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Abstract

Marine protist diversity inventories have largely focused on planktonic
environments, while benthic protists have received relatively little attention. We
therefore hypothesize that current diversity surveys have only skimmed the surface
of protist diversity in marine sediments, which may harbour greater diversity than
planktonic environments. We tested this by analyzing sequences of the hypervariable
V4 18S rRNA from benthic and planktonic protist communities sampled in European
coastal regions. Despite a similar number of OTUs in both realms, richness
estimations indicated that we recovered at least 70% of the diversity in planktonic
protist communities, but only 33% in benthic communities. There was also little
overlap of OTUs between planktonic and benthic communities, as well as between
separate benthic communities. We argue that these patterns reflect the heterogeneity
and diversity of benthic habitats. A comparison of all OTUs against the Protist
Ribosomal Reference database showed that a higher proportion of benthic than
planktonic protist diversity is missing from public databases; similar results were
obtained by comparing all OTUs against environmental references from NCBI’'s Short
Read Archive. We suggest that the benthic realm may therefore be the world’s

largest reservoir of marine protist diversity, with most taxa at present undescribed.
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Introduction

Molecular studies of marine plankton have uncovered an enormous diversity
of protists, many of which could not be assigned to any accession in taxonomic
reference databases (e.g., de Vargas et al. 2015). Planktonic studies have thus
found a very large pool of unknown marine protist species. However, initial molecular
studies unveiled highly diverse protist communities from marine benthic habitats
which exhibit key ecosystem functions and whose diversity may even exceed that of
planktonic protists. Most of these benthic studies were conducted in hydrothermal
vent systems (Edgcomb et al. 2002; Lopez-Garcia et al. 2003; Lépez-Garcia,
Vereshchaka and Moreira 2007) and anoxic sediments (Dawson and Pace 2002;
Stoeck and Epstein 2003; Takishita et al. 2005), both of which environments
emerged as hotspots of protist biodiversity. More recently, similarly high diversity was
reported from deep-sea and coastal sediments, with many genetic signatures only
distantly related to taxonomically described protists (Scheckenbach et al. 2010;
Pawlowski et al. 2011; Bik et al. 2012; Gong et al. 2015). At least for the three major
protist lineages of ciliates, diatoms and foraminifera, the existing species inventories
of morphologically delineated species support a higher and distinctively different
diversity of benthic compared to planktonic species (Patterson, Larsen and Corliss
1989; Mann and Evans 2007; Pawlowski, Holzmann and Tyszka 2013).

Marine benthic studies, though, remain scarce and limited compared to the
considerably larger amount of planktonic studies. Based on the sparse and locally
restricted amount of data, no consensus has been reached on the extent of microbial
eukaryotic diversity in marine sediments (Epstein and Lépez-Garcia 2007; Fierer
2008; Bik et al. 2012). Methodological difficulties are a partial explanation for this
undersampling. The clean extraction of nucleic acids from environmental marine

sediment samples is challenging (Hurt et al. 2001) and extensive amounts of
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extracellular DNA may severely bias the environmental sequencing studies
(DellAnno and Danovaro 2005). Furthermore, specific techniques and expensive
equipment are required to access these physically remote environments (Orcutt et al.
2011). Published benthic studies of protists are thus not only restricted in geographic
scope, but also in their comparisons to the overlying planktonic protists. Despite our
limited knowledge of benthic protists, there is strong agreement among microbial
ecologists that marine coastal sediments play a pivotal role for the diversity and
dynamics of overlying plankton communities by acting as seedbanks (Marcus and
Boreo 1998). The benthic species reservoir consists of both truly active benthic
species and resting stages of dormant planktonic species. Most of the latter occur in
low abundances, but blooms can be initiated in response to environmental changes
(Marcus and Boreo 1998). Furthermore, studies on microfossil protists have
suggested that several planktonic lineages have evolved from benthic ancestors,
which have colonized the pelagic realm on different occasions (Leckie 2009).

