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Multicellular tumour spheroids (MCTSs) are extensively used as in-vitro system models for investigating the avascular growth phase of solid tumours. In this work, we propose a continuous growth model of heterogeneous MCTSs within a porous material, taking into account a diffusing nutrient from the surrounding material directing both the proliferation rate and the mobility of tumour cells. At the time scale of interest, the MCTS behaves as an incompressible viscous fluid expanding inside a porous medium. The cell motion and proliferation rate are modelled using a non-convective chemotactic mass flux, driving the cell expansion in the direction of the external nutrients' source. At the early stages, the growth dynamics is derived by solving the quasi-stationary problem, obtaining an initial exponential growth followed by an almost linear regime, in accordance with experimental observations. We also perform a linear-stability analysis of the quasi-static solution in order to investigate the morphological stability of the radially symmetric growth pattern. We show that mechano-biological cues, as well as geometric effects related to the size of the MCTS subdomains with respect to the diffusion length of the nutrient, can drive a morphological transition to fingered structures, thus triggering the formation of complex shapes that might promote tumour invasiveness. The results also point out the formation of a retrograde flow in the MCTS close to the regions where protrusions form, that could describe the initial dynamics of metastasis detachment from the in-vivo tumour mass. In conclusion, the results of the proposed model demonstrate that the integration of mathematical tools in biological research could be crucial for better understanding the tumour's ability to invade its host environment.

sorbs vital nutrients via diffusion from the external envi-13 ronment 1,3,5 . Thus, diffusion may become suddenly inef-14 fective in the center of the tumour mass, forming a charac-15 teristic necrotic core (see Fig. 1-a). At later stages, a solid 16 tumour is characterized by the occurrence of angiogenesis a e-mail: pasquale.ciarletta@polimi.it (i.e. the process by which the tumour induces new blood vessels formation from the nearby existing vasculature), thus switching to a vascular growth phase [START_REF] Folkman | Tumour angiogenesis[END_REF][START_REF] Muthukarruppan | Tumour-induced neovascularisation in the mouse 624 eye[END_REF] .

The analysis of the avascular growth phase in tumours has attracted a lot of interest in the mathematical and physical research communities, and a large number of in silico mathematical models has been proposed [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Adam | A simplified mathematical model of 627 tumor growth[END_REF][START_REF] Adam | A mathematical model of tumour 630 growth. ii. effects of geometry and spatial unifor-631 mity on stability[END_REF][START_REF] Adam | Diffusion regu-634 lated growth characteristics of a spherical prevascular 635 carcinoma[END_REF][START_REF] Byrne | Growth of non-necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Chaplain | Experimental and Theoretical Advances in Biological Pattern Formation, ch. The development of a spatial pattern in a model for cancer growth[END_REF][START_REF] Greenspan | Models for the growth of a solid tumour by diffusion[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF][START_REF] Maggelakis | Mathematical model of prevascular growth of a spherical carcinoma[END_REF] . Thanks to the controllability and the reproducibility of the experimental setting, MCTS has become a widely used system model for the development of theoretical models.

The classical approach of deterministic tumour model comprised an ordinary differential equation (ODE), derived from either mass conservation or population dynamics, coupled with at least one reaction-diffusion equation, representing the spatio-temporal distribution of vital nutrients or chemical signals inside the tumour [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Adam | A mathematical model of tumour 630 growth. ii. effects of geometry and spatial unifor-631 mity on stability[END_REF][START_REF] Adam | Diffusion regu-634 lated growth characteristics of a spherical prevascular 635 carcinoma[END_REF][START_REF] Byrne | Growth of non-necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Greenspan | Models for the growth of a solid tumour by diffusion[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF][START_REF] Mcelwain | Apoptosis as a volume loss mechanism in mathematical models of solid tumour growth[END_REF] . Only recently, many authors have extended such models including the pivotal role of mechanics in tumour growth. In most cases, fluid-like constitutive equations have been used to model the tumour mass [START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF][START_REF] Araujo | A history of 668 the study of solid tumour growth: The contribution 669 of mathematical modeling[END_REF][START_REF] Lowengrub | Non-673 linear modelling of cancer: Bridging the gap between 674 cells and tumours[END_REF][START_REF] Mcelwain | Cell migration in mul-677 ticell spheroids: Swimming against the tide[END_REF][START_REF] Chen | The influence of 681 growth-induced stress from the surrounding medium 682 on the development of multicell spheroids[END_REF][START_REF] Landman | Tumour dynamics 685 and necrosis: surface tension and stability[END_REF][START_REF] Steinberg | Reconstruction of tissues by dissoci-689 ated cells. some morphogenetic tissue movements and 690 the sorting out of embryonic cells may have a common 691 explanation[END_REF][START_REF] Foty | Liquid properties of embryonic tissues: Mea-695 surement of interfacial tensions[END_REF][26] . This choice is obvi-ously only an approximation of the by far more complex behaviour of cellular aggregates, that also display solidlike properties related to the adhesive characteristics of cells 27 and to the mechanical properties of the single cell in the cluster. Thus, in some limiting cases, cell aggregates are better described as solids with linear or eventually nonlinear elasticity, in which compressive and shear loads are balanced by the solid stress in the body, depending on the strain of its material points [28][29][30][31][32][33] . A solid-like constitutive equation has been advocated for its suitability of accounting for both residual stresses 29,32,34 and the plastic behaviour of cellular aggregates [START_REF] Ambrosi | Cell adhesion mecha-738 nisms and stress relaxation in the mechanics of tu-739 mours[END_REF][START_REF] Ambrosi | The inter-742 play between stress and growth in solid tumors[END_REF][START_REF] Giverso | Growing avas-747 cular tumours as elasto-plastic bodies by thetheory of 748 evolving natural configurations[END_REF] . Even though these considerations support the idea that a cellular aggregate can behave as a solid at some extent, experimental evidences 26,[START_REF] Aigouy | Cell flow reori-752 ents the axis of planar polarity in the wing epithelium 753 of drosophila[END_REF][START_REF] Vasilica Stirbat | Multicellular aggregates: a model system for tissue rheology[END_REF] have shown that aggregates behave as elastic solids on short timescales (of the order of a few minutes) but display a fluid-like behaviour at longer times. Furthermore, it was shown that cellular aggregates behave as an elastic solids at time scales short compared to that of cell division and apoptosis, and as a fluid (with the traceless stress that relaxes to zero) for long times [START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF] . Thus the description of MCTSs as a liquid is widespread.

