determination of the orientation of the standing fronts for

a singular choice of the Alfvén velocity a and the fluid velocity uf . Left panel: error δθ for the

orientation of the standing slow mode solutions S1 and S2 as a function of the angle ∆f in the (x, z)

plane. As expected the approximation is excellent for small values of ∆. Right panel: approximate

and exact orientations of the standing modes. Note that in order to distinguish between the two

possible orientations ϕ = 0 and ϕ = π we have introduced the angle θ′ = θ cosϕ/| cosϕ| which runs

from 0 to 2π (while θ ∈ [0, π]).

By construction the error vanishes for ∆f → 0 (~uf and ~B aligned) as in that case the standing

mode solutions satisfy | cos θ| ∝ ∆f → 0 which is precisely the limit for the approximate dispersion

(16) to asymptotically approach the full dispersion (3). In general the error for S2 is larger than

for S1. This is due to the fact that curve S2, which runs over the upper lobe of the phase velocity
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surface (see Fig. 4 and also Fig. 1) reaches higher uz, i.e. larger | cos θ| values (and thus lower

precision) than S1.

Fig. 6.— Absolute error |δθ| for the orientation of the standing fronts θ1 and θ2 for solutions S1

(17) and S2 (18), respectively. Note the difference in scale used for the two plots. As in Fig. 5 the

error has been computed for the (x, z) plane where the largest errors occur.

An overview of the absolute error for S1 and S2 as a function of both ∆f and uf is shown in

Fig. 6. The difference between the two plots is striking. As already noted in Fig. 5 the error is

generally larger for solution S2. Indeed, while the error |δθ1| is less than 3◦ over the whole domain,

|δθ2| exceeds 12◦ for uf . 1 over an extended range of ∆f angles. Thus, while S1 does generally

provide a rather accurate approximation, S2 must be used with care.

The error being due in part to the cos2 θ � 1 restriction of the phase velocity approximation

(16), one may be tempted to discard solutions S1 and S2 corresponding to cos2 θ & 1/2. However,

error may remain reasonably small for essentially all accessible θ values, even for a ∼ 1 (the worst

possible regime), as illustrated in the right panel of Fig. 5 .
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5. Approximate solutions for the fast mode

Approximate analytic solutions for the standing fast modes can be obtained following the same

procedure as for the slow mode. However, given the form of the fast mode phase velocity

u2φF (θkB) = 1
2{1 + a2 +

√
(1 + a2)2 − 4a2 cos2 θkB} (19)

a first order development limited to small values of | cos2 θkB| � 1 is not the best choice. A more

general approximation can be obtained by taking the limits a � 1 and a � 1, respectively. For

a� 1, (19) reduces to

u2φF (θkB) ' 1
2

{
1 + a2 + (1 + a2)

(
1− 2 cos2 θkB

a2

)}
(20)

' 1 + a2 − cos2 θkB. (21)

Likewise, for a� 1 one has:

u2φF (θkB) ' 1
2{1 + a2 + (1 + a2)(1− 2a2 cos2 θkB)} (22)

' 1 + a2 − a2 cos2 θkB. (23)

The two above expressions can be merged into a single one:

u2φF (θkB) = 1 + a2 −min(1, a2) cos2 θ. (24)

The quality of the approximation (24) can be appreciated in Fig. 7 for three values of a. Introducing

Fig. 7.— Approximation of the fast mode velocity for different values of the normalized Alfvén

velocity a. It is worth noting that the approximation is best for a� 1 or a� 1. For small angles,

the solution is exact regardless of the value of a.
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B2 ≡ min(1, a2), C2 ≡ 1 + a2, and replacing the approximate expression (24) into the squared

version of (11) leads to

C2 −B2 cos2 θ = u2f{sin ∆f sin θ cosϕ+ cos ∆f cos θ}2. (25)

Further operations and simplifications allow to express the relation as a quadratic function of tan θ:

λ1 tan2 θ + λ2 tan θ + λ3 = 0 (26)

where

λ1 ≡ sin2 ∆f cos2 ϕ− C2

u2f
(27)

λ2 ≡ sin(2∆f ) cosϕ (28)

λ3 ≡ cos2 ∆f +
B2 − C2

u2f
. (29)

The two solutions of (26) are

tan θ1,2 = −
sin(2∆f ) cosϕ±

√
D

2

(
sin2 ∆f cos2 ϕ− C2

u2f

) (30)

where θ1 and θ2 correspond to the sign ”+“ and ”−“, respectively. Real solutions of (30) require

D ≡ λ22 − 4λ1λ3 ≥ 0, i.e.

