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Abstract Multicellular tumour spheroids (MCTSs) are extensively used as in-vitro system models for
investigating the avascular growth phase of solid tumours. In this work, we propose a continuous growth
model of heterogeneous MCTSs within a porous material, taking into account a diffusing nutrient from
the surrounding material directing both the proliferation rate and the mobility of tumour cells. At the
time scale of interest, the MCTS behaves as an incompressible viscous fluid expanding inside a porous
medium. The cell motion and proliferation rate are modelled using a non-convective chemotactic mass
flux, driving the cell expansion in the direction of the external nutrients’ source. At the early stages,
the growth dynamics is derived by solving the quasi-stationary problem, obtaining an initial exponential
growth followed by an almost linear regime, in accordance with experimental observations. We also perform
a linear-stability analysis of the quasi-static solution in order to investigate the morphological stability of
the radially symmetric growth pattern. We show that mechano-biological cues, as well as geometric effects
related to the size of the MCTS subdomains with respect to the diffusion length of the nutrient, can drive
a morphological transition to fingered structures, thus triggering the formation of complex shapes that
might promote tumour invasiveness. The results also point out the formation of a retrograde flow in the
MCTS close to the regions where protrusions form, that could describe the initial dynamics of metastasis
detachment from the in-vivo tumour mass. In conclusion, the results of the proposed model demonstrate
that the integration of mathematical tools in biological research could be crucial for better understanding
the tumour’s ability to invade its host environment.

PACS. 87.18.Hf Spatiotemporal pattern formation in cellular populations – 87.18.Gh Cell-cell communi-
cation; collective behavior of motile cells – 46.32.+x Static buckling and instability

1 Introduction1

A multicellular tumour spheroid (MCTS) is an ensemble2

of tumour cells organized in a multi-layered structure1,2.3

In general, a MCTS consists of a central core of necrotic4

cells, surrounded by a layer of quiescent (i.e. dormant)5

cells and an outer rim of proliferating cells1–4.6

MCTSs are widely used in vitro to study the early stages7

of avascular tumour growth and to assess the efficacy of8

anti-cancer drugs and therapies, since their growth and9

structure resemble the in vivo avascular phase of solid10

tumour invasion. Such an early growth phase is charac-11

terized by diffusion-limited growth, since the tumour ab-12

sorbs vital nutrients via diffusion from the external envi-13

ronment1,3,5. Thus, diffusion may become suddenly inef-14

fective in the center of the tumour mass, forming a charac-15

teristic necrotic core (see Fig. 1-a). At later stages, a solid16

tumour is characterized by the occurrence of angiogenesis17

a e-mail: pasquale.ciarletta@polimi.it

(i.e. the process by which the tumour induces new blood 18

vessels formation from the nearby existing vasculature), 19

thus switching to a vascular growth phase6,7. 20

The analysis of the avascular growth phase in tumours has 21

attracted a lot of interest in the mathematical and physi- 22

cal research communities, and a large number of in silico 23

mathematical models has been proposed2,8–16. Thanks to 24

the controllability and the reproducibility of the experi- 25

mental setting, MCTS has become a widely used system 26

model for the development of theoretical models. 27

The classical approach of deterministic tumour model com- 28

prised an ordinary differential equation (ODE), derived 29

from either mass conservation or population dynamics, 30

coupled with at least one reaction-diffusion equation, rep- 31

resenting the spatio-temporal distribution of vital nutri- 32

ents or chemical signals inside the tumour2,9–12,14,15,17. 33

Only recently, many authors have extended such models 34

including the pivotal role of mechanics in tumour growth. 35

In most cases, fluid-like constitutive equations have been 36

used to model the tumour mass18–26. This choice is obvi- 37
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ously only an approximation of the by far more complex38