Even though the existing mathematical models on both solid tumours and MCTSs successfully reproduce the experimentally observed growth dynamics [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Adam | A mathematical model of tumour 630 growth. ii. effects of geometry and spatial unifor-631 mity on stability[END_REF][START_REF] Adam | Diffusion regu-634 lated growth characteristics of a spherical prevascular 635 carcinoma[END_REF][START_REF] Byrne | Growth of non-necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Greenspan | Models for the growth of a solid tumour by diffusion[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF][START_REF] Mcelwain | Apoptosis as a volume loss mechanism in mathematical models of solid tumour growth[END_REF][START_REF] Casciari | Mathematical modelling of microenvironment and growth in emt6/r0 multicellular tumour spheroids[END_REF][START_REF] Marusic | Analysis of growth of multicellular tumour spheroids by mathematical models[END_REF] , they poorly consider the mechanical and chemical interaction with the surrounding environment. Furthermore, most approaches assume that the initial spherical symmetry is preserved during the growth of the aggregate 28-30 , whilst only in few cases [START_REF] Byrne | Growth of non-necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF] the development of tumour irregular contours has been taken into account. Indeed, it is known that some solid tumours, e.g. carcinomas, grow almost spherically only in the first stages of their progression 1,3,5 , while they might show a less defined and even asymmetric outer boundary 43 (see Fig. 1-b). Since higher irregular contours usually indicate aggressive tumours, the capability to undergo a morphological transition might promote tumour infiltration and invasion within the surrounding tissue [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Byrne | Growth of non-necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF][START_REF] Cross | The fractal dimension may be a useful morphometric discriminant in histopathology[END_REF][START_REF] Cross | Fractal geometric analysis of colorectal polyps[END_REF][START_REF] Landini | How important is tumour shape?[END_REF] . Thus, it has been proposed that some measure of the irregularity of a tumour boundary (e.g. its fractal index measured via particular medical imaging techniques such as computerized tomography scans), may provide clinicians with useful information for its prognosis and treatment [START_REF] Cross | The fractal dimension may be a useful morphometric discriminant in histopathology[END_REF][START_REF] Cross | Fractal geometric analysis of colorectal polyps[END_REF][START_REF] Landini | How important is tumour shape?[END_REF] , being potentially useful in predicting the efficacy of drug treatment or chemotherapy [START_REF] Sutherland | Radiation response 785 of multicell spheroids: An in vitro tumour model[END_REF][START_REF] Tubiana | The kinetics of tumour cell proliferation 789 and radiotherapy[END_REF] .

In this work we go beyond the state-of-the art in the field [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Greenspan | On the growth and stability of cell 792 cultures and solid tumours[END_REF][START_REF] Byrne | Modelling the role of 795 cell-cell adhesion in the growth and development of 796 carcinomas[END_REF] by proposing a mathematical model that accounts for the presence of a surrounding porous media with a finite thickness. Thus, nutrient diffusion from the external environment creates a chemical gradient that directs both the proliferation rate and the motility of the tumour cells. MCTS is modelled as a viscous fluid with adhesive interactions at the border, expanding inside a porous material. This work is organized as follows. First, we introduce in Section 2 the mathematical model describing the expansion of an initially spherical tumour. In Section 3, we derive the radially-symmetric solution of the quasi-stationary problem. Then, we perform a linear stability on the quasi-97 static tumour growth. Finally, in Section 4, we discuss the 98 modelling results with respect to the key chemo-mechanical 99 and geometric parameters that govern the mathemati-100 cal problems, highlighting the key mechano-biology effects 101 that promote a morphological transition during tumour 102 invasion. The MCTS is modelled as a three dimensional contin-105 uum growing inside a rigid porous structure, representing 106 the surrounding environment, usually extracellular matrix 107 (ECM) or matrigel. In this respect, the proposed model 108 refers to the in vitro case in which MCTS grows inside 109 a three dimensional either natural medium (e.g. agarose 110 gel, hyaluronic acid gel) or synthetic matrices scaffolds 111 (e.g. polylactide and polyglycolide biodegradable struc-112 tures mimicking a tissue-like environment) [START_REF] Nyga | 3D tumour 804 models: novel in vitro approaches to cancer studies[END_REF] .

113

The outer boundary of the tumour is considered as a 114 freely moving material interface separating the tumour 115 cells from the surrounding medium.

In particular, we account for the presence of a central region of necrotic cells, surrounded by a layer of quiescent and proliferating cells. Thus, the whole domain Ω is divided in different regions, depending on the residing cellular population (see Fig. 2):

the necrotic cells are located in the central core of the spheroid, in a region called Ω N (t), with

Ω N (t) = {(r, θ) : r < R N (t), 0 < ϕ ≤ π, 0 < θ ≤ 2π} ,
where R N is the radius of the necrotic core, that might evolve in time;

the proliferative and quiescent tumour cells are located in the region

Ω T (t) = {(r, θ) : R N (t) < r < R T (t), 0 < ϕ ≤ π, 0 < θ ≤ 2π} ,
where R T is the radius of the spheroid, whose evolution in time represents the growth of the MCTS;

the healthy space, composed by either the in vitro scaffold or the extracellular matrix, the extracellular liquid and possibly healthy cells (in vivo),

Ω H (t) = {(r, θ) : R T (t) < r < R out , 0 < ϕ ≤ π, 0 < θ ≤ 2π} ,
being R out the outer boundary of the whole domain.