D =
4C2(C2 −B2)

u2f

(
sin2 ∆f cos2 ϕ

C2
+

cos2 ∆f

C2 −B2
− 1

u2f

)
≥ 0 (31)

complemented by the additional requirement (resulting from (11))

sin ∆f sin θ1,2 cosϕ+ cos ∆f cos θ1,2 ≥ 0. (32)

The special case ∆f = 0 thus implies 0 ≤ θ1,2 ≤ π/2. Otherwise, one may also want to write (32)

in terms of a condition on ϕ:

cosϕ ≥ −1

tan ∆f tan θ1,2
=

2

tan ∆f

sin2 ∆f cos2 ϕ− C2

u2f

sin(2∆f ) cosϕ±
√
D
. (33)

The reason for imposing (32) stems from the fact that (25), which has been solved to obtain (30),

allows both negative and positive values for the left hand side of (32) in clear contradiction with

(11). A characteristic example showing the loci of the standing fast modes using the approximate

expression (30) is shown in Fig. 8. It should be noted that the simple closed curve resulting from
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Fig. 8.— Fast mode. Unlike the Alfvén or the slow mode, the fast mode phase velocity surface

does not have two lobes. Accordingly, its intersection with the sphere of diameter uf (centered in

−~uf ) makes just one simple closed curve instead of two closed curves joining at the origin.

the intersection of the −~uf/2 centered sphere and the fast mode phase velocity surface generally

mixes the two solutions θ1 and θ2.

The 3D solution represents a single curve, which is constituted, depending on the value of

∆f , by either one of the solutions or by a combination of both. It is important to note that in

many cases no standing fast mode solution exist. Graphically, this corresponds to the case of the

uf sphere being completely contained inside the dispersion relation surface or, in the approximate

solution (30), to the condition D < 0.

We note indeed that the constraint D ≥ 0 for real solutions to exist implies the flow velocity

to exceed a limiting value

u2f ≥
(

cos2 ∆f

max(1, a2)
+

sin2 ∆f

C2
cos2 ϕ

)−1
. (34)

5.1. Error of the approximation for the fast mode

An example of ∆ dependence of the errors for both F1,2 solutions (corresponding to the two

solutions θ1,2 from (30)) is shown in Fig. 9. The figure shows that the error associated with this

approximation is generally < 1◦, except near the lower limit of uf and values of a close to unity as

illustrated in Fig. 10 for the particular case a = 1.1.

As already pointed out, the approximate expression for the fast mode’s phase velocity (24)
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Fig. 9.— Fast mode: Error on the determination of the orientation of the standing fronts for a

singular choice of the Alfvén velocity a and the fluid velocity uf . Format is the same as for Fig. 5.

becomes increasingly accurate as the Alfvén velocity a departs from unity meaning that F1,2 are

exact solutions for a→ 0,∞. The contour plots in Fig. 11 do indeed show that already for moderate

departures of a from unity, the error is significantly smaller over most of the (∆, uf ) parameter

space and large errors concentrated in a increasingly narrow region near the lower limit for uf .

6. Sample applications

In this section, we discuss a few case examples in order to illustrate and test the validity of

the above described method to identify standing MHD modes in a stationary plasma flow. As

previously explained, for given plasma parameters, flow and magnetic field orientations, an infinite

number of standing modes are generally possible. As shown in Figures 4 and 8, the tips of all

possible standing phase velocity vectors describe a closed curve in the three-dimensional velocity

space. In general, only a subset of all possible standing modes is effectively compatible with the

imposed boundary conditions. In numerical simulations, laboratory or natural plasmas, it is often

possible to identify the orientation of the dominant wave vector by measuring the gradient of some

local quantity such as density, pressure, magnetic field etc.. When more than one standing mode

is allowed in the direction specified by the gradient, one may use transport ratios to refine the

identification process. Transport ratios are dimensionless numbers obtained by the mutual division

of two fluctuating quantities in a linear wave. In multi-species Vlasov plasmas, it is generally

necessary to compute the transport ratios numerically (e.g. Lacombe et al. 1992). In the MHD
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Fig. 10.— Absolute errors for the two standing fast modes (30) in the (x, z) plane. The regime

a ' 1 is potentially the one with the largest errors, as the approximate expression (24) applies

specifically to a � 1 or a � 1. No standing fast mode solutions exist in the white shaded regions

where condition (34) is not satisfied.

limit, the only two relevant transport ratios are the parallel compressibility C‖ and the Alfvén ratio

RA. They are briefly described in Appendix B. The parallel compressibility, which does compare

density and magnetic field fluctuations, is the most useful to disentangle fast and slow modes as it is

always positive for the former (density and magnetic field vary in phase) and always negative for the

latter (density and magnetic field vary in anti-phase). The Alfvén mode being incompressible (no

density fluctuation), the associated parallel compressibility is vanishing small. If a doubt subsists,

the Alfvén ratio which compares velocity and magnetic fluctuations may be used. Example profiles

of the two just mentioned transport ratios as a function of propagation angle θkB are shown in Fig

16.
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Fig. 11.— Fast mode: Absolute error for the orientation of standing fast mode solutions (30) for a

values larger and smaller than unity.

