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Abstract . Internuclear forces in a molecule, as an integral over a geometrical factor and the 

electron density, can be decomposed into a part having as origin promolecular densities of 

the participating atoms, and a contribution from the deformation density. At the hand of 

homo-nuclear diatomic molecules we show that the binding energy is linked to the 

deformation force except for transition metal dimers. However, vibrational frequencies 

involving pure bond-length variations are rather well reproduced, even for heteroatomic 

diatomics. For larger assemblies, frequencies for bending modes are underestimated, but 

the model may serve for a rough analysis of a vibrational spectrum. 

 

1. Introduction 

Following the distinction introduced by Berlin [1], the formation of a chemical bond can be 

considered from two different points of view.  The bonding refers to the variation of energy 
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when two atoms or fragments come from infinite separation to their equilibrium distance Re. 

The binding refers to the force exerted on nuclei which should be zero at Re. In this situation, 

the attractive force exerted by the electron density on the nuclei exactly cancels their 

mutual repulsion. The study of chemical binding in terms of forces was the subject of active 

research from around the 1960 to -1980 [2] and then for a time almost abandoned. A recent 

renewal is this area can be nevertheless observed, for the study as well as the chemical 

bonds [3, 4, 5] as various chemical properties [6] and chemical reactivity [7]. 

 

Scheme 1  

Using the Hellmann-Feynman theorem, which describes, for a wavefunction satisfying 

Schrödinger’s equation, the force on each nucleus separately in terms of classical 

electrostatics, Berlin deduced that the force on a chemical bond between two atoms may be 

decomposed into equal parts arising from each atom. The force FR attracting or repelling the 

two nuclei is (using the notations of scheme 1):  

𝐹𝑅 =
𝑍𝐴𝑍𝐵
𝑅2

−∫[
1

2

𝑍𝐴

𝑟𝐴
2 𝑐𝑜𝑠𝜃𝐴 +

1

2

𝑍𝐵

𝑟𝐵
2 𝑐𝑜𝑠𝜃𝐵] 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑣 =

𝑍𝐴𝑍𝐵
𝑅2

−
1

2
∫𝑓(𝑥, 𝑦, 𝑧) 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑣 

as (i) a nuclear term and (ii) an integral over the total density multiplying a purely 

geometrical factor, independently whether atom A or atom B is displaced for varying the 

interatomic distance R. We use the negative sign to indicate that the electron density is 

positive, however the electron charge is negative. In the formula the two nuclei contribute 

with equal weights ½. This is not necessary, as has been criticized by Silberbach [8], pointing 

out that any arbitrary partition ZA   ZA  and ZB   ZB with  +  = 1 leads to the same 

total force, despite different geometrical functions f(x,y,z). As a matter of fact, the Hellmann-

Feynman theorem uses the variation of the total energy with respect to the displacement of 

each atom separately, whereas the Berlin expression considers the force with respect to the 
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variation of the interatomic distance. Hinze [9] argued from the invariance of physical 

properties when permuting A and B that the choice of Berlin may be justified which allows 

us to adopt this expression in the present study. 

The generalization of Berlin’s formula towards molecules with more than two atoms may be 

obtained, as advocated by Wang and Peng [10], by looking at the variation of the total 

energy upon a global scaling of all nuclear coordinates with respect to the geometrical 

centre (arithmetic average of all nuclear positions, without any weighting by mass of charges 

of the nuclei).  

Having thus the purely geometrical factor of Berlin in mind, we may look at a possible 

decomposition of the total density when forming a chemical bond. The total density  can be 

written as 0 + where 0 is an arbitrary reference density. If we take as 0 the 

promolecular density,  is known as the “deformation density”. Following the pioneering 

work of Daudel [11] and Bader et al. [12, 13, 14], this notion has been subject of a number of 

studies and discussions. In particular, it was pointed out that the deformation density 

depends on the choice of the promolecular density [15]: a spherical density, or a density of 

atoms “oriented” according to the bonding direction, in addition possibly hybridized [16]. It 

is worth recalling that the promolecular density comes from atomic contributions, calculated 

separately and once for each type of atom, whereas the deformation density cannot be 

decomposed into atomic contributions, but has to be evaluated from the overall molecular 

density. Beyond the simple shape or the contribution to the total energy (like in density-

functional theory as implemented in the ADF program of Baerends et al. [17]), in 

comparison, less attention has been devoted to the change in the electronic force resulting 

from this deformation . Bader showed [13] that it is correlated to the dissociation energy 

in a series of first row symmetrical diatomic molecules and ions. Hirshfeld [18] developed a 

similar idea by computing a “migration field” E, difference between a promolecular electric 

field exerted on a nucleus, and the actual value of this field in the system (which is zero at 

Re). From a sample of first row A2 and AH molecules, a linear correlation was also found 

between E and the bond dissociation energy.  