The boundary between the necrotic core and the proliferative region is called ∂Ω N (t), whereas the moving interface between the tumour region and the healthy space is denoted with ∂Ω T (t). In the following we will consider that the interior boundary between the necrotic core and the quiescent-proliferative region does not evolve in time, since we are interested only in the evolution of the MCTS boundary, which is related to tumour infiltration inside the healthy region. Furthermore, we assume that the porous material is homogeneously distributed in the whole region Ω = Ω N ∪ Ω T (t) ∪ Ω H (t) and it is neither produced/degraded (i.e. behaves as inert matter), nor deformed (i.e. structurally rigid) by the moving tumour cells.

We will consider a single nutrient species (e.g. oxygen)

with volume concentration n(x, t), diffusing from the fixed outer boundary ∂Ω through the porous material. Thus, we assume that the vascular network providing the source of nutrients is outside the modelled domain, and can be represented by a boundary term at ∂Ω. The diffusion coefficient is a constant value D n everywhere, but the nutrient is only consumed, with an uptake rate γ n , in the region occupied by the proliferative and quiescent cells. Indeed we consider that the consumption of nutrients in the healthy region is negligible. This is certainly the case of MCTS growing inside artificial/natural scaffolds, but, in a first approximation, it can be used also to model the in vivo condition [START_REF] Lowengrub | Non-673 linear modelling of cancer: Bridging the gap between 674 cells and tumours[END_REF][START_REF] Wise | Three-dimensional multispecies nonlinear tumor 809 growth-I Model and numerical method[END_REF] , since the net consumption of nutrients in the extracellular healthy space is negligible compared to the uptake by tumor cells [START_REF] Ramanathan | Pertur-812 bational profiling of a cell-line model of tumorigenesis 813[END_REF] .

Thus, the 3D homogenized concentration per unit volume of this generic chemical species, indicated with n(x, t), obeys the following reaction-diffusion equation

ṅ(x, t) =      D n ∇ 2 n(x, t) in Ω N , D n ∇ 2 n(x, t) -γ n n(x, t) in Ω T (t) , D n ∇ 2 n(x, t)
in Ω H (t) .

(

) N T H R N R T R out Figure 2. 1 
Representation of the domain used for the analytical analysis. At time t = 0, the three domains ΩN , ΩT and ΩH are concentric spherical shells, with radius RN , RT and Rout, respectively. In this work, we consider that only the tumour boundary ∂ΩT evolves in time.

We remark that, in principle, the uptake rate γ n should 159 depend on the tumour cell density, although, in the follow-160 ing, it will be considered homogeneous and constant over 161 time. Even the diffusion coefficient D n can be affected by 162 the cell packing inside the tumor and by the extracellular 163 matrix alignment and distribution. However, coherently 164 with the hypothesis of an inert, rigid and homogeneous 165 extracellular matrix distributed in the whole domain, the 166 diffusion of nutrients can be assumed to be constant [START_REF] Wise | Three-dimensional multispecies nonlinear tumor 809 growth-I Model and numerical method[END_REF]55 . 167

The diffusing nutrient notably not only affects the growth 168 of single individuals in the tumour but also directs cell 169 movements, e.g. through chemotaxis 56,57 . Therefore, we 170 consider a non-convective mass flux term, m, taking into 171 account both tumour proliferation and chemotactic mo-172 tion, differently from the standard volumetric production 173 rate considered in literature [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Byrne | Growth of non-necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Chaplain | Experimental and Theoretical Advances in Biological Pattern Formation, ch. The development of a spatial pattern in a model for cancer growth[END_REF][START_REF] Greenspan | Models for the growth of a solid tumour by diffusion[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF] . Accordingly, the mass 174 balance inside Ω T (t) reads

175 dρ dt + ρ∇ • v = ∇ • m in Ω T (t). ( 2 
)
where ρ is the tumour cell density, which is approximately 176 the same of water. Since mass transport phenomena in 177 MCTSs are driven by the local concentration of chemicals, 178 the mass flux vector appearing in Eq. ( 2) should depend 179 on nutrient availability. A simple constitutive law for m 180 can be taken in the form of a chemotactic term 56,58 , i.e. 181 m = χρ∇n, where χ is the chemotactic coefficient, here 182 considered constant. Consequently, the mass flux m de-183 scribes the expansion of the tumour due to proliferation 184 and driven by chemotaxis towards higher concentration of 185 nutrients.

186

Assuming that the living aggregate can be macroscopically 187 modelled as a Newtonian fluid, Darcy's law describes its 188 motion inside the inert, porous surrounding medium [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF] . 189 Thus, the cell velocity v is related to the pressure field

p 190 through v = -K p ∇p , (3) 
where K p is related to the permeability of the medium, k, and the viscosity of the cellular material, µ, by

K p = k/µ.
Assuming the incompressibility of the cellular spheroid, which is mostly composed by water, we impose dρ/dt = 0 in Eq. ( 2), so that the relation between the pressure p and the nutrient concentration n reads

∇ 2 p = - χ K p ∇ 2 n in Ω T (t) , (4) 
which has been obtained substituting the Darcy's law (3) and the constitutive relations for m in the mass balance equation ( 2). In summary, the coupling of Eq. ( 1) with

Eq.( 4), complemented by a proper set of boundary conditions (BCs), describes the macroscopic evolution of the avascular tumour inside the healthy tissue.

In particular, for the pressure we impose the Young-Laplace equation at the moving boundary ∂Ω T (t) and the null velocity of the tumour cells at the fixed boundary ∂Ω N , i.e. For what concerns the chemical species, in absence of an interfacial structure, the continuity for the nutrient concentration and flux can be assumed (both in ∂Ω T (t) and in ∂Ω N ), and the concentration at the outer boundary can be assumed constant (to model the source of nutrients from the external vascular network), so that

p = p 0 -σ b C on ∂Ω T (t) , (5) v ∂Ω N • n N = 0 → (∇p)| ∂Ω N • n N = 0 on ∂Ω N , (6) 
n | ∂Ω = n out on ∂Ω , (7) n | ∂Ω T = 0 , ∇n | ∂Ω T • n = 0 on ∂Ω T , (8) n | ∂Ω N = 0 , ∇n | ∂Ω N • n N = 0 on ∂Ω N , ( 9 
)
where n is the outward normal vector at the boundary ∂Ω T and (•) | ∂Ωj denotes the jump of the quantity between brackets across the boundary ∂Ω j , with j = N, T .