behaviour of cellular aggregates, that also display solid-39

like properties related to the adhesive characteristics of40

cells27 and to the mechanical properties of the single cell41

in the cluster. Thus, in some limiting cases, cell aggre-42

gates are better described as solids with linear or eventu-43

ally nonlinear elasticity, in which compressive and shear44

loads are balanced by the solid stress in the body, depend-45

ing on the strain of its material points28–33. A solid-like46

constitutive equation has been advocated for its suitabil-47

ity of accounting for both residual stresses29,32,34 and the48

plastic behaviour of cellular aggregates35–37. Even though49

these considerations support the idea that a cellular ag-50

gregate can behave as a solid at some extent, experimen-51

tal evidences26,38,39 have shown that aggregates behave52

as elastic solids on short timescales (of the order of a few53

minutes) but display a fluid-like behaviour at longer times.54

Furthermore, it was shown that cellular aggregates behave55

as an elastic solids at time scales short compared to that of56

cell division and apoptosis, and as a fluid (with the trace-57

less stress that relaxes to zero) for long times40. Thus the58

description of MCTSs as a liquid is widespread.59

Even though the existing mathematical models on both60

solid tumours and MCTSs successfully reproduce the ex-61

perimentally observed growth dynamics2,9–12,14,15,17,41,42,62

they poorly consider the mechanical and chemical inter-63

action with the surrounding environment. Furthermore,64

most approaches assume that the initial spherical symme-65

try is preserved during the growth of the aggregate28–30,66

whilst only in few cases11,12,15 the development of tumour67

irregular contours has been taken into account. Indeed, it68

is known that some solid tumours, e.g. carcinomas, grow69

almost spherically only in the first stages of their progres-70

sion1,3,5, while they might show a less defined and even71

asymmetric outer boundary43 (see Fig. 1-b). Since higher72

irregular contours usually indicate aggressive tumours, the73

capability to undergo a morphological transition might74

promote tumour infiltration and invasion within the sur-75

rounding tissue2,11,12,15,44–46. Thus, it has been proposed76

that some measure of the irregularity of a tumour bound-77

ary (e.g. its fractal index measured via particular medi-78

cal imaging techniques such as computerized tomography79

scans), may provide clinicians with useful information for80

its prognosis and treatment44–46, being potentially useful81

in predicting the efficacy of drug treatment or chemother-82

apy47,48.83

In this work we go beyond the state-of-the art in the84

field2,49,50 by proposing a mathematical model that ac-85

counts for the presence of a surrounding porous media86

with a finite thickness. Thus, nutrient diffusion from the87

external environment creates a chemical gradient that di-88

rects both the proliferation rate and the motility of the89

tumour cells. MCTS is modelled as a viscous fluid with90

adhesive interactions at the border, expanding inside a91

porous material.92

This work is organized as follows. First, we introduce in93

Section 2 the mathematical model describing the expan-94

sion of an initially spherical tumour. In Section 3, we de-95

rive the radially-symmetric solution of the quasi-stationary96

(a)

(b)

100 μm

Figure 1. (a) Morphological evolution of a multicellular tu-
mour spheroid of HeLa cells, showing the development of an
undulated contour and a necrotic core (reproduced with per-
mission from51). HeLa cells were trypsinized, counted and
grown as multicellular spheroids using the liquid overlay tech-
nique. The sections were counterstained with hematoxylin and
eosin to visualize the cytoplasms of the cells. The multicellular
spheroid section is reproduced at days 0, 4 and 12, from left
to right. (b) Solid tumours extracted from mice after ortho-
topic implant of MCF10CA1a cell lines in the mammary fat
pad of the nude mice (courtesy of T. Stylianopoulos, Cancer
Biophysics Laboratory, University of Cyprus).

problem. Then, we perform a linear stability on the quasi- 97

static tumour growth. Finally, in Section 4, we discuss the 98

modelling results with respect to the key chemo-mechanical 99

and geometric parameters that govern the mathemati- 100

cal problems, highlighting the key mechano-biology effects 101

that promote a morphological transition during tumour 102

invasion. 103

2 Mathematical Model 104

The MCTS is modelled as a three dimensional contin- 105

uum growing inside a rigid porous structure, representing 106

the surrounding environment, usually extracellular matrix 107

(ECM) or matrigel. In this respect, the proposed model 108

refers to the in vitro case in which MCTS grows inside 109

a three dimensional either natural medium (e.g. agarose 110

gel, hyaluronic acid gel) or synthetic matrices scaffolds 111

(e.g. polylactide and polyglycolide biodegradable struc- 112

tures mimicking a tissue-like environment)52. 113

The outer boundary of the tumour is considered as a 114

freely moving material interface separating the tumour 115

cells from the surrounding medium. 116
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In particular, we account for the presence of a central re-117

gion of necrotic cells, surrounded by a layer of quiescent118

and proliferating cells. Thus, the whole domain Ω is di-119

vided in different regions, depending on the residing cel-120

lular population (see Fig. 2):121

– the necrotic cells are located in the central core of the
spheroid, in a region called ΩN (t), with

ΩN (t) = {(r, θ) : r < RN (t), 0 < ϕ ≤ π, 0 < θ ≤ 2π} ,

where RN is the radius of the necrotic core, that might122

evolve in time;123

– the proliferative and quiescent tumour cells are located
in the region

ΩT (t) = {(r, θ) : RN (t) < r < RT (t), 0 < ϕ ≤ π, 0 < θ ≤ 2π} ,

where RT is the radius of the spheroid, whose evolution124

in time represents the growth of the MCTS;125

– the healthy space, composed by either the in vitro scaf-
fold or the extracellular matrix, the extracellular liquid
and possibly healthy cells (in vivo),

ΩH(t) = {(r, θ) : RT (t) < r < Rout, 0 < ϕ ≤ π, 0 < θ ≤ 2π} ,

being Rout the outer boundary of the whole domain.126

The boundary between the necrotic core and the prolifer-127

ative region is called ∂ΩN (t), whereas the moving inter-128

face between the tumour region and the healthy space129

is denoted with ∂ΩT (t). In the following we will con-130

sider that the interior boundary between the necrotic core131

and the quiescent-proliferative region does not evolve in132

time, since we are interested only in the evolution of the133

MCTS boundary, which is related to tumour infiltration134

inside the healthy region. Furthermore, we assume that135

the porous material is homogeneously distributed in the136

whole region Ω = ΩN ∪ ΩT (t) ∪ ΩH(t) and it is neither137

produced/degraded (i.e. behaves as inert matter), nor de-138

formed (i.e. structurally rigid) by the moving tumour cells.139

We will consider a single nutrient species (e.g. oxygen)140

with volume concentration n(x, t), diffusing from the fixed141

outer boundary ∂Ω through the porous material. Thus,142

we assume that the vascular network providing the source143

of nutrients is outside the modelled domain, and can be144

represented by a boundary term at ∂Ω. The diffusion coef-145

ficient is a constant value Dn everywhere, but the nutrient146

is only consumed, with an uptake rate γn, in the region oc-147

cupied by the proliferative and quiescent cells. Indeed we148

consider that the consumption of nutrients in the healthy149

region is negligible. This is certainly the case of MCTS150

growing inside artificial/natural scaffolds, but, in a first151

approximation, it can be used also to model the in vivo152

condition20,53, since the net consumption of nutrients in153

the extracellular healthy space is negligible compared to154

the uptake by tumor cells54.155

Thus, the 3D homogenized concentration per unit volume156

of this generic chemical species, indicated with n(x, t),157

obeys the following reaction-diffusion equation158

ṅ(x, t) =


Dn∇2n(x, t) in ΩN ,

Dn∇2n(x, t)− γnn(x, t) in ΩT (t) ,

Dn∇2n(x, t) in ΩH(t) .