In the present paper we will, on one hand, extend the calculation of the force associated to 

the density deformation to a large panel of 30 diatomic homonuclear molecules including 
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transition metal dimers in order to check their correlation with dissociation energy. In 

addition, we calculated in a few cases the force variation resulting from electron 

deformation of diatomic, “proionic” molecules, i.e. the density of ion pairs A+ A-, with the 

intention to see whether for instance a F–F charge-shift bond [19, 20] may be anticipated 

from a simple, promolecular picture, despite the favourable dissociation channel into neutral 

atoms. 

On the other hand we will look for vibrational frequencies of diatomic and larger molecules 

or atomic assemblies, using only promolecular atomic densities.  

2. Calculation details 

Assuming spherical promolecular densities has the advantage that only the charge contained 

in a sphere of radius Re contributes to the promolecular interaction. To obtain thus 

spherically symmetric atomic densities, Hartree-Fock calculations are carried out with a 

locally modified version of the atomic program of Roos and Clementi [21], with aug-cc-pvtz 

basis sets when available or 6-311+G** in the other cases. We may integrate the orbitals and 

the corresponding density over a limited sphere through analytic formulæ, for Gaussian or 

Slater-type functions, or by numerical integration, and obtain thus the effective charge Q 

within a sphere of given radius. We observed, by the way, that the numerical integration 

yields more stable results for densities far from the nucleus, as the analytical formulae imply 

large terms cancelling each other. Correlation effects, important for the total energy, seem 

less crucial here. For bond lengths, experimental values have been used where available, or 

DFT-optimized structures elsewhere.  Dissociation energies for diatomic molecules are taken 

from the literature [22, 23, 24, 25].  

Vibration frequencies in polyatomic systems have been computed from force constants by 

diagonalization of the hessian matrix using generalized (mass-weighted) coordinates. The 

corresponding code has been developed using the implicit-reference-to-parameters tool 

IRPF90 [26], and uses the tabulated integrated atomic densities with a spline interpolation. 

All relevant data can be obtained from the authors upon request. 

 

 



5 
 

3. Results and discussion 

3.1. Deformation forces of homonuclear diatomic molecules 

The deformation force is defined here as the difference between the force exerted by the 

exact electron density  on nuclei and a “promolecular force”, taken as the force exerted by 

the spherically averaged atomic densities 0 at Re. The total density is = 0 + 

From the Berlin relation we write at the equilibrium geometry:  

0 = 𝐹𝑅𝐴 =
𝑍𝐴𝑍𝐵

𝑅𝑒
2 −

1

2
∫𝑓(𝑥, 𝑦, 𝑧)𝜌𝑑𝑣 =

𝑍𝐴𝑍𝐵

𝑅𝑒
2 −

1

2
∫𝑓(𝑥, 𝑦, 𝑧)(𝜌0 + ∆𝜌)𝑑𝑣

=
𝑍𝐴𝑍𝐵

𝑅𝑒
2 −

1

2
∫𝑓(𝑥, 𝑦, 𝑧)𝜌0𝑑𝑣 + ∆𝐹 

thus three contributions as nuclear, promolecular and deformation part, which sum up to 

zero. 

𝑍𝐴𝑍𝐵

𝑅𝑒
2 − 𝐹0 + ∆𝐹 = 0 

The force exerted by the spherical electronic density of atom A on its own nucleus is zero. 

For a homonuclear diatomic molecule F0 is thus equal to the classical electrostatic force 

exerted by the spherical electron density of atom B on nucleus A, and vice versa, 

compensating the factor ½. For a spherical density, only the charge QB within a sphere up to 

Re, contributes to the force, and may be calculated from the Gauss-Ostrogradski theorem: 

𝑄𝐵 = −∫ 𝜌0𝐵𝑑𝑣
𝑅𝑒

0

 

𝐹0 =
−𝑍𝐴

𝑅𝑒
2 ∫ 𝜌0𝐵𝑑𝑣

𝑅𝑒

0

 

as if the charge QB within the sphere were concentrated in point B. Note that QB is less than 

the total electronic charge ZB of atom B, and thus F0 < ZAZB/Re
2 : the total promolecular force 

is always repulsive. As a consequence, at equilibrium distance, the deformation force 

∆𝐹 =
−𝑍𝐴

𝑅𝑒
2 (𝑍𝐵 − 𝑄𝐵) =

−𝑍2

𝑅𝑒
2 (1 −

𝑄

𝑍
)Eq. 1 
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is a negative quantity to compensate the promolecular repulsion. We dropped the indices A 

and B for homonuclear molecules. 