6.1. Sample application for the fast mode

Standing fast mode fronts are very common in astrophysical plasmas. The interaction of the

solar wind with any of the magnetized planets of the solar system produces such fronts in the form
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of a bow shock. Figure 12 shows a plane cut through a three-dimensional simulation of Mercury’s

magnetosphere (parameters are those of Pantellini et al. (2015)) with the solar wind flow streaming

from left to right. Simulation parameters are such that the solar wind flow, the solar wind magnetic

field, and the planet’s magnetic axis are in the plane shown in Figure 12.

Fig. 12.— Color coded contours of the thermal pressure p in a simulation of the interaction of the

solar wind with Mercury’s magnetosphere. Magnetic field lines are in white. The yellow curves

represent two possible standing fast mode solutions given by equation (30). The regions with no

pressure contours are those where no standing fast modes are possible (D < 0 in (30)).

Under such circumstances, as previously explained for Figure 1, for any given point in the plane

there are at most two standing fronts with wave vectors ~k1,2. The corresponding orientations θ1,2
are given by equation (30) with ϕ either 0 or π, the y components of all vectors being necessarily

zero in the plane of Figure 12. In the free solar wind (on the left in Fig. 12) there are no waves

and the two fronts do merely show a cut through the Mach cone which would be generated by a

point obstacle placed at the crossing of the two fronts. Accordingly, the two fronts do also represent

the orientation of the bow shock at a large distance from the planet and more generally equation

(30) fully describes the fast Mach cone generated by a point obstacle moving through the plasma

at speed ~uf . The fast Mach cone defined by equation (30) is an approximation but far better

handleable than the exact form given in Verigin et al. (2003).

6.2. Sample application for the slow mode

For the slow mode case discussed in section 4 we consider the particular problem of the forma-

tion of a slow mode expansion fan at the Jovian moon Io as described by Krisko and Hill (1991).
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Fig. 13.— Schematic illustration of the problem of a plasma flowing over a nonconducting two-

dimensional sharp corner leading to the formation of a slow mode expansion fan. The angle θin
denotes the orientation of the leading standing slow mode front, marking the entrance of the fan.

The angle θout denotes the front separating the plasma from the vacuum.

Following Siscoe and Sanchez (1987), Krisko and Hill solve a simplified version of the problem

which is that of a steady state plasma flowing over a nonconducting, two-dimensional sharp corner

as illustrated in Fig. 13. The problem is self-similar as it is free of any characteristic spatial scale.

As a consequence, plasma parameters do only vary as a function of the azimuthal angle and do

not depend on the distance (both angles and distances are measured with respect to the corner).

We note that unlike Siscoe and Sanchez (1987) who were interested in the high beta environment

of the Earth magnetosphere (NB: a2 = 2/(γβ)), Krisko and Hill (1991) solve a low beta case (see

Table 1) where the magnetic field is essentially unaffected by the flow.

Table 1: Orientation of the standing slow modes delimiting the expansion fan in the case of a plasma

flowing over a sharp corner for the particular case treated by Krisko and Hill (1991). θKH are the

orientations given by Krisko and Hill, θapp have been computed using the approximation (18)

Parameter a uf ∆f [deg] θKH[deg] θapp[deg] δθ[deg]

In 6.67 1.0 90.0 45.0 44.36 0.18

Out 2780 27.8 20.0 159 159.27 ε

Solution S2 (equation (18)) is the one compatible with the orientation of the magnetic field in

Fig. 13. As shown in Table 1, the approximate orientations θapp of the slow mode fronts defining the

expansion fan are nearly identical to those given by Krisko and Hill (1991). This is not surprising,
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as the parameter a is substantially larger than unity, in which case equation (18), which has been

used to compute θapp, provides an excellent approximation.