(1)

N

T

H

RN

RT

Rout

Figure 2. Representation of the domain used for the analytical
analysis. At time t = 0, the three domains ΩN , ΩT and ΩH
are concentric spherical shells, with radius RN , RT and Rout,
respectively. In this work, we consider that only the tumour
boundary ∂ΩT evolves in time.

We remark that, in principle, the uptake rate γn should 159

depend on the tumour cell density, although, in the follow- 160

ing, it will be considered homogeneous and constant over 161

time. Even the diffusion coefficient Dn can be affected by 162

the cell packing inside the tumor and by the extracellular 163

matrix alignment and distribution. However, coherently 164

with the hypothesis of an inert, rigid and homogeneous 165

extracellular matrix distributed in the whole domain, the 166

diffusion of nutrients can be assumed to be constant53,55. 167

The diffusing nutrient notably not only affects the growth 168

of single individuals in the tumour but also directs cell 169

movements, e.g. through chemotaxis56,57. Therefore, we 170

consider a non-convective mass flux term, m, taking into 171

account both tumour proliferation and chemotactic mo- 172

tion, differently from the standard volumetric production 173

rate considered in literature2,11–15. Accordingly, the mass 174

balance inside ΩT (t) reads 175

dρ

dt
+ ρ∇ · v = ∇ ·m in ΩT (t). (2)

where ρ is the tumour cell density, which is approximately 176

the same of water. Since mass transport phenomena in 177

MCTSs are driven by the local concentration of chemicals, 178

the mass flux vector appearing in Eq. (2) should depend 179

on nutrient availability. A simple constitutive law for m 180

can be taken in the form of a chemotactic term56,58, i.e. 181

m = χρ∇n, where χ is the chemotactic coefficient, here 182

considered constant. Consequently, the mass flux m de- 183

scribes the expansion of the tumour due to proliferation 184

and driven by chemotaxis towards higher concentration of 185

nutrients. 186

Assuming that the living aggregate can be macroscopically 187

modelled as a Newtonian fluid, Darcy’s law describes its 188

motion inside the inert, porous surrounding medium2,18. 189

Thus, the cell velocity v is related to the pressure field p 190
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through191

v = −Kp∇p , (3)

where Kp is related to the permeability of the medium, k,192

and the viscosity of the cellular material, µ, by Kp = k/µ.193

Assuming the incompressibility of the cellular spheroid,194

which is mostly composed by water, we impose dρ/dt = 0195

in Eq. (2), so that the relation between the pressure p and196

the nutrient concentration n reads197

∇2p = − χ

Kp
∇2n in ΩT (t) , (4)

which has been obtained substituting the Darcy’s law (3)198

and the constitutive relations for m in the mass balance199

equation (2). In summary, the coupling of Eq. (1) with200

Eq.(4), complemented by a proper set of boundary con-201

ditions (BCs), describes the macroscopic evolution of the202

avascular tumour inside the healthy tissue.203

In particular, for the pressure we impose the Young-Laplace204

equation at the moving boundary ∂ΩT (t) and the null ve-205

locity of the tumour cells at the fixed boundary ∂ΩN , i.e.206

p = p0 − σbC on ∂ΩT (t) , (5)

v∂ΩN
· nN = 0→ (∇p)|∂ΩN

· nN = 0 on ∂ΩN , (6)

being nN the normal at the fixed boundary ∂ΩN , C the207

local curvature of the free boundary ∂ΩT (t), p0 the con-208

stant pressure in the outer healthy domain and σb the sur-209

face tension at the moving interface. The surface tension210

σb arises from the collective adhesive interaction among211

tumour cells at the MCTS boundary, primarily mediated212

by cadherins,59 and from the differential contractility be-213

tween the cell-cell and cell-medium interfaces, mainly me-214

diated by α-catenin60. Even if, in principle the surface215

tension σb depends on the density of cells, the distribu-216

tion of cadherins and the presence of α-catenin60, we will217

assume that it can be considered constant, for the chosen218

cellular population composing the aggregate.219

For what concerns the chemical species, in absence of an220

interfacial structure, the continuity for the nutrient con-221

centration and flux can be assumed (both in ∂ΩT (t) and222

in ∂ΩN ), and the concentration at the outer boundary223

can be assumed constant (to model the source of nutri-224

ents from the external vascular network), so that225

n |∂Ω = nout on ∂Ω , (7)

JnK |∂ΩT
= 0 , J∇nK |∂ΩT

· n = 0 on ∂ΩT , (8)

JnK |∂ΩN
= 0 , J∇nK |∂ΩN

· nN = 0 on ∂ΩN , (9)

where n is the outward normal vector at the boundary226

∂ΩT and J(·)K |∂Ωj
denotes the jump of the quantity be-227

tween brackets across the boundary ∂Ωj , with j = N,T .228

Finally, the compatibility condition at the free interface229

imposes230

dx∂ΩT

dt
· n = v∂ΩT

· n on ∂ΩT . (10)

In the following we will work with dimensionless equa-
tions, obtained writing the system of Eqs. (1)-(4) in terms

of the dimensionless chemical concentration, n̄ = n/nc,
and the dimensionless pressure, p̄ = p/pc and referring to
the geometry outlined in Fig. 2. The dimensionless quanti-
ties are obtained using the following characteristic time tc,
length lc, velocity vc, pressure pc and chemical concentra-

tion nc: tc = γ−1
n , lc =

√
Dnγ

−1
n , vc =

√
Dnγn , pc = DnK

−1
p ,

nc = nout. Finally, the resulting dimensionless systems
of equations reads

˙̄n =


∇̄2n̄ for r̄ < R̄N
∇̄2n̄− n̄ for R̄N < r̄ < R̄T (t)