In Table 1, where we gathered useful data in the present context for diatomic systems of 

elements of the first four periods, except the rare gas and Zn; we also report the ratio Q/Z, 

equal to the relative contribution of the promolecular electronic force F0 to the total force 

Z2/Re
2.  

Table 1. Atomic number Z, equilibrium distance Re (bohr), dissociation energy De (kcal/mol), 

deformation force F (au) and ratio Q/Z for a series of diatomic molecules; Q is the (calculated) total 

electronic charge contained in a sphere of radius Re in the isolated atom. 

 H2 Li2 Be2 B2 C2 N2 O2 F2  

Z 1 3 4 5 6 7 8 9  

Re 1.398 5.051 4.724 3.005 2.348 2.075 2.281 2.680  

De 103.3 26.3 15.0 67.0 145.0 226.0 118.9 38.0  

Q/Z 0.531 0.930 0.971 0.909 0.890 0.895 0.952 0.986  

F 0.240 0.025 0.021 0.253 0.718 1.192 0.588 0.159  

  Na2 Mg2 Al2 Si2 P2 S2 Cl2  

Z  11 12 13 14 15 16 17  

Re  5.818 7.360 4.660 4.244 3.577 3.570 3.755  

De  17.6 2.0 32.0 78.0 116.0 101.0 57.2  

Q/Z  0.985 0.998 0.979 0.981 0.974 0.982 0.992  

F  0.054 0.004 0.167 0.208 0.460 0.367 0.169  

  K2 Ca2 Ga2 Ge2 As2 Se2 Br2  

Z  19 20 31 32 33 34 35  

Re  7.379 8.082 5.190 4.769 3.974 4.093 4.310  

De  13.0 3.0 25.7 62.2 90.7 67.0 45.4  

Q/Z  0.992 0.998 0.995 0.995 0.991 0.994 0.997  

F  0.052 0.015 0.179 0.243 0.646 0.436 0.216  

 Sc2 Ti2 V2 Cr2 Mn2 Fe2 Co2 Ni2 Cu2 

Z 21 22 23 24 25 26 27 28 29 

Re 5.197 3.670 3.369 3.173 6.425 3.817 3.749 4.072 4.193 

De 24.0 35.5 63.4 35.3 6.9 26.5 39.0 47.0 48.0 

Q/Z 0.982 0.956 0.953 0.968 0.998 0.978 0.979 0.987 0.992 

F 0.297 1.585 2.172 1.817 0.037 1.035 1.066 0.632 0.409 
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The major part of the total electronic attraction is provided by the promolecular density: Q/Z 

is in most of case superior to 95 % and never less than 89 %, except the case of H2 (53 %). A 

general trend observed for main group elements is the increase of Q/Z as the period 

increases: 0.53 for H2, ≈ 0.90 – 0 .99 for Li2 – F2, 0.97 – 0.99 for Na2 – Cl2 and more than 0.99 

for K2 – Br2. Indeed, the number of core electrons which are near a total screen increases 

with respect to the total number Z of electrons. In contrast to main group elements of the 

same period (K2 – Br2), Q/Z has a relatively wider range of variation (≈ 0.95 to 0.99) in the 

transition element series. Smaller values are encountered for Ti2 and V2 which is consistent 

with both a more diffuse electron density and a shorter Re. 

 

Fig. 1. Deformation forces F (au) and dissociation energy De (kcal/mol/100) as a function of the 

atomic number Z in a series of homonuclear diatomic molecules. 

Fig. 1 pictorially displays the variation of F with Z along with the corresponding dissociation 

energy. For main group elements, the same general pattern is observed within each period, 

namely Li2 – F2, Na2 – Cl2 and K2 – Br2, with a rough parallelism of F and De: stronger bonds 

correspond to greater F. But in the 4th period K2 – Br2, F is systematically greater than for 

the corresponding elements of Na2 – Cl2, though the De are smaller. In the family of the 

transition elements, the situation is quite different. First, the parallelism of F and De is no 

longer respected in the sequence Mn2 – Cu2; second, very large F are necessary to ensure 

relatively weak bonds, such as Ti2, V2, or Cr2. 