Finally, the compatibility condition at the free interface imposes

dx ∂Ω T dt • n = v ∂Ω T • n on ∂Ω T . (10) 
In the following we will work with dimensionless equations, obtained writing the system of Eqs. ( 1)-( 4) in terms of the dimensionless chemical concentration, n = n/n c , and the dimensionless pressure, p = p/p c and referring to the geometry outlined in Fig. 2. The dimensionless quantities are obtained using the following characteristic time t c , length l c , velocity v c , pressure p c and chemical concentration n c :

t c = γ -1 n , l c = D n γ -1 n , v c = √ D n γ n , p c = D n K -1 p , n c = n out . Finally, the resulting dimensionless systems of equations reads ṅ =      ∇2 n for r < RN ∇2 n -n for RN < r < RT (t) ∇2 n for RT (t) < r < Rout (11a) ∇2 p = -β ∇2 n for RN < r < RT (t) (11b) n | RN = 0, ∇n RN • nN = 0, ( ∇p) • nN = 0 for r = RN (11c) n | RT = 0 , ∇n RT • n = 0 , p = p0 -σ C for r = RT (t) (11d) n( t, Rout ) = 1 for r = Rout (11e) dx RT d t • n = v RT • n = -∇p RT • n for r = RT (t) . (11f) 
The nondimensionalization leads to the definition of five 231 dimensionless parameters, classified into two broad cate-232 gories:

233 -β := χn c /D n and σ := σ b K p γ 1/2 n D -3/2 n =σ b K p l -1/2 c D -1 n 234
define mechano-biology effect on the aggregate expan-235 sion, and are called motility parameters;

236

-RN , RT and Rout (i.e. the dimensionless radii of the 237 necrotic core, of the MCTS and the whole domain, 238 respectively) define the geometrical properties of the 239 system with respect to the diffusive length l c , and are 240 denoted as size parameters.

241

In particular, the dimensionless parameter β represents 242 the chemical effects associated to the expansion of MCTSs, 243 since it can be regarded as the ratio between the typical 244 time-scales of mass production over nutrient diffusion. On 245 the other hand, the parameter σ defines the influence of 246 mechanical cues over tumour development, representing 247 the ratio of the surface tension of the aggregate over the 248 characteristic viscous pressure of the fluid ensemble.

249

For sake of simplicity, in the following we will omit the 250 barred notation to denote dimensionless quantities, e.g. 251 R T stands for RT and so on. In this Section, we first derive the quasi-static solution of 255 the proposed model in order to mimic the early avascular 256 growth. We later perform a linear stability analysis to investigate the occurrence of a morphological instability at later growth stages.

Quasi-stationary solution

At early stages of avascular growth MCTSs maintain a spherical shape [START_REF] Folkman | Self-regulation of 600 growth in three dimensions[END_REF][START_REF] Sutherland | Growth and cellular 607 characteristics of multicell spheroids[END_REF][START_REF] Sutherland | Cell and environment interactions in 618 tumor microregions: the multicell spheroid model[END_REF] . Thus, we look for a radially symmetric quasi-stationary solution, assuming that the diffusive process is much faster than the MCTS expansion, so that it is possible to drop the time derivative in Eq. (11a).

This assumption is valid in many biological conditions, since a fast-growing tumour may expand at a rate of up to 0.5 mm/day, whereas a typical diffusion time scale is about 1 min (considering a typical length scale L ≈ 10 -2 cm and a typical diffusion coefficient D ≈ 10 -6 cm 2 s -1 ) 11 .

Thus, it is clear that the diffusion timescale of nutrients is much shorter than the growth timescale, so that the quasi-stationary assumption can be effectively formulated.

Furthermore for such long time scale the MSC can be actually treated as a viscous fluid.

Specializing our analysis to the case of a spherical tumour of radius R T , we will denote with n * = n * (r, t)

the quasi-stationary solution of Eq. 11a and with p * = p * (r, t) the quasi-stationary pressure field satisfying (11b).

Given the boundary conditions (11c)-( 11d)-(11e) and considering that n * and p * should be bounded, the quasistationary fields read

n * =              2R out e RT +RN e 2RT w + T -e 2RN w - T if r ≤ R N - e 2RN e 2(r-RN ) (R N + 1)R out + (R N -1)R out r w - T e r-RT +2RN -r w + T e r+RT if R N < r ≤ R T Rout e 2RT (RN + 1)(r -RT + 1) -e 2RN (RN -1)(r -RT -1) r e 2RT w + T -e 2RN w - T otherwise ( 12 
)
p * = p 0 + σ R T + β(n * R T -n * ) , (13) 
where we called n * R T = n * (R T ) the concentration of the nutrient at the boundary of the aggregate and we defined

w + T = (R N +1)(R out -R T +1) and w - T = (R N -1)(R out - R T -1)
, being w T = (R out -R T ) the width of the region occupied by the tumour. Then, using Eq. (11f), it is possible to compute the quasi-stationary velocity of the front, which is directed along the radial direction for symmetry considerations, i.e. v * = v * r e r , with

v * r (R T ) = β Rout(e 2R N (RN -1)(RT +1)-(RN +1)e 2R T (RT -1)) R 2 T (e 2R N (RN -1)(w - T )-(RN +1)e 2R T (w + T ))
.( 14)

Equation ( 14) can be integrated numerically to determine the evolution of the spheroid border over time. The result, reported in Fig. 3 time exhibits an early stage of exponential growth, cor-301 responding to spheroid volumetric growth, since nutrients 302 are available everywhere in the spheroid bulk 32,61 . Subse-303 quently, when the diameter of the spheroid becomes much 304 larger than the penetration length of the nutrient, the cel-305 lular growth becomes mainly localized on the surface of 306 the tumor, leading to a linear growth in time. In this paragraph, we investigate the stability of the steady, 309 radially-symmetric solution by applying small perturba-310 tions of the MCTS boundary.