∇̄2n̄ for R̄T (t) < r̄ < R̄out
(11a)

∇̄2p̄ = −β∇̄2n̄ for R̄N < r̄ < R̄T (t)
(11b)

Jn̄K|R̄N
= 0,

q
∇̄n̄

y∣∣
R̄N
· n̄N = 0, (∇̄p̄) · n̄N = 0

for r̄ = R̄N (11c)

Jn̄K|R̄T
= 0 ,

q
∇̄n̄

y∣∣
R̄T
· n̄ = 0 , p̄ = p̄0 − σ̄C̄

for r̄ = R̄T (t)
(11d)

n̄(t̄, R̄out) = 1 for r̄ = R̄out
(11e)

dx̄R̄T

dt̄
· n̄ = v̄R̄T

· n̄ = − ∇̄p̄
∣∣
R̄T
· n̄ for r̄ = R̄T (t) .

(11f)

The nondimensionalization leads to the definition of five 231

dimensionless parameters, classified into two broad cate- 232

gories: 233

– β := χnc/Dn and σ := σbKpγ
1/2
n D

−3/2
n =σbKpl

−1/2
c D−1

n 234

define mechano-biology effect on the aggregate expan- 235

sion, and are called motility parameters; 236

– R̄N , R̄T and R̄out (i.e. the dimensionless radii of the 237

necrotic core, of the MCTS and the whole domain, 238

respectively) define the geometrical properties of the 239

system with respect to the diffusive length lc, and are 240

denoted as size parameters. 241

In particular, the dimensionless parameter β represents 242

the chemical effects associated to the expansion of MCTSs, 243

since it can be regarded as the ratio between the typical 244

time-scales of mass production over nutrient diffusion. On 245

the other hand, the parameter σ defines the influence of 246

mechanical cues over tumour development, representing 247

the ratio of the surface tension of the aggregate over the 248

characteristic viscous pressure of the fluid ensemble. 249

For sake of simplicity, in the following we will omit the 250

barred notation to denote dimensionless quantities, e.g. 251

RT stands for R̄T and so on. 252

3 Linear stability analysis of the quasi-static 253

solution 254

In this Section, we first derive the quasi-static solution of 255

the proposed model in order to mimic the early avascular 256
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growth. We later perform a linear stability analysis to in-257

vestigate the occurrence of a morphological instability at258

later growth stages.259

3.1 Quasi-stationary solution260

At early stages of avascular growth MCTSs maintain a261

spherical shape1,3,5. Thus, we look for a radially symmet-262

ric quasi-stationary solution, assuming that the diffusive263

process is much faster than the MCTS expansion, so that264

it is possible to drop the time derivative in Eq. (11a).265

This assumption is valid in many biological conditions,266

since a fast-growing tumour may expand at a rate of up267

to 0.5 mm/day, whereas a typical diffusion time scale is268

about 1 min (considering a typical length scale L ≈ 10−2 cm269

and a typical diffusion coefficient D ≈ 10−6cm2s−1)11.270

Thus, it is clear that the diffusion timescale of nutrients271

is much shorter than the growth timescale, so that the272

quasi-stationary assumption can be effectively formulated.273

Furthermore for such long time scale the MSC can be ac-274

tually treated as a viscous fluid.275

Specializing our analysis to the case of a spherical tu-276

mour of radius RT , we will denote with n∗ = n∗(r, t)277

the quasi-stationary solution of Eq. 11a and with p∗ =278

p∗(r, t) the quasi-stationary pressure field satisfying (11b).279

Given the boundary conditions (11c)-(11d)-(11e) and con-280

sidering that n∗ and p∗ should be bounded, the quasi-281

stationary fields read282

n∗ =



2Route
RT +RN

e2RT w+
T − e2RN w−T

if r ≤ RN

−
e2RN

[
e2(r−RN )(RN + 1)Rout + (RN − 1)Rout

]
r w−T e

r−RT +2RN − r w+
T e

r+RT
if RN < r ≤ RT

Rout
[
e2RT (RN + 1)(r −RT + 1)− e2RN (RN − 1)(r −RT − 1)

]
r
(
e2RT w+

T − e2RN w−T
) otherwise

(12)

p∗ = p0 +
σ

RT
+ β(n∗RT

− n∗) , (13)

where we called n∗RT
= n∗(RT ) the concentration of the283

nutrient at the boundary of the aggregate and we defined284

w+
T = (RN +1)(Rout−RT +1) and w−T = (RN−1)(Rout−285

RT − 1), being wT = (Rout −RT ) the width of the region286

occupied by the tumour. Then, using Eq. (11f), it is pos-287

sible to compute the quasi-stationary velocity of the front,288

which is directed along the radial direction for symmetry289

considerations, i.e. v∗ = v∗rer, with290

v∗r (RT ) = β
Rout(e2RN (RN−1)(RT +1)−(RN+1)e2RT (RT−1))

R2
T (e2RN (RN−1)(w−

T )−(RN+1)e2RT (w+
T ))

.(14)