In this study, we used previously published data from Massana et al. (2015)
that surveyed protist diversity in European coastal waters and sediments from
Norway to Bulgaria using the V4 region of the 18S rRNA. Massana et al. (2015)
provided a general taxonomic overview of planktonic and benthic protists, with
particular attention on examining differences in size-fractionated planktonic protist
communities and comparing results obtained from DNA and RNA templates. Building
upon this initial study, here we focus on a more detailed comparison of benthic and
planktonic protist diversity, with a special emphasis on the richness and phylogenetic
novelty contained in marine benthic protist assemblages, two topics that were not
covered by Massana et al. (2015). Our results not only support previous notions of

more diverse benthic than planktonic protist communities, but also present clear
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indications of a higher degree of novelty in genetic signatures within benthic

communities.

Methods
Sampling, pyrosequencing and data processing

In the framework of the BioMarKs project (Dunthorn et al. 2014a; Logares et
al. 2014; Massana et al. 2015), water samples from the surface and deep chlorophyll
maximum (DCM) layer, and sediment samples were collected from six different
European coastal sites including the Skagerrak, the English Channel, the Atlantic
Ocean, the Mediterranean Sea and the Black Sea (Table 1). For details on sampling
protocols, nucleic acid extraction, 454-pyrosequencing of the hypervariable V4 18S
rDNA region and data processing see Massana et al. (2015). Briefly, RNA from
benthic samples was extracted from 2.5 g of surficial sediment using the Power Soil
RNA kit (MoBio, Carlsbad, United States). RNA from planktonic samples was
extracted with the NucleoSpin RNA kit (Macherey-Nagel, Diren, Germany) from
filters of DCM and surface water samples collected with Niskin bottles. Both
extraction kits are specifically optimized to gain high RNA yields from the respective
samples and are routinely used in environmental high-throughput sequencing (HTS)
studies. Because of the difficulties in RNA extractions from sediment samples (Hurt
et al. 2001), using an optimized kit for the recovery of nucleic acids from benthic
samples was especially important. By targeting environmental (e)RNA rather than
environmental (¢)DNA we minimized potential biases induced by accumulation and
preservation of extracellular eDNA in sediments (Del’Anno and Danovaro 2005;
Stoeck et al. 2007). The effect of extracellular eDNA is less critical when only water

samples are analyzed (Logares et al. 2014), but relevant for a comparison of water
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with sediment samples. Extracted RNA was then transcribed to cDNA for further
processing.

Targeted amplification of the hypervariable V4 18S rDNA region was
performed with the eukaryotic primer pair TAReuk454FWD1 and TAReukREV3
(Stoeck et al. 2010). This primer pair, though, does not cover Foraminifera and
several excavate lineages that are important contributors to benthic protist
communities but whose taxonomy is not very well delineated by the V4 region
(Pawlowski et al. 2011; Lax and Simpson 2013). In contrast to other barcode genes,
the V4 region does allow for better comparisons with published full-length 18S rRNA
Sanger sequencing studies and has a better database coverage for taxonomic
assignment (Stoeck et al. 2010; Dunthorn et al. 2012). Pyrosequencing of the
amplified PCR product was conducted on a 454 GS FLX Titanium system (454 Life
Sciences, USA). Resulting 454 reads were subject of a strict quality filtering,
including two steps of chimera checking in UCHIME (Edgar et al. 2011) and
ChimeraSlayer (Haas et al. 2011). All quality sequences were then clustered into
OTUs using USEARCH (Edgar 2010) on a 97% sequence similarity value. In a
second step of quality filtering, one representative of each OTU was subject to a
BLASTNn analysis against NCBI's nucleotide database release 183.0. All OTUs
assigned to Bacteria, Archaea, Metazoa, Embryophyta and OTUs with less than 80%
similarity to database entries were removed from the dataset. The final dataset
included 430 894 V4 18S RNA sequences, which clustered into 12 438 distinct
OTUs. The complete BioMarKs sequencing dataset is available at the European

Nucleotide Archive under the study accession number PRJEB9133.

Taxonomic assignment of OTUs

ScholarOne Support 1-434/964-4100
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1

é 172 To search for the best hit of each OTU to a described organism, we conducted
g 173  alocal BLASTn analysis (using default settings) against the protist reference

; 174  database PR® (Guillou et al. 2012). Additionally, we compared our environmental
20 175 data against reference data of previous environmental HTS diversity surveys of

ﬂ 176  protists using a similar BLASTn analysis. To build this environmental reference

E 177  database, we manually screened NCBI's Short Read Archive (SRA) for studies that
12 178  at least partially included protist data of the eukaryotic 18S gene (according to the
ig 179  experiment’s descriptions in the SRA). After downloading the respective data, we
3(1) 180  removed all references shorter than 100 bp. The final customized SRA reference
5123 181 database consisted of 11 708 385 references from 167 datasets (Supplemental

g% 182  Table S1).