Fig. 14.— Cut through a three-dimensional MHD simulation of Mercury’s magnetosphere. The

plasma flows horizontally from left to right and goes through a fast mode shock visible as a sharp

rise of the pressure p. The thin white lines are magnetic field lines while the thick yellow lines are

two examples of possible standing slow mode fronts propagating nearly opposite to each other and

representing the two solutions of Figure 1 with wave vector ~k1 and ~k2, respectively.

As suggested by Pantellini et al. (2015), standing slow mode fronts possibly form downstream of

planetary bow shocks (the magnetosheath) where the plasma flow velocity vector and the magnetic

field vector are nearly parallel to each other (i.e. ∆f � 1). Figure 14 shows a portion of the

same cut through the 3D simulation by Pantellini et al. (2015) already shown in Figure 12. As

for the fast mode in Figure 12, standing wave fronts with their associated wave vectors and local

flow velocity vectors at two selected points are shown for the slow mode. The two fronts have been

constructed using the expressions (17) and (18) with ϕ either 0 or π. It is unlikely that both fronts,

roughly propagating in opposite directions, coexist with similar amplitudes in any given region of

space as their energy source regions are necessarily different. For the slow mode, energy propagates

essentially along the magnetic field line. In the region of the magnetosheath shown in Figure 14, it

is more likely that a hypothetical slow mode front is rather of the ~k1 sustained by an energy flow

from the nose region of the magnetosheath where plasma flow deflection and magnetic field lines

pile-up are strongest.

A slow mode structure can be distinguished from a fast mode structure based on measurements

of the parallel compressibility C‖ = δnB/(nδB‖), where δn and δB‖ represent the spatial variations

normal to the wave front, i.e. along the direction given by the wave vector. Indeed, as shown in

Appendix B, the parallel compressibility is positive for the fast mode and negative for the slow
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Fig. 15.— Left panel: same format as Figure 14 with only the ~k1 front shown. Right panel:

plasma density n, magnetic field intensity B, measured parallel compressibility C‖ and theoretical

parallel compressibility for the slow mode C‖S along the thick straight line shown in the left panel.

Note how the measured compressibility C‖ turns negative and approaches C‖S after position 0.4

suggesting a transition from a fast mode dominated to a slow mode dominated structure.

mode. Thus, by comparing the measured compressibility with the theoretical predictions for the

various modes along a direction normal to the density and/or magnetic field gradients may allow

identifying the local dominant mode. As an example, the parallel compressibility measured along a

straight line aligned with the wave vector ~k1 is shown in the right panel of Figure 15. As expected,

the C‖ profile is positive near the shock front (the bow shock being a fast mode shock). Deeper

inside the magnetosheath at the density maximum at position 0.4, C‖ turns negative and approaches

the theoretical prediction C‖S for the slow mode, suggesting that the fast mode is no longer the

dominant mode.

7. Conclusion

We have presented analytic expressions describing standing plane modes in a steady state

plasma flow for the three linear MHD modes. Expressions are exact for the Alfvén mode and

approximate for fast and the slow modes. They provide comparatively simple analytic forms of the

Alfvén, slow and fast Mach cones. The can be used as a valuable tool to help identify the dominant

modes in complex experimental or simulated plasma flows.
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A. Changing reference frame

The calculations presented in this paper have been established in a particular reference frame

(hereafter the primed reference frame) defined by the flow velocity vector ~uf and the magnetic

field vector ~B as illustrated in Figure 1. This particular frame is well suited for the theoretical

treatment of mode propagation related issues but is rarely the most practical one as both velocity

and magnetic field orientations do generally change as a function of space. In most applications,

however, there is one unique frame for the whole system (for example the simulation frame as in

Fig. 14 or the frame defined by the step geometry in the Krisko and Hill 1991 experiment of Fig.

13). We denote this frame as the unprimed frame. It is therefore useful to establish the matrix

M which transforms the orthonormal right handed basis vectors of an arbitrary frame into the

orthonormal basis vectors (also right handed) of the primed reference frame. The plasma flow

being stationary in both frames there is no relative motion and the transformation matrix M may

be viewed as the product of two rotations implying det(M) = 1. M is easily obtained by writing

the basis vectors ~ex
′, ~ey

′ and ~ez
′ of the primed reference frame in terms of the two unitary vectors

~µf ≡ ~uf/uf and ~b ≡ ~B/B in the unprimed frame, i.e.