Equation (14) can be integrated numerically to determine291

the evolution of the spheroid border over time. The re-292

sult, reported in Fig. 3 for different value of the parame-293

ter β, highlights the existence of an initial phase in which294

the growth of the aggregate is nearly exponential and a295

subsequent one in which the expansion of the tumour is296

almost linear, as observed in32,61. Indeed, in standard297

MCTS free-growth (i.e. without the introduction of an298

external stress) in liquid suspension or at moderate agaro-299

sis gel concentration, the plot of the tumor diameter over300

β=0.1 β=1 β=2 

Figure 3. Quasi-stationary solution of the proposed model,
depicting the radius of the tumour over time for different val-
ues of the motility parameter β. At early stages the growth is
exponential, as a consequence of the bulk availability of nutri-
ents. At later stages, the growth law is almost linear, reflecting
the higher nutrient concentration on the outer surface of the
growing spheroid.

time exhibits an early stage of exponential growth, cor- 301

responding to spheroid volumetric growth, since nutrients 302

are available everywhere in the spheroid bulk32,61. Subse- 303

quently, when the diameter of the spheroid becomes much 304

larger than the penetration length of the nutrient, the cel- 305

lular growth becomes mainly localized on the surface of 306

the tumor, leading to a linear growth in time. 307

3.2 Perturbation of the quasi-stationary solution 308

In this paragraph, we investigate the stability of the steady, 309

radially-symmetric solution by applying small perturba- 310

tions of the MCTS boundary. 311

Let R∗T be the unperturbed position of the moving inter- 312

face, we consider a small perturbation (ε� 1) of the kind 313

R(θ, ϕ, t) = R∗T (t) + εeλtRe [Ym
` (θ, ϕ)] . (15)

where λ ∈ R is the amplification rate (or time-growth rate) 314

of the perturbation and Y m` (θ, ϕ) is the spherical harmonic 315

of degree ` and order m, with m ∈ N, ` ∈ N+ and |m| ≤ `. 316

The spherical harmonics Y m` (θ, ϕ) form a complete set 317

of orthonormal functions and thus any square-integrable 318

function can be expanded as a linear combination of spher- 319

ical harmonics. For physical consistency, the variations of 320

n and p from the quasi-stationary solutions n∗ and p∗ 321

should be in the form 322

n(r, θ, ϕ, t) = n∗(r, t) + εn1(r)eλtRe [Ym
` (θ, ϕ)] (16)

p(r, θ, ϕ, t) = p∗(r, t) + εp1(r)eλtRe [Ym
` (θ, ϕ)] , (17)

Using Eq. (11a) and the relation ∇2
ΩY

m
` +`(`+1)Y m` = 0, 323

where we set the angular part of the Laplacian operator as 324

∇2
Ω(·) = 1/ sin θ ∂/∂θ(sin θ ∂(·)/∂θ)+ 1/ sin2 θ ∂2(·)/∂φ2,325

the term n1 must obey the following ODE326

r2n′′1(r) + 2rn′1(r)−
(
`(`+ 1) + (λ+ 1ΩT

)r2
)
n1(r) = 0 , (18)
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where primes denote derivatives on r and 1ΩT
= 1 if327

RN < r ≤ R∗T ,1ΩT
= 0 otherwise. The solution of Eq.328

(18), for λ 6= {0,−1} is329

n1(r) =


C1i`(

√
λr) if r ≤ RN

B1i`(
√
λ+ 1r) +B2k`(

√
λ+ 1r) if RN < r ≤ R∗T

A1i`(
√
λ+ 1r) +A2k`(

√
λ+ 1r) if R∗T < r ≤ Rout,

(19)

where i`(r) and k`(r) are the modified spherical Bessel330

function of the first and second kind, respectively, evalu-331

ated in r. The coefficients A1, A2, B1, B2, C1 appearing in332

the expression of n1(r) can be determined imposing the in-333

cremental boundary conditions for the concentration field334

(11c), (11d) and (11e), being335

Jn1K|RN
= 0 ,

s
∂n1

∂r

{∣∣∣∣
RN

= 0 , (20)

Jn1K|R∗
T

= 0 ,

s
∂n1

∂r

{∣∣∣∣
R∗

T

= n0 , n1(Rout) = 0 . (21)

The perturbed pressure field p1 in ΩT is obtained from336

Eq.(11b) that leads to337

p1(r) = Qr` +Wr−`−1 − β
(
B1i`(

√
λ+ 1r) +B2k`(

√
λ+ 1r)

)
,(22)

where the constants Q and W can be determined from the338

boundary conditions on the pressure field (11c) and (11d),339

considering only the first order terms, i.e.340

p1(R∗T ) = −σ 2

R∗T
2 (2− (`+ 1)`)− ∂p∗

∂r
|R∗

T
,
∂p1

∂r
|RN

= 0 .(23)

perturbation theory62 Finally, using standard procedures341

in perturbation theory62, imposing the boundary condi-342

tion (10) at the perturbed interface and neglecting the343

terms of order higher than the first in the series expansion,344

it is possible to obtain the following dispersion equation345

λ = −p∗′′(R∗T )− p′1(R∗T ) , (24)