% 183

ég 184  Statistical analyses and diversity measures

g; 185 All statistical and diversity analyses were performed in R Studio (version

gz 186  2.15.1, http://r-project.org). Following recommendations of previous studies

g? 187  (Dunthorn et al. 2014b) we relied on incidence-based rather than abundance-based
gg 188  data to avoid biases induced by uneven gene copy nhumbers among different protist
22 189  taxa. Species richness was estimated with the incidence-based coverage estimator
j,:% 190 (ICE) as implemented in the ‘fossil’ package (Vavrek 2011). ICE appropriately

gg 191  estimates asymptotic species richness from datasets containing many rare species
j; 192  (Colwell et al. 2012), which we expect in benthic protist communities. Additional

gg 193  species richness estimations in CatchAll (Bunge et al. 2012) are provided as

g; 194  supplemental material (Supplemental Fig. S2). Non-metric multidimensional scaling
gz 195 (NMDS) using (binary-) Jaccard distances as a measure of B-diversity was performed
g? 196  with the ‘vegan’ package (Oksanen et al. 2015). Non-parametrical, two-sided

gg 197  Kolmogorov-Smirnov tests (KS-tests) using 1000 bootstrap replicates were used to
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assess the significance of sequence divergence distribution from planktonic and

benthic datasets in the package ‘Matching’ (Sekhon 2011).

Results
Comparison of planktonic and benthic protist diversity

The number of quality filtered sequences among the three habitats differed:
206 602 from the surface, 184 192 from the DCM, and 40 100 from the sediment
(Table 1). Despite these differences, the sequences clustered into similar numbers of
OTUs: 5747 in the surface, 5685 in the DCM, and 5616 in the sediment. However,
ICE-based richness estimates predicted a difference in the number of total OTUs
between the plankton and the sediment: 7763 from the surface, 8140 from the DCM,
and 16 652 from the sediment (Fig. 1A). The proportion of OTUs thus not detected
through our sequencing effort was 26% in surface, 30.2% in the DCM, and 66.3% in
the sediment. Richness estimations based on abundance data revealed similar
trends but predicted even more undetected OTUs (Supplemental Fig. S2). The
observed trends on OTU richness were further congruent with rarefaction results of
sequencing data, which were closer to saturation for water column than for sediment
samples (Supplemental Fig. S3). Differences in community composition between
plankton and benthos were first shown by the number of shared and exclusive OTUs
(Fig. 1B). Of 7729 non-singleton OTUs observed in total, only 708 (9.2%) were
shared among all three habitats. This low number is, in part, explained by the low
number of co-occurring OTUs in plankton and benthos: the plankton had 4368 non-
singleton OTUs not found in the benthos, of which 701 were exclusively found in the
surface and 762 were exclusively found in the DCM; the benthos had 2364 non-

singleton OTUs not found in the plankton.
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NMDS analysis further demonstrated the partitioning of the observed diversity
patterns in plankton and benthos (Fig. 2). Since differentiation in size fractions was
only possible for planktonic samples and beyond the scope of this work, we pooled
planktonic data of different size fractions from the same sampling events. In this
analysis, surface and DCM samples clustered closely together, indicating a higher
similarity in community composition among plankton samples than among benthos
samples. Sediment samples were separated from the water communities in the
analysis. In contrast to the narrow cluster of surface and DCM samples, the sediment
samples were more widely distributed, indicating high dissimilarity in community
composition between individual samples. This also applied to sediment samples from
the same sampling site taken in consecutive years, as shown by the large distances

between both samples from Naples and both samples from Oslo.

Taxonomic affiliation of plankton and benthos OTUs

Most OTUs in each habitat were assigned to the groups of Alveolata,
Stramenopiles and Rhizaria (Fig. 3). While the Alveolata dominated the planktonic
communities (3281 OTUs in surface, 3638 OTUs in DCM samples), rhizarian OTUs
of the phylum Cercozoa dominated the benthic communities (1566 of 1622 benthic
rhizarian OTUs). Approximately the same proportion of OTUs was assigned to
Stramenopiles in all three habitats. The number of OTUs from the Amoeboza,
Apusozoa, Opisthokonta (predominantly fungi), and Picozoa were notably higher in
the benthos than in the plankton. In contrast, Archaeplastida and Hacrobia were
more diverse in planktonic (238 and 309 OTUs in surface samples; 175 and 264
OTUs in DCM samples) than in benthic communities (50 and 179 OTUs).