8 
 

Fig. 2 details the correlation between F and the bond dissociation energy De. A roughly 

linear correlation is observed for the main group elements as a whole. A very good 

correlation is obtained (r2 = 0.99) in the Li – F row, as reported by Bader [12]. The correlation 

coefficient decreases as the period increases: 0.92 for Na – F and 0.88 for K – Br. The 

correlation completely vanishes (r2 = 0.37) for the transition-metal series. 

Indeed, there is no theoretical ground for an exact relationship between F and De. At the 

most, we can infer that, since stronger bonds are generally shorter (counter examples may 

be found in Ref  [27] and references therein), as the screening charge Q is smaller, which 

needs an increase of F. But even this qualitative assumption does not hold for the family of 

the transition metals: for example F = 0.41 for Cu2 (De = 47.5 kcal/mol) and F = 1.81 for Cr2 

(De = 35.3 kcal/mol). 

 

Fig. 2. Correlation of the deformation force F with the dissociation energy of homonuclear diatomic 

molecules. 

3.2. Deformation force of the proionic density 

We considered as the proionic system the density of an ion pair, according to 

A+ A-  A- A+ 

Setting Q+ and Q- the total electronic charge contained into a sphere of radius Re in the 

cation A+ and the anion A- respectively, the proionic charge to be considered is  
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Qi = ½(Q+ + Q-).  

The proionic deformation force Fi is thus: 

∆𝐹𝑖 = −
𝑍

𝑅𝑒
2 [𝑍 −

1

2
(𝑄+ + 𝑄−)] (eq. 2) 

Note that because Q+ and Q- are less than Z-1 and Z + 1 respectively, the proionic charge is 

less than Z, so that Fi becomes negative, like the promolecular deformation force F. We 

limited ourselves in these calculations to H2, the first row molecules the anion A- of which is 

stable: B2, C2, N2, O2, and all three halogen dimers F2, Cl2 and Br2. The results are reported in 

Table 2. 

Table 2. Ratio Qi/Z (Qi is the total average electronic charge of A+ and A- contained is a sphere of 

radius Re), promolecular F and proionic Fi deformation forces (au), and for a series of diatomic 

molecules. 

 H+H- B+B- C+C- N+N- O+O- F+F- Cl+Cl- Br+Br- 

Qi/Z 0.301 0.867 0.859 0.870 0.936 0.935 0.987 0.995 

Fi 0.358 0.370 0.919 1.483 0.788 0.731 0.265 0.329 

F 0.240 0.253 0.718 1.192 0.588 0.159 0.169 0.216 

F /Fi 0.671 0.685 0.781 0.804 0.746 0.218 0.636 0.655 

 

The most striking result is that Fi is always greater than F which means that the proionic 

attractive force is less than the promolecular force, and thus that 

Q+ + Q- < 2Q 

The ratio F /Fi is almost constant ca. 0.6 – 0.8, except for F2 (0.218): the proionic density of 

F2 is less binding, with respect to the promolecular density, than in the other molecules of 

the series considered. 

 

 

 

 



10 
 

3.3. Vibrational frequencies of diatomic molecules 

Quantities in closer relation to the force than the dissociation energy are vibrational 

frequencies, as derivatives of the interatomic potential around the potential minimum. We 

may try thus to estimate the vibrational frequency of a diatomic molecule from the 

promolecular force: we saw that the total force FR is the sum of the promolecular force and 

the deformation force. Let us suppose for the moment that the deformation force is locally 

an additive constant to the repulsive promolecular force. For obtaining the derivative of the 

total force, we may thus calculate just the derivative of the promolecular force  

𝐹𝑝𝑟𝑜𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 = (
𝑍

𝑅
)
2

(1 −
𝑄(𝑅)

𝑍
) 

from the atomic densities for homonuclear molecules with Q being a function of the 

interatomic distance. Trying this for N2 we have second derivatives of the interatomic 

potential of 1.583 (B3LYP), 1.447 (open-shell multiconfigurational SCF, MCSCF) or 1.437 

(adding correlation to MCSCF: MR-ACPF) around the potential minimum at Re=2.09 bohr, to 

be compared to the numerical derivative of the promolecular force at the experimental 

distance (2.075 bohr) from the integrated atomic Hartree-Fock densities of 1.666 (all in 

atomic units).  