which has the same form of the relation found for the346

rectilinear front on an infinite domain63 or an expand-347

ing circular colony64,65. The dispersion equation (24) is348

an implicit function of the time-growth mode λ and the349

spherical harmonic degree `, depending on the five dimen-350

sionless parameters βi, σ, RN , R∗T and Rout. Interestingly,351

λ does not depend on the azimuthal component of the352

model solutions Y m` (φ, θ), i.e. the solutions are indepen-353

dent of the order m, as observed also in previous works354

based on different models15,50.355

4 Results and Discussion356

The dispersion equation (24) has been solved numerically357

in order to investigate the global stability of the solutions358

depending on the system parameters. The corresponding 359

dispersion diagrams are reported in Fig. 4 for different 360

values of both the size and the motility parameters. As 361

in classical perturbation theory62, a positive real part of 362

the growth rate λ implies global instability, thus high- 363

light a critical spatial mode of the perturbation defined by 364

the degree ` associated with the highest positive growth 365

rate. Interestingly, Fig. 4 shows that the spheroid front 366

is linearly unstable at small `, with ` = 1 being always 367

unstable. Indeed, whilst for a spheroid growing inside an 368

infinite homogeneous domain with constant chemical con- 369

centration, one would expect to find λ = 0 for ` = 1, due 370

to translational symmetry11,15,50, we must remind that in 371

our case, due to the presence of the external environment 372

the translational symmetry is no longer preserved. 373

Furthermore, the dispersion diagrams in Fig. 4 also indi- 374

cate the emergence of a characteristic mode different from 375

` = 1 in the cases of bigger size parameters (see Fig. 4- 376

a), as well as of small values of the motility parameters σ 377

(see Fig. 4-c) and β (see Fig. 4-d). Interestingly, the char- 378

acteristic mode is not significantly affected by varying only 379

the dimension of the external domain, while keeping the 380

necrotic radius RN and the initial tumour radius RT fixed 381

(Fig. 4-b) Moreover, whether the range of unstable modes 382

is highly influenced by the sizes parameters and by the 383

motility parameter σ (Fig. 4-a-c), it is not deeply influ- 384

enced by variations of Rout and β (Fig. 4-b-d). Indeed as 385

either the size of the domains decreases (Fig. 4-a) or σ 386

increases, the range of unstable modes decreases, up to a 387

range where only ` = 1 is unstable. The dependency on 388

the size of the domains states that smaller diffusive lengths 389

(i.e. smaller diffusion coefficient or higher absorption rate 390

of the nutrients) lead to highly irregular contours during 391

the growth of the tumour. On the other hand, the effect 392

on the mechanical parameter σ on the dispersion diagram 393

shows that, as expected, the surface tension σb, along with 394

an high permeability of the surrounding porous environ- 395

ment k act a stabilizing effect on the front (see Fig. 4-c), 396

whereas the viscosity of the tumour cluster destabilize the 397

border of the MCTS leading to more aggressive tumours. 398

As β settles the velocity of the quasi-stationary moving 399

front (see Eq. (14)), the dispersion diagram in Fig. 4-d 400

shows that the tumour developed highly irregular contour 401

only in the case of slowly-moving front (i.e. small chemo- 402

tactic coefficient and proliferation), since for fast moving 403

front the characteristic mode decrease, until only ` = 1 is 404

unstable. 405

Moreover, it is interesting to consider the role played by 406

the radius of the growing tumour in the development of 407

instabilities, while keeping all the other parameters fixed 408

(see Fig. 5). Fig. 5-a reports the results for a set of pa- 409

rameters Rout, RN , β and σ for which, independently from 410

RT , the most unstable mode is always ` = 1. This situ- 411

ation corresponds to a sort of translation of the spheroid 412

inside the domain (see Fig. 5-a on the right). On the other 413

hand, the characteristic mode depends on the MCTS size 414

in a certain range of material parameters (see Fig. 5-b ). 415

Indeed, it increases for increasing RT , so that bigger tu- 416

mours show more irregularities at their border. Therefore, 417

a growing MCTS can undergo a morphological transition418

that may significantly affect the invasion pattern towards419
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Varying σ

Rout=50, RT=10, RN=5, β= 1

Varying β

Rout=50, RT=10, RN=5, σ=0.01

Varying Rout 

RT=10, RN=5, σ=0.01, β=1

Varying sizes 

RT/RN=2,  Rout/RT=5, β= 1, σ=0.01

σ=0.01 σ=0.1 σ=1 σ=10 β=0.1 β=1 β=5 β=10

Rout=25 Rout=50 Rout=250 Rout=10 Rout=25 Rout=50 Rout=100 Rout=500 

(a) (b)

(c) (d)

Figure 4. Dispersion diagrams for different values of the model parameters (a) Rout keeping q = Rout/RN constant, (b) Rout
keeping RN constant, (c) σ and (d) β. The solid lines in the graphs are obtained by interpolating the discrete values (see the
dots on the curves) of the time growth rate of the perturbation, λ, calculated for integer values of ` from eq. (24). In (a) the
shapes of the tumour corresponding to the characteristic mode (` = 1, 2, 3, 6) is reported.

the typical finger-like structures observed for invasive car-420

cinomas (see Fig. 5-b).421

Finally, Fig. 6 depicts the perturbed pressure and ve-422

locity fields for a linearly unstable perturbation, given by423

a spherical harmonic of the kind Y 6
10(θ, ϕ). The highest424

variation of the pressure is located in a thin shell closer425

to the interface of the tumour, so that in the bulk of the426

tumour the velocity is almost null. In the region just at427

the rear of small protrusions (due to the perturbation of428

the boundary), the pressure field increases, so that the429

velocity at the border of the MCTS where a protrusion 430

form, for the unstable modes (such as the one reported 431

in Fig. 6), is higher than the velocity in the invagination 432

on the contour. Furthermore, from the perturbed field it 433

is possible to appreciate small negative radial velocities in 434

the bulk, just at the rear of the region where protrusion 435

forms. Thus, while the spheroid surface moves outward, 436

some cells inside the cluster move inward. This result con- 437

firms the existence of a radial convergent flow, in addition 438

to the divergent flow that makes the aggregate expand, as 439

pointed out in66,67. This effect combined with the higher 440

velocity associated to the protrusion border could explain 441

the possible detachment of carcinoma cells that lead to442

metastasis and thus the higher invasivity of tumours with443

irregular contours.444

Even though the onset of irregular contours and the de-445

velopment of a retrograde flow are in qualitative agree-446

ment with biological experiments66–68, a direct quantita-447
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Rout=50, RN=1, β= 1, σ=0.01 Rout=10, RN=1, β= 1, σ=0.01