On a lower taxonomic level, we observed a higher OTU richness in benthic

samples for 10 of the 19 most abundant groups (Fig. 4). In seven of these groups,
10
ScholarOne Support 1-434/964-4100
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the OTUs detected in the benthos accounted for more than 70% of the OTUs. These
groups comprised the Apicomplexa (Alveolata), Apusomonadidae (Incertae Sedis),
Centrohelida (Hacrobia), Discosea and Tubulinea (both Amoebozoa), as well as the
previously mentioned Cercozoa and Fungi. Further groups mainly detected in the
benthos included Ciliophora (Alveolata), Bacilliarophyceae and Labyrinthulomycetes
(both Stramenopiles). Dinoflagellates, however, as the taxonomic group with highest
OTU richness in total, were predominantly detected in planktonic samples.
Acantharea (Rhizaria), MAST (Stramenopiles) and MALV (Alveolata) are three other
taxonomic groups with heterotrophic members that were distinctively more often
detected in planktonic than in benthic samples. Similar observations were made
among the predominantly phototrophic groups Chlorophyta (Archaeplastida),
Chrysophyceae and Dictyochophyceae (both Stramenopiles), and Haptophyta
(Hacrobia). Supplemental figures S4 and S5 provide a closer look on the occurrence
and distribution of phototrophic taxa and show that Cryptophyta and Rhodophyta
were also mostly found in planktonic samples, while more diatoms were found in the

benthos (677 OTUs) than in the plankton (445 OTUs).

Database coverage and genetic divergence of plankton and benthos OTUs

To assess how well the observed diversity of OTUs matched previously
collected data, we calculated their degree of genetic similarity to reference
sequences of the taxonomically curated PR? database and to environmental
reference sequences of earlier protist diversity inventories deposited in NCBI's SRA
(Fig. 5). In both BLAST analyses, the novelty profile was much higher for benthic
OTUs, while surface and DCM OTUs exhibited an almost identical profile. Moreover,
the genetic similarity of BioMarKs OTUs to PR? references (Fig. 5A) was significantly

lower (p<0.001) than to environmental references of the SRA database (Fig. 5B).
11
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Considering that 71.8% of the planktonic OTUs in our study can be assigned on a
97%-sequence similarity value to references in PR?, this database misses 28.2% of
the potentially detectable plankton species (conservative estimate, see discussion).
Among benthic protist communities 74.4% of the OTUs did not retrieve a
taxonomically assigned hit in PR? at the same threshold of 97% similarity. Regarding
the SRA BLAST results, 78.6% of the planktonic OTUs in our study (n=8988 OTUs)
were at least 97% similar to previously deposited environmental references,
compared to only 42.7% of the OTUs from benthic samples (n=2400 OTUs). These
numbers illustrate that the vast majority of planktonic OTUs had already been
detected in previous environmental diversity surveys. This, however, was not the
case for benthic OTUs. Thus, BioMarKs benthos analyses contributed a high
proportion of novel OTUs to the environmental reference database.

On closer examination of the PR? BLAST results, the mean sequence
divergence of OTUs detected in surface and DCM samples from references of the
taxonomic reference database was 2.6% (Fig. 6). By contrast, the mean sequence
divergence of OTUs from sediment samples to PR? accessions was 6.6%, indicating
that the benthic compartment contains protist species more distantly related to
previously deposited taxa than the planktonic compartment. Specifically among the
Alveolata, Hacrobia, Opisthokonta, Rhizaria and Stramenopiles, the difference in
divergence between plankton and benthos was statistically significant (p<0.001). For
example, while the mean sequence divergence of OTUs assigned to Rhizaria from
PR? references was 3.5% in both the surface and DCM, the averaged divergence

was 8.2% in the sediment.