~ez
′ = −s~b

~ey
′ =

~µf × ~ez ′

sin ∆f
= −s

~µf ×~b
sin ∆f

(A1)

~ex
′ = ~ey

′ × ~ez ′ = s
(~µf ×~b)×~b

sin ∆f
=
−~µf + (~µf ·~b)~b

sin ∆f

where s = sign(~µf ·~b) and 0 < ∆f ≤ π/2 is the angle between the directions of ~b and ~µf . In the

primed frame the magnetic field is therefore either parallel or anti parallel with respect to ~ez
′. If

∆f 6= 0, the components of the three primed basis vectors are fully specified by the constraint that

~µf is in the (~ex
′, ~ez

′) plane with negative components µfx
′ = ~µf · ~ex ′ < 0 and µfz

′ = ~µf · ~ez ′ < 0.

In the singular case ∆f = 0, ~ey
′ may be any unitary vector perpendicular to ~b and ~ex

′ = ~ey
′ × ~ez ′

as in the general case (A1).

The transformation of the basis vectors ~ex = (1, 0, 0), ~ey = (0, 1, 0) and ~ez = (0, 0, 1) to the

primed frame is thus given by

~ei
′ = M~ei, i = {x, y, z} (A2)

where the elements of the 3×3 transformation matrix M are merely the components of the primed

basis vectors:

M = (~ex
′|~ey ′|~ez ′). (A3)
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Accordingly, the components of an arbitrary vector projected onto the basis vectors of the primed

frame are obtained by applying the transposed matrix MT to the components of the vector in the

unprimed frame, i.e.

~v ′ = MT~v (A4)

where ~v ′ = (~v · ~ex ′, ~v · ~ey ′, ~v · ~ez ′).

A.1. Special case: µfy = by = 0

The transformation matrix M is particularly simple in the case where the y components of ~µf
and ~b are zero in the unprimed frame. In this case the basis vectors (A1) reduce to:

~ez
′ = −s(bx, 0, bz)

~ey
′ = −s(0, σ, 0) (A5)

~ex
′ = +σ(bz, 0,−bx)

where σ ≡ sign(−µfxbz + µfzbx). Accordingly, the transformation matrix M for this particular

case is

M =

 σbz 0 −sbx
0 −sσ 0

−σbx 0 −sbz

 . (A6)

B. Parallel compressibility and Alfvén ratio

B.1. The parallel compressibility

The parallel compressibility of a plane mode with wave vector ~k is defined as

C‖ =
δn

n

B

δB‖
(B1)

where δn and δB‖ are the variations of density and magnetic field along a path parallel to ~k. The

subscript ‖ in δB‖ denotes the variation of the magnetic field parallel to itself so that (for example)

δB‖ = 0 through a rotational discontinuity. Assuming a wave vector ~k = (k, 0, 0):

δB‖ = dx
∂ ~B

∂x
·
~B

B
= dx

∂B

∂x
(B2)

and

δn = dx
∂n

∂x
. (B3)
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In case of an arbitrary orientation ~k the variations δB‖ and δn over an infinitesimal distance ~δx = ε~k

are

δB‖ = ~δx · ∇B = ε~k · ∇B (B4)

and

δn = ε~k · ∇n (B5)

respectively. The parallel compressibility can then be written as:

C‖ =
~k · ∇n
n

B

~k · ∇B
. (B6)

For the incompressible Alfvén mode the parallel compressibility is zero. For both the slow and the

fast mode the parallel compressibility is given by

C‖(θ) =
c2A

u2φ(θ)− c2
(B7)

where θ is the angle between ~k and the magnetic field ~B, cA is the Alfvén speed, c the adiabatic

sound speed and uφ = ω/k the phase velocity (3) of the corresponding mode. We note that for

non-zero values of the Alfvén speed, the fast mode does always propagate faster than the sound

speed. Thus, according to (B7) the compressibility of the fast mode is always positive. On the

contrary, slow modes do always propagate slower than the sound speed (except for the special

case c = cA and θ = 0). Thus, the denominator in (B7) is always negative implying a negative

compressibility for the slow mode. A typical example of parallel compressibility profiles for both

compressible MHD modes is shown in Fig. 16.

B.2. The Alfvén ratio

The Alfvén ratio is defined as

RA =
δv2⊥,k
c2A

B2

δB2
⊥,k

(B8)

where the perpendicular direction is now to be considered with respect to ~k, i.e δv⊥,k = | ~δv×~k/k|.

For the three MHD modes the Alfvén ratio is given by

RA(θ) =
c2A
u2φ

cos2 θ. (B9)

The phase velocity of the Alfvén mode being u2φ = c2A cos2 θ implies that RA = 1, independently of

the propagation angle θ. Sample profiles of the Alfvén ratio for the three MHD modes are shown

in Fig. 16.
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Fig. 16.— Parallel compressibility and Alfvén ratio for the 3 MHD modes and particular values of

β and γ.
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