311

Let R * T be the unperturbed position of the moving inter-312 face, we consider a small perturbation (ε 1) of the kind 313

R(θ, ϕ, t) = R * T (t) + εe λt Re [Y m (θ, ϕ)] . (15) 
where 

(r) + 2rn 1 (r) -( + 1) + (λ + 1 ΩT )r 2 n 1 (r) = 0 , ( 18 
)
where primes denote derivatives on r and

1 Ω T = 1 if 327 R N < r ≤ R * T ,
1 Ω T = 0 otherwise. The solution of Eq. 328 (18), for λ = {0, -1} is

n 1 (r) =      C 1 i ( √ λr) if r ≤ R N B 1 i ( √ λ + 1r) + B 2 k ( √ λ + 1r) if R N < r ≤ R * T A 1 i ( √ λ + 1r) + A 2 k ( √ λ + 1r) if R * T < r ≤ R out , (19) 
where i (r) and k (r) are the modified spherical Bessel 

n 1 | R N = 0 , ∂n 1 ∂r R N = 0 , ( 20 
)
n 1 | R * T = 0 , ∂n 1 ∂r R * T = n 0 , n 1 (R out ) = 0 . ( 21 
)
The perturbed pressure field p 1 in Ω T is obtained from 336 Eq.(11b) that leads to

337 p 1 (r) = Qr + W r --1 -β B 1 i ( √ λ + 1r) + B 2 k ( √ λ + 1r) , (22) 
where the constants Q and W can be determined from the it is possible to obtain the following dispersion equation

345 λ = -p * (R * T ) -p 1 (R * T ) , (24) 
which has the same form of the relation found for the 346 rectilinear front on an infinite domain [START_REF] Ciarletta | Free boundary morphogenesis in liv-843 ing matter[END_REF] or an expand-347 ing circular colony [START_REF] Giverso | Branching 846 instability in expanding bacterial colonies[END_REF][START_REF] Giverso | Emerg-849 ing morphologies in round bacterial colonies: compar-850 ing volumetric versus chemotactic expansion[END_REF] . The dispersion equation ( 24) is The dispersion equation ( 24) has been solved numerically 357 in order to investigate the global stability of the solutions 358 depending on the system parameters. The corresponding 359 dispersion diagrams are reported in Fig. 4 for different 360 values of both the size and the motility parameters. As 361 in classical perturbation theory 62 , a positive real part of the growth rate λ implies global instability, thus highlight a critical spatial mode of the perturbation defined by the degree associated with the highest positive growth rate. Interestingly, Fig. 4 shows that the spheroid front is linearly unstable at small , with = 1 being always unstable. Indeed, whilst for a spheroid growing inside an infinite homogeneous domain with constant chemical concentration, one would expect to find λ = 0 for = 1, due to translational symmetry [START_REF] Byrne | Growth of non-necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF][START_REF] Byrne | Modelling the role of 795 cell-cell adhesion in the growth and development of 796 carcinomas[END_REF] , we must remind that in our case, due to the presence of the external environment the translational symmetry is no longer preserved.

Furthermore, the dispersion diagrams in Fig. 4 also indicate the emergence of a characteristic mode different from = 1 in the cases of bigger size parameters (see Fig. 4a), as well as of small values of the motility parameters σ (see Fig. 4-c) and β (see Fig. 4-d). Interestingly, the characteristic mode is not significantly affected by varying only the dimension of the external domain, while keeping the necrotic radius R N and the initial tumour radius R T fixed (Fig. 4-b) Moreover, whether the range of unstable modes is highly influenced by the sizes parameters and by the motility parameter σ (Fig. 4-a-c), it is not deeply influenced by variations of R out and β (Fig. 4-b-d). Indeed as either the size of the domains decreases (Fig. 4-a) or σ increases, the range of unstable modes decreases, up to a range where only = 1 is unstable. The dependency on the size of the domains states that smaller diffusive lengths (i.e. smaller diffusion coefficient or higher absorption rate of the nutrients) lead to highly irregular contours during the growth of the tumour. On the other hand, the effect on the mechanical parameter σ on the dispersion diagram shows that, as expected, the surface tension σ b , along with an high permeability of the surrounding porous environment k act a stabilizing effect on the front (see Fig. 4-c), whereas the viscosity of the tumour cluster destabilize the border of the MCTS leading to more aggressive tumours. As β settles the velocity of the quasi-stationary moving front (see Eq. ( 14)), the dispersion diagram in Fig. 4-d shows that the tumour developed highly irregular contour only in the case of slowly-moving front (i.e. small chemotactic coefficient and proliferation), since for fast moving front the characteristic mode decrease, until only = 1 is unstable.

Moreover, it is interesting to consider the role played by the radius of the growing tumour in the development of instabilities, while keeping all the other parameters fixed (see Fig. 5). Fig. 5-a reports the results for a set of parameters R out , R N , β and σ for which, independently from R T , the most unstable mode is always = 1. This situation corresponds to a sort of translation of the spheroid inside the domain (see Fig. 5-a on the right). On the other hand, the characteristic mode depends on the MCTS size in a certain range of material parameters (see Fig. 5-b ). Indeed, it increases for increasing R T , so that bigger tumours show more irregularities at their border. Therefore, a growing MCTS can undergo a morphological transition 418 that may significantly affect the invasion pattern towards
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Varying sizes the typical finger-like structures observed for invasive carcinomas (see Fig. 5-b).
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Finally, Fig. 6 depicts the perturbed pressure and velocity fields for a linearly unstable perturbation, given by a spherical harmonic of the kind Y 6 10 (θ, ϕ). The highest variation of the pressure is located in a thin shell closer to the interface of the tumour, so that in the bulk of the tumour the velocity is almost null. In the region just at the rear of small protrusions (due to the perturbation of the boundary), the pressure field increases, so that the velocity at the border of the MCTS where a protrusion 430 form, for the unstable modes (such as the one reported 431 in Fig. 6), is higher than the velocity in the invagination 432 on the contour. Furthermore, from the perturbed field it 433 is possible to appreciate small negative radial velocities in 434 the bulk, just at the rear of the region where protrusion 435 forms. Thus, while the spheroid surface moves outward, 436 some cells inside the cluster move inward. This result con-437 firms the existence of a radial convergent flow, in addition 438 to the divergent flow that makes the aggregate expand, as 439 pointed out in [START_REF] Dorie | Migration and 855 internalization of cells and polystyrene microsphere 856 in tumor cell spheroids[END_REF][START_REF] Delarue | Mechanical control of cell flow in multi-861 cellular spheroids[END_REF] . This effect combined with the higher 440 velocity associated to the protrusion border could explain 441 the possible detachment of carcinoma cells that lead to 442 metastasis and thus the higher invasivity of tumours with 443 irregular contours.