Leaving as additional simplification Q a constant Q(Re) around the equilibrium geometry, the 

derivative of the promolecular force with respect to R yields 

𝐹𝑝𝑟𝑜𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 = 2(
𝑍2

𝑅3)(1 −
𝑄(𝑅𝑒)

𝑍
) 

= 1.138 for Q=6.27 at Re=2.075 bohr. 

We may thus carry on the calculations through the whole second and third row of 

homonuclear dimers, and we find indeed a good correlation between experimental and 

calculated data, as depicted in Figure 3, following the observed trend of overestimated 

frequencies for the simple derivatives, and underestimated ones for the assumption of a 

constant promolecular charge. Interestingly, the procedure works even for the relatively 

weakly bound dimers Be2 and Mg2, as the main input is the experimental bond length, and 
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as well for the highest frequency of molecular hydrogen. (Experimental values are from 

Irikura [28] but for Li2 [29] and Al2 [30]). 

Table 2. Experimental and calculated vibration frequencies (cm-1). 

Molecule Exp.  Q(R) Q constant 

H2 4401 5540 4316 

Li2 351.4 452.1 272.4   

Be2 222.6 438.8 228.5 

B2 1035.0 1514.4 873.3  

C2 1855.0 2750.6 1675.4   

N2 2358.6 2511.2 2076.0 

O2 1580.2 2349.0 1291.5 

F2 916.9 1085.5 542.8  

Na2 159.1 359.2 206.1 

Mg2 51.12 112.2 51.6  

Al2 354 660.1 374.8 

Si2 511.0 808.1 442.6 

P2 780.8 1222.4 669.3 

S2 725.7 1098.1 582.8 

Cl2 560 766.5 383.2 
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Figure 3. Calculated vibration frequencies vs. experimental values, for homonuclear diatomic 

molecules of Table 2 in cm-1. Red triangles refer to derivatives of F taking into account the variation of 

Q(R), blue circles stand for constant Qs.  

Vibrational frequencies can be computed on the same basis for heteronuclear diatomic 

molecules. From Eq. 1, we obtain the deformation forces on the two atoms, for an 

internuclear distance Re: 

∆𝐹 =
−𝑍𝐴
𝑅𝑒

(𝑍𝐵 − 𝑄𝐵) =
−𝑍𝐵
𝑅𝑒

(𝑍𝐴 − 𝑄𝐴) 

The equality can be satisfied, similar to Eq. 2, when replacing ZAQB and ZBQA by the average 

1/2 (ZAQB + ZBQA). Again we suppose that the deformation force varies only slightly with the 

interatomic distance, and all distance dependence of the total force is due to the 

promolecular (compensating) part only, where the charges QA and QB are as well assumed to 

be constant: 

𝐹𝑝𝑟𝑜𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 =
1

𝑅2
[𝑍𝐴𝑍𝐵 −

1

2
(𝑍𝐵𝑄𝐴 + 𝑍𝐴𝑄𝐵)]  

Thus the only term being differentiated is the 1/R2 factor. This we try for an ensemble of 

halides, acids and hydrides. 
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Fig. 4. Calculated vs. experimental vibrational frequencies of heteronuclear diatomic molecules.  The 

lowest-frequency species are KBr, KCl, NaBr, NaCl, LiBr and NaF.  

Again, a good correlation is found with experimental data.   

 

4. Generalization for larger molecules 

For more than two atoms we may extend the promolecular force on atom i to 

𝐹⃗𝑝𝑟𝑜𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 =∑
𝑍𝑖𝑍𝑗

𝑅𝑖𝑗
2 (

𝑅⃗⃗𝑖𝑗

𝑅𝑖𝑗
) −

1

2
∑

𝑍𝑖𝑄𝑗+𝑍𝑗𝑄𝑖

𝑅𝑖𝑗
2 (

𝑅⃗⃗𝑖𝑗

𝑅𝑖𝑗
) =∑

𝐾𝑖𝑗

𝑅𝑖𝑗
2 (

𝑅⃗⃗𝑖𝑗

𝑅𝑖𝑗
)

𝑗≠𝑖𝑗≠𝑖𝑗≠𝑖

 