Discussion

12
ScholarOne Support 1-434/964-4100
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High a- and B-diversity shapes coastal benthic protist communities

The a- and B-diversity patterns (Figs. 1 and 2) of protists along the European
coastline support previous notions of highly diverse protist communities from different
benthic habitats in the world’s oceans (Dawson and Pace 2002; Edgcomb et al.
2002; Lépez-Garcia et al. 2003; Stoeck and Epstein 2003; Takishita et al. 2005;
Lopez-Garcia, Vereshchaka and Moreira 2007; Scheckenbach et al. 2010;
Pawlowski et al. 2011; Bik et al. 2012; Gong et al. 2015). A direct comparison of OTU
numbers to many of these initial studies is difficult, since most relied on clone library
approaches (Dawson and Pace 2002; Edgcomb et al. 2002; Lopez-Garcia et al.
2003; Stoeck and Epstein 2003; Takishita et al. 2005; Lopez-Garcia, Vereshchaka
and Moreira 2007; Scheckenbach et al. 2010) that produced fewer genetic signatures
than the current pyrosequencing approach. Consequently, Scheckenbach et al.
(2010) estimated a mean OTU richness of 489 in benthic biodiversity hotspots, such
as hydrothermal vents, and 1240 in abyssal sediments. These numbers would be
well below the mean estimated species richness of 2776 OTUs in BioMarKs
sediment samples. Other studies relying on 454 pyrosequencing detected similarly
high benthic diversity (Pawlowski et al. 2011; Bik et al. 2012; Gong et al. 2015). One
of these surveys observed between 393 and 1049 protist OTUs and estimated
between 421 and 1051 OTUs in coastal sediment sites of the Yellow Sea (Gong et
al. 2015). OTU richness in European coastal sediment samples was higher, with
observed protist OTU numbers ranging from 493 to 2499 and estimated OTU
numbers ranging from 721 to 3573. The BioMarKs numbers are closer to those
observed in Arctic and Southern Ocean deep-sea samples (between 942 and 1756
observed OTUs) (Pawlowski et al. 2011).

In contrast to most previous studies, our data allowed us to analyze benthic

communities in the context of planktonic communities from overlying water masses of
13
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the euphotic zone. Such data are scarcely available for protists and usually limited to
specific lineages. One example is a Sanger sequencing study that focused on ciliates
(Doherty et al. 2010), which reported little overlap between genetic signatures of
benthic and planktonic communities in the Gulf of Maine and Long Island Sound.
This finding corroborates our observations on whole protist communities in European
coastal habitats (Fig. 1B). More data exists, however, for benthic-planktonic
community comparisons of marine bacteria. Zinger et al. (2011) showed that
bacterial OTU richness and B-diversity was much higher in coastal sediments than in
coastal surface waters. Similar results were obtained in an arctic fjord HTS survey
(Teske et al. 2011). These patterns nicely reflect those obtained in our study on
protists.

Building upon the Massana et al. (2015) study, we targeted the question of the
magnitude of benthic compared to planktonic diversity by contrasting the degree of
observed richness with the degree of estimated richness (Fig. 1A). In the same
context, we highlighted how much of this observed diversity likely represented novel
diversity (Figs. 5 and 6), a previously unexamined topic. Furthermore, we contrasted
the B-diversity among benthic and planktonic communities (Fig. 2), illustrating small
overlap between benthic and planktonic diversity, but also among benthic
communities in particular. Given that biodiversity is considered to be higher in coastal
than in open ocean habitats (Gray 1997; Zinger et al. 2011), the BioMarKs data
suggest that marine coastal sediments may be the world’s largest reservoir of protist
diversity, much of which is still undetected and most of which is still undescribed in
public databases.

One major factor that might promote high diversity in benthic protist
communities is a large number of distinct benthic habitats due to horizontal and

vertical gradients in both physical and chemical characteristics. Even at microscale,
14
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habitat heterogeneity in marine sediments reflects gradients in grain-sizes, oxygen
concentration or organic matter content (Pedersen, Smets and Dechesne 2015). The
diversity of physico-chemical microhabitats likely promotes the existence of highly
specialized organisms and is probably an important driver for species-richness
patterns (Hortal et al. 2009). We thus argue that our findings of high protist richness
and heterogeneity at comparably small geographical scales represents a general
trend in benthic diversity, which is well supported by previous findings, e.g. in the
Yellow Sea, where high a- and B-diversity patterns in coastal marine sediments were
unveiled (Gong et al. 2015). To further investigate the effect of niche partitioning,