444

Even though the onset of irregular contours and the de-445 velopment of a retrograde flow are in qualitative agree-446 ment with biological experiments [START_REF] Dorie | Migration and 855 internalization of cells and polystyrene microsphere 856 in tumor cell spheroids[END_REF][START_REF] Delarue | Mechanical control of cell flow in multi-861 cellular spheroids[END_REF][START_REF] Frieboes | An integrated computa-865 tional/experimental model of tumor invasion[END_REF] , a direct quantita- 
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Conclusions

In this work we have presented a continuum model for describing the avascular growth of a multicellular tumour spheroid, comprising a fixed necrotic core surrounded by a region of proliferative cells, guided by the uptake of a diffusing nutrient. The proposed model encapsulates the diffusion of a chemical species from the vasculature of the healthy region and the tumour cell response to nutrients, via their proliferation and their chemotactic migration inside the extracellular space. The proposed model differs from existing approaches [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Greenspan | On the growth and stability of cell 792 cultures and solid tumours[END_REF][START_REF] Byrne | Modelling the role of 795 cell-cell adhesion in the growth and development of 796 carcinomas[END_REF] since it considers a growth though a rigid, porous surrounding material. Moreover, the MCTS expansion is guided not only by cell proliferation as in [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Greenspan | On the growth and stability of cell 792 cultures and solid tumours[END_REF][START_REF] Byrne | Modelling the role of 795 cell-cell adhesion in the growth and development of 796 carcinomas[END_REF] , but also by the chemotactic motion of cells, through a non-convective mass flux term. Differently from [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Byrne | Modelling the role of 795 cell-cell adhesion in the growth and development of 796 carcinomas[END_REF] , that assumed a Gibbs-Thompson relation [START_REF] Langer | Instabilities and pattern formation in crys-868 tal growth[END_REF] marginally stable, i.e. λ = 0 for = 1 [START_REF] Byrne | Growth of non-necrotic tumours in the presence and absence of inhibitors[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF][START_REF] Byrne | Modelling the role of 795 cell-cell adhesion in the growth and development of 796 carcinomas[END_REF] , the proposed 497 model is always linearly unstable, since translational sym-498 metry is broken by considering a finite dimension of the 499 surrounding media. Furthermore, differently from existing 500 works [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Adam | A simplified mathematical model of 627 tumor growth[END_REF][START_REF] Adam | A mathematical model of tumour 630 growth. ii. effects of geometry and spatial unifor-631 mity on stability[END_REF][START_REF] Greenspan | Models for the growth of a solid tumour by diffusion[END_REF][START_REF] Byrne | A weakly nonlinear analysis of a model of avascular solid tumour growth[END_REF][START_REF] Mcelwain | Apoptosis as a volume loss mechanism in mathematical models of solid tumour growth[END_REF] , the perturbation analysis is conducted 501 here without neglecting the diffusion timescale in the un-502 stable growth rate.

503

The analysis of the perturbed field also pointed out a 504 possible mechanism that could lead to the detachment of 505 metastasis from the primary tumour mass, based on the 506 development of higher velocity at the border of the MCTS 507 and a convergent flow inside where protrusions form. This 508 mechanism could explain why the propensity for asym-509 metric invasion and the installation of irregular morphol-510 ogy characterize the growth of aggressive carcinomas in 511 vivo. Thus, this approach has the potential to foster our 512 understanding on the process of transition from the be-513 nign to the aggressive tumour stage and might provide also 514 some indications for improving therapeutic treatments. In-515 deed, more blurred and irregular contours detected in vivo 516 can be related to more malignant tumour, with respect to 517 smoother and clearer contours that can be associated to 518 benign carcinomas. 10 (θ, ϕ). Since higher changes in the velocity and pressure field occurs only at the interface, we use a logarithmic scale in the velocity plot in order to show small variations of the perturbed field inside the bulk of the tumour. The perturbed velocity field highlights the existence of negative radial velocities (i.e. radial convergent flow), as pointed out in [START_REF] Dorie | Migration and 855 internalization of cells and polystyrene microsphere 856 in tumor cell spheroids[END_REF][START_REF] Delarue | Mechanical control of cell flow in multi-861 cellular spheroids[END_REF] .

However, the present model considers a really simplified 520 geometry and adopts some simplifications in order to ob-521 tain a model that can be studied analytically. Thus, fu-522 ture improvements of the proposed mathematical model 523 should focus on the explicit description of quiescent cell re-524 gion (that in the present model corresponds to the region 525 of the spheroid in which we have an almost null velocity) 526 and on tracking the evolution of the inner necrotic core, 527 occurring, for instance, when the nutrients concentration 528 attains a specific value [START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF][START_REF] Byrne | Growth of necrotic tumours in the presence and absence of inhibitors[END_REF] (whereas in the present work 529 the fixed radius R N of the necrotic core is a parameter in 530 the sensitivity analysis). Then, the stability analysis can 531 be enriched by considering the weakly nonlinear interac-532 tions of the asymmetric modes, as well as their evolution 533 depending on the order m of the spherical harmonic per-534 turbation (as done for example in 15 in a simplified case) 535 and numerical techniques should be developed in order to 536 simulate the fully nonlinear evolution of the morphologi-537 cal transition.