 

where we used the same symmetrization already employed before for heteronuclear 

diatomic molecules, introduced directions vectors, and collected the (effective) charges in a 

constant Kij, assuming that the charges Qj and Qi remain nearly constant upon variation of 

the interatomic distance. The total force on atom i becomes thus 

𝐹⃗𝑖 =∑𝐾𝑖𝑗 (
1

𝑅𝑖𝑗
2 −

1

𝑅𝑒,𝑖𝑗
2 )

𝑖≠𝑗

(
𝑅⃗⃗𝑖𝑗

𝑅𝑖𝑗
) 

which we have to derive with respect to the atomic coordinates and evaluate at the 

equilibrium distance. From the product rule we see that again the only surviving derivative is 

that of the 1/R2 terms.  The symmetry of atomic coordinates in R leads to a real symmetric 
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matrix when assembling the derivatives of the forces in mass-weighted coordinates to the 

Hessian matrix of the total energy. The frequencies are obtained as the eigenvalues, and 

modes as the eigenvectors.  

The results for H2O, CO2, CS2 and HCN are displayed in Table 3. 

Table 3. Calculated and experimental vibration frequencies (cm-1) for triatomic molecules 

H2O CO2 CS2 HCN 

calc. exp. calc. exp. calc. exp. calc. exp. 

372.6  1595 0.000 665 0.000 397 0.000 712 

4180.5 3657 1226.2 1373 549.0 567 1903.0 2089 

4222.8 3756 2346.7 2349 1377.4 1535 3050.4 3312 

 

The most salient result is that if the stretching mode vibrations are reproduced within an 

error of ca. 10 %, the frequency of the deformation mode is strongly underestimated for H2O 

and is even vanishing for linear molecules. This result was expected: as a matter of fact, in a 

AX2 group, as long as atom A is modelled by a spherical density, the force constant for XAX 

angle variation arises only from the X…X promolecular force. This quantity does not vary 

when the interatomic distance is kept constant as for a bending mode in a linear setup, and 

becomes small for a molecule like H2O as the density decays exponentially with the 

interatomic distance. Thus, only vibrations which involve a significant variation of atom 

separation and thus of promolecular forces can be properly computed by this method.    
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Fig. 5. Left panel: calculated data for porphyrine compared to DFT and HF results. Right panel:  P4 and 

P8 frequencies with respect to B3LYP calculations. 

The same features are observed in larger systems as different as  porphyrine (Fig. 5), P4 and 

P8 (Fig 5), adamantane, cubane and tetrahedrane (Fig 6).  

Fig. 6. Calculated data for three-dimensional hydrocarbons: adamantane, cubane and tetraedrane 

compared to DFT results.  

For a given molecule, lower frequencies, which are associated to deformation modes are 

found much too small or nearly zero, while higher frequencies, associated to stretching 

modes are found with a precision close to Hartree-Fock calculations.  Indeed, for the 3-

dimensional structures P4 where deformation modes are always associated which some 

bond-length variations, our approach gives satisfactory results. The same remark holds for 

carbon skeleton vibrations of tetrahedrane, cubane and adamantane. In these compounds, 

the series of near zero frequencies correspond to the C-H bending modes.  
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The method thus could be of interest for very large systems, allowing, with a very small 

computational effort and with the only data of promolecular densities and experimental 

bond lengths, the calculation of stretching (or dominantly stretching) frequencies modes of 

vibration. This may be interesting for still larger systems like proteins, where atomic 

positions and atom types are experimentally available, and for which our approach may yield 

reasonable dynamical features. 

Conclusion 

In this paper, we computed the force exerted by a spherically averaged atomic promolecular 

electron density on nuclei in a series of 30 diatomic molecules, ranging from H2 to Br2. 

Though 90 to 99% of the total force is provided by the promolecular density, the 

promolecule remains repulsive as expected.  

We then report the deformation forces F associated to the deformation density  in the 

molecule with respect to the promolecular density.  For main group elements, F is roughly 

correlated to the dissociation energy, but the correlation decreases as the period increases. 

For transition metal dimers Ti2 – Cu2, no correlation is obtained. Taking as reference a 

“proionic” density corresponding to a zwitterion, the proionic force is computed for a 

selected panel of 8 diatomic molecules. The proionic force found is less attractive than the 

promolecular one, especially in the case of F2. 

The combination of deformation forces and promolecular forces was used, via two essential 

approximations, to compute vibrational frequencies of diatomic molecules. The approach 

has been be generalized to polyatomic molecules, where it provides a rapid estimation of 

stretching (or dominantly stretching modes) vibrational frequencies with promolecular 

densities and experimental bond distances as only necessary input data.  
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