=2 =4 =6 =8 =1 

RT
RT

RT

=2 =4 =6 =8 =10 =1 

RT

Figure 5. Evolution of the time growth rate of the perturbation λ with respect to the dimensionless tumour radius, RT , for
different values of ` (with ` = 1, 2, 4, 6, 8, 10). (a) For the chosen set of parameters, ` = 1 is the most unstable mode, whatever
the tumour radius is. The deformed shapes corresponding to RT = 2, 5, 8 are reported aside (the gray region represents the outer
environment). (b) The characteristic mode ` changes for different values of the tumour radius. Aside the dispersion curves, the
section of the tumour perturbed shapes are reported for RT = 2.5, 8, 12.5, 20, 26, 35 to which the corresponding characteristic
modes are ` = 1, 2, 4, 6, 8, 10 respectively.

tive comparison between our predictions and the biolog-448

ical experiments is not straightforward. First, not all the449

data required by the mathematical model, even though450

measurable in principle, are reported in literature. Sec-451

ond, most of the work in the vast literature on MCTSs452

focus on the effect of nutrients availability and stress on453

the growth of the spherical tumor aggregate, whereas lit-454

tle attention have been paid on the systematic mapping of455

contour instabilities onset and evolution. Therefore, fur-456

ther morphological data on MCTS, combined with esti-457

mates of the underlying biological parameters involved in458

the process (i.e. nutrients diffusion and uptake, surface459

tension of the aggregate and permeability of the porous460

medium), are highly required for the future validation of461

the proposed model.462

5 Conclusions463

In this work we have presented a continuum model for464

describing the avascular growth of a multicellular tumour465

spheroid, comprising a fixed necrotic core surrounded by466

a region of proliferative cells, guided by the uptake of a467

diffusing nutrient. The proposed model encapsulates the468

diffusion of a chemical species from the vasculature of the469

healthy region and the tumour cell response to nutrients,470

via their proliferation and their chemotactic migration in-471

side the extracellular space. The proposed model differs472

from existing approaches2,49,50 since it considers a growth473

though a rigid, porous surrounding material. Moreover,474

the MCTS expansion is guided not only by cell prolifer-475

ation as in2,49,50, but also by the chemotactic motion of476

cells, through a non-convective mass flux term. Differently477

from2,50, that assumed a Gibbs-Thompson relation69 on478

the moving boundary for the chemical potential, we con-479

sidered a mechanical effect in term of a surface tension at480

the MCTS outer boundary, leading to the Young-Laplace481

equation at the interface.482

The proposed model is governed by five dimensionless pa-483

rameters: two of them, β and σ are called motility pa-484

rameters and representing the mechano-biology cues, the485

other three are denoted size parameters and are related486

to the typical sizes of the domains with respect to the dif-487

fusive length. The analytic results predicted the existence488

of a quasi-stationary radially-symmetric tumour configu-489

ration that is always linearly unstable to asymmetric per-490

turbations involving spherical harmonics Y m` (θ, φ), with491

the range of the unstable modes depending on the dimen-492

sion of the domain with respect to the diffusive length493

and on the motility parameter β, related to the chemo-494

tactic growth of the tumour. We remark that, whilst a495

MCTS growing inside an infinite homogeneous domain is496

marginally stable, i.e. λ = 0 for ` = 111,15,50, the proposed497

model is always linearly unstable, since translational sym- 498

metry is broken by considering a finite dimension of the 499

surrounding media. Furthermore, differently from existing 500

works2,8,9,14,15,17, the perturbation analysis is conducted 501

here without neglecting the diffusion timescale in the un- 502

stable growth rate. 503

The analysis of the perturbed field also pointed out a 504

possible mechanism that could lead to the detachment of 505

metastasis from the primary tumour mass, based on the 506

development of higher velocity at the border of the MCTS 507

and a convergent flow inside where protrusions form. This 508

mechanism could explain why the propensity for asym- 509

metric invasion and the installation of irregular morphol- 510

ogy characterize the growth of aggressive carcinomas in 511

vivo. Thus, this approach has the potential to foster our 512

understanding on the process of transition from the be- 513

nign to the aggressive tumour stage and might provide also 514

some indications for improving therapeutic treatments. In- 515

deed, more blurred and irregular contours detected in vivo 516

can be related to more malignant tumour, with respect to 517

smoother and clearer contours that can be associated to 518

benign carcinomas. 519
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Figure 6. Evolution of the quasi-stationary and perturbed pressure and velocity fields for Rn = 1, R∗
T = 35, Rout = 50 for a

perturbation of the kind eλtY 6
10(θ, ϕ). Since higher changes in the velocity and pressure field occurs only at the interface, we use

a logarithmic scale in the velocity plot in order to show small variations of the perturbed field inside the bulk of the tumour.
The perturbed velocity field highlights the existence of negative radial velocities (i.e. radial convergent flow), as pointed out
in66,67.