538

From the modelling point of view, future studies should 539 also consider the effect of the cells populating the sur-540 rounding healthy environment on the consumption of nu-541 trients and the effect of varying local densities (both inside 542 the healthy tissue and inside the different tumor regions) 543 on the nutrient diffusion coefficient. Then, the effect of 544 solid mechanical stresses on the growth dynamics of tu-545 mours 32,61,67,70-73 and the effect of the possible deforma-546 tion, degradation and reorganization of extracellular ma-547 trix fibres [START_REF] Kopanska | Tensile Forces Originating from Can-895 cer Spheroids Facilitate Tumor Invasion[END_REF][START_REF] Provenzano | Collagen reorganization at 899 the tumor-stromal interface facilitates local invasion[END_REF][START_REF] Kaufman | Glioma Ex-903 pansion in Collagen I Matrices: Analyzing Collagen 904 Concentration-Dependent Growth and Motility Pat-905 terns[END_REF] should be included to move towards a more 548 realistic representation of the problem. Indeed, for tumor 549 growing both in vivo and in xenograft animal models, the 550 description of the system evolution is far more complex 551 than the one proposed in this work, referred to MCTS growth inside inert and rigid ECM scaffolds. In particular, it has been shown that the geometrical and mechanical properties of the ECM [START_REF] Kopanska | Tensile Forces Originating from Can-895 cer Spheroids Facilitate Tumor Invasion[END_REF][START_REF] Provenzano | Collagen reorganization at 899 the tumor-stromal interface facilitates local invasion[END_REF] play an important role for the possible formation of metastasis, since they can lead to growth arrest (i.e. spheroid compartmentalization) or, on 557 the contrary, foster the detachment of invasive cells. Along 558 with the rigidity of the matrix, its density, and the ten-559 sile forces generated in the ECM [START_REF] Kopanska | Tensile Forces Originating from Can-895 cer Spheroids Facilitate Tumor Invasion[END_REF][START_REF] Provenzano | Collagen reorganization at 899 the tumor-stromal interface facilitates local invasion[END_REF] , more recent studies 560 identify the matrix pore size as the critical property mod-561 ulating cancer cell invasion [START_REF] Wolf | Physical limits of cell migration: Con[END_REF]78 . Based on these biologi-562 cal observations, some recent mathematical models have 
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 1136 multicellular tumour spheroid (MCTS) is an ensemble 2 of tumour cells organized in a multi-layered structure[START_REF] Folkman | Self-regulation of 600 growth in three dimensions[END_REF][START_REF] Byrne | Free boundary value 603 problems associated with the growth and development 604 of multicellular spheroids[END_REF] .In general, a MCTS consists of a central core of necrotic 4 cells, surrounded by a layer of quiescent (i.e. dormant) 5 cells and an outer rim of proliferating cells 1-4 . MCTSs are widely used in vitro to study the early stages 7 of avascular tumour growth and to assess the efficacy of 8 anti-cancer drugs and therapies, since their growth and 9 structure resemble the in vivo avascular phase of solid 10 tumour invasion. Such an early growth phase is charac-11 terized by diffusion-limited growth, since the tumour ab-
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Figure 1 .

 1 Figure 1. (a) Morphological evolution of a multicellular tumour spheroid of HeLa cells, showing the development of an undulated contour and a necrotic core (reproduced with permission from 51 ). HeLa cells were trypsinized, counted and grown as multicellular spheroids using the liquid overlay technique. The sections were counterstained with hematoxylin and eosin to visualize the cytoplasms of the cells. The multicellular spheroid section is reproduced at days 0, 4 and 12, from left to right. (b) Solid tumours extracted from mice after orthotopic implant of MCF10CA1a cell lines in the mammary fat pad of the nude mice (courtesy of T. Stylianopoulos, Cancer Biophysics Laboratory, University of Cyprus).

  being n N the normal at the fixed boundary ∂Ω N , C the local curvature of the free boundary ∂Ω T (t), p 0 the constant pressure in the outer healthy domain and σ b the surface tension at the moving interface. The surface tension σ b arises from the collective adhesive interaction among tumour cells at the MCTS boundary, primarily mediated by cadherins,59 and from the differential contractility between the cell-cell and cell-medium interfaces, mainly mediated by α-catenin 60 . Even if, in principle the surface tension σ b depends on the density of cells, the distribution of cadherins and the presence of α-catenin 60 , we will assume that it can be considered constant, for the chosen cellular population composing the aggregate.
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Figure 3 .

 3 Figure 3. Quasi-stationary solution of the proposed model, depicting the radius of the tumour over time for different values of the motility parameter β. At early stages the growth is exponential, as a consequence of the bulk availability of nutrients. At later stages, the growth law is almost linear, reflecting the higher nutrient concentration on the outer surface of the growing spheroid.
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 32 Perturbation of the quasi-stationary solution 308
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  function of the first and second kind, respectively, evalu-331 ated in r. The coefficients A 1 , A 2 , B 1 , B 2 , C 1 appearing in 332 the expression of n 1 (r) can be determined imposing the in-333 cremental boundary conditions for the concentration field 334 (11c), (11d) and (11e), being 335
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  boundary conditions on the pressure field (11c) and (11d), 339 considering only the first order terms, i.e. RN = 0 . (23) perturbation theory 62 Finally, using standard procedures 341 in perturbation theory 62 , imposing the boundary condi-342 tion (10) at the perturbed interface and neglecting the 343 terms of order higher than the first in the series expansion,
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 355 an implicit function of the time-growth mode λ and the 349 spherical harmonic degree , depending on the five dimen-350 sionless parameters β i , σ, R N , R * T and R out . Interestingly, λ does not depend on the azimuthal component of the 352 model solutions Y m (φ, θ), i.e. the solutions are indepen-353 dent of the order m, as observed also in previous works 354 based on different models 15,50 . Results and Discussion 356

Figure 4 .

 4 Figure 4. Dispersion diagrams for different values of the model parameters (a) Rout keeping q = Rout/RN constant, (b) Rout keeping RN constant, (c) σ and (d) β. The solid lines in the graphs are obtained by interpolating the discrete values (see the dots on the curves) of the time growth rate of the perturbation, λ, calculated for integer values of from eq. (24). In (a) the shapes of the tumour corresponding to the characteristic mode ( = 1, 2, 3, 6) is reported.

Figure 5 .

 5 Figure 5. Evolution of the time growth rate of the perturbation λ with respect to the dimensionless tumour radius, RT , for different values of (with = 1, 2, 4, 6, 8, 10). (a) For the chosen set of parameters, = 1 is the most unstable mode, whatever the tumour radius is. The deformed shapes corresponding to RT = 2, 5, 8 are reported aside (the gray region represents the outer environment). (b) The characteristic mode changes for different values of the tumour radius. Aside the dispersion curves, the section of the tumour perturbed shapes are reported for RT = 2.5, 8, 12.5, 20, 26, 35 to which the corresponding characteristic modes are = 1, 2, 4, 6, 8, 10 respectively.

  on the moving boundary for the chemical potential, we considered a mechanical effect in term of a surface tension at the MCTS outer boundary, leading to the Young-Laplace equation at the interface. The proposed model is governed by five dimensionless pa-483 rameters: two of them, β and σ are called motility pa-484 rameters and representing the mechano-biology cues, the 485 other three are denoted size parameters and are related 486 to the typical sizes of the domains with respect to the dif-487 fusive length. The analytic results predicted the existence 488 of a quasi-stationary radially-symmetric tumour configu-489 ration that is always linearly unstable to asymmetric per-490 turbations involving spherical harmonics Y m (θ, φ), with 491 the range of the unstable modes depending on the dimen-492 sion of the domain with respect to the diffusive length 493 and on the motility parameter β, related to the chemo-494 tactic growth of the tumour. We remark that, whilst a 495 MCTS growing inside an infinite homogeneous domain is 496

Figure 6 .

 6 Figure 6. Evolution of the quasi-stationary and perturbed pressure and velocity fields for Rn = 1, R * T = 35, Rout = 50 for a perturbation of the kind e λt Y 610 (θ, ϕ). Since higher changes in the velocity and pressure field occurs only at the interface, we use a logarithmic scale in the velocity plot in order to show small variations of the perturbed field inside the bulk of the tumour. The perturbed velocity field highlights the existence of negative radial velocities (i.e. radial convergent flow), as pointed out in[START_REF] Dorie | Migration and 855 internalization of cells and polystyrene microsphere 856 in tumor cell spheroids[END_REF][START_REF] Delarue | Mechanical control of cell flow in multi-861 cellular spheroids[END_REF] .

  563 been developed to take into account, on one hand, MCTS 564 segregation by thick porous (but still rigid and homoge-565 neous) structures 79-81 and, on the other, ECM deforma-566 tion 82 . Furthermore, not only ECM fibers can accumulate 567 or being degraded at the host-MCTS interface, but they 568 strongly reorganize, aligning parallel to the tumor bor-569 der, in a first stage, and then perpendicular to the tumor 570 boundary 74 . 571 Thus, to take into account all these aspects and more 572 ealistically describe tumor growth in vivo, an anisotropic 573 poro-elasto-visco-plastic model with a threshold (based on 574 microscopic arguments) for cell motion should be devel-575 oped. However in that case tumor irregular contours will 576 likely arise for inhomogeneity and anisotropy in the ECM, 577 whereas this work demonstrates that mechano-biological 578 and (macroscopic) geometrical cues can determine the oc-579 currence of a morphological transition in growing tumours 580 that can promote invasiveness, even in an homogeneous 581 environment. The theoretical results push towards the 582 developments of further biological experiments for accu-583 rate characterization of MCTS morphology and careful 584 measures of the surface tension and the interstitial pres-585 sure within MCTSs 59,83 , as well as growth and mobility 586 properties of the tumour cells to validate the predictions of 587 the model. Indeed, the integration of mathematical tools 588 in biological research could be crucial for estimating the ters, vol. 72, no. 14, pp. 2298-2301, 1994. 697 26. G. Forgacs, R. Foty, Y. Shafrir, and M. Steinberg, 698 "Viscoelastic properties of living embryonic tissues: 699 a quantitative study," Biophysical Journal, vol. 74, 700 no. 5, pp. 2227-2234, 1998. 701 27. G. Vitale and L. Preziosi, "A multhiphase model crovascular Research, vol. 66, no. 3, pp. 204-212, 2003.
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  λ ∈ R is the amplification rate (or time-growth rate) 314 of the perturbation and Y m (θ, ϕ) is the spherical harmonic 315 of degree and order m, with m ∈ N, ∈ N + and |m| ≤ .316 The spherical harmonics Y m (θ, ϕ) form a complete set 317 of orthonormal functions and thus any square-integrable 318 function can be expanded as a linear combination of spher-319 ical harmonics. For physical consistency, the variations of 320 n and p from the quasi-stationary solutions n * and p *

		321
	should be in the form	322
	n(r, θ, ϕ, t) = n	

* (r, t) + εn 1 (r)e λt Re [Y m (θ, ϕ)] (16) p(r, θ, ϕ, t) = p * (r, t) + εp 1 (r)e λt Re [Y m (θ, ϕ)] , (17) Using Eq. (11a) and the relation ∇ 2 Ω Y m + ( +1)Y m = 0, 323 where we set the angular part of the Laplacian operator as 324 ∇ 2 Ω (•) = 1/ sin θ ∂/∂θ(sin θ ∂(•)/∂θ)+ 1/ sin 2 θ ∂ 2 (•)/∂φ 2 , 325 the term n 1 must obey the following ODE 326 r 2 n 1
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