However, the present model considers a really simplified 520

geometry and adopts some simplifications in order to ob- 521

tain a model that can be studied analytically. Thus, fu- 522

ture improvements of the proposed mathematical model 523

should focus on the explicit description of quiescent cell re- 524

gion (that in the present model corresponds to the region 525

of the spheroid in which we have an almost null velocity) 526

and on tracking the evolution of the inner necrotic core, 527

occurring, for instance, when the nutrients concentration 528

attains a specific value2,12 (whereas in the present work 529

the fixed radius RN of the necrotic core is a parameter in 530

the sensitivity analysis). Then, the stability analysis can 531

be enriched by considering the weakly nonlinear interac- 532

tions of the asymmetric modes, as well as their evolution 533

depending on the order m of the spherical harmonic per- 534

turbation (as done for example in15 in a simplified case) 535

and numerical techniques should be developed in order to 536

simulate the fully nonlinear evolution of the morphologi- 537

cal transition. 538

From the modelling point of view, future studies should 539

also consider the effect of the cells populating the sur- 540

rounding healthy environment on the consumption of nu- 541

trients and the effect of varying local densities (both inside 542

the healthy tissue and inside the different tumor regions) 543

on the nutrient diffusion coefficient. Then, the effect of 544

solid mechanical stresses on the growth dynamics of tu- 545

mours32,61,67,70–73 and the effect of the possible deforma- 546

tion, degradation and reorganization of extracellular ma- 547

trix fibres74–76 should be included to move towards a more 548

realistic representation of the problem. Indeed, for tumor 549

growing both in vivo and in xenograft animal models, the 550

description of the system evolution is far more complex 551

than the one proposed in this work, referred to MCTS 552

growth inside inert and rigid ECM scaffolds. In particu- 553

lar, it has been shown that the geometrical and mechanical 554

properties of the ECM74,75 play an important role for the 555

possible formation of metastasis, since they can lead to 556

growth arrest (i.e. spheroid compartmentalization) or, on557

the contrary, foster the detachment of invasive cells. Along558

with the rigidity of the matrix, its density, and the ten-559

sile forces generated in the ECM74,75, more recent studies560

identify the matrix pore size as the critical property mod-561

ulating cancer cell invasion77,78. Based on these biologi-562

cal observations, some recent mathematical models have563

been developed to take into account, on one hand, MCTS564

segregation by thick porous (but still rigid and homoge-565

neous) structures79–81 and, on the other, ECM deforma-566

tion82. Furthermore, not only ECM fibers can accumulate567

or being degraded at the host-MCTS interface, but they568

strongly reorganize, aligning parallel to the tumor bor-569

der, in a first stage, and then perpendicular to the tumor570

boundary74.571

Thus, to take into account all these aspects and more572

ealistically describe tumor growth in vivo, an anisotropic573

poro-elasto-visco-plastic model with a threshold (based on574

microscopic arguments) for cell motion should be devel-575

oped. However in that case tumor irregular contours will576

likely arise for inhomogeneity and anisotropy in the ECM,577

whereas this work demonstrates that mechano-biological578

and (macroscopic) geometrical cues can determine the oc-579

currence of a morphological transition in growing tumours580

that can promote invasiveness, even in an homogeneous581

environment. The theoretical results push towards the582

developments of further biological experiments for accu-583
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rate characterization of MCTS morphology and careful584

measures of the surface tension and the interstitial pres-585

sure within MCTSs59,83, as well as growth and mobility586

properties of the tumour cells to validate the predictions of587

the model. Indeed, the integration of mathematical tools588

in biological research could be crucial for estimating the589

tumour’s ability to invade its host environment.590
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Tuning of Tissues’ Viscosity and Surface Tension834

through Contractility Suggests a New Role for α-835

Catenin,” PLoS ONE, vol. 8, no. 2, p. e52554, 2013.836

61. G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J.837

Melder, and R. K. Jain, “Solid stress inhibits the838

growth of multicellular tumor spheroids,” Nature839

Biotechnology, vol. 15, no. 8, pp. 778–783, 1997.840

62. A. Nayfeh, Perturbation Methods. John Wiley and841

Sons, 2000.842

63. P. Ciarletta, “Free boundary morphogenesis in liv- 843

ing matter,” European Biophysics Journal, vol. 41, 844

pp. 681–686, 2012. 845

64. C. Giverso, M. Verani, and P. Ciarletta, “Branching 846

instability in expanding bacterial colonies,” Journal 847

of The Royal Society Interface, vol. 12, no. 104, 2015. 848

65. C. Giverso, M. Verani, and P. Ciarletta, “Emerg- 849

ing morphologies in round bacterial colonies: compar- 850

ing volumetric versus chemotactic expansion,” Biome- 851

chanics and Modeling in Mechanobiology, pp. 1–19, 852

2015. 853

66. M. Dorie, R. Kallman, D. Rapacchietta, 854

D. Van Antwerp, and Y. Huang, “Migration and 855

internalization of cells and polystyrene microsphere 856

in tumor cell spheroids,” Experimental Cell Research, 857

vol. 141, no. 1, pp. 201–209, 1982. 858

67. M. Delarue, F. Montel, O. Caen, J. Elgeti, J. M. 859

Siaugue, D. Vignjevic, J. Prost, J. F. Joanny, and 860

G. Cappello, “Mechanical control of cell flow in multi- 861

cellular spheroids,” Physical Review Letters, vol. 110, 862

p. 138103, 2013. 863

68. H. Frieboes, X. Zheng, C.-H. Sun, B. Tromberg, 864

R. Gatenby, and V. Cristini, “An integrated computa- 865

tional/experimental model of tumor invasion,” Cancer 866

Research, vol. 66, pp. 1597–1604, 2006. 867

69. J. Langer, “Instabilities and pattern formation in crys- 868

tal growth,” Reviews of Modern Physics, vol. 52, no. 1, 869

pp. 1–30, 1980. 870

70. G. Cheng, J. Tse, R. Jain, and L. Munn, “Micro- 871

environmental mechanical stress controls tumor 872

spheroid size and morphology by suppressing prolif- 873

eration and inducing apoptosis in cancer cells,” PLoS 874

ONE, vol. 4, no. 2, p. e4632, 2009. 875

71. F. Montel, M. Delarue, J. Elgeti, L. Malaquin, 876

M. Basan, T. Risler, B. Cabane, D. Vignjević, 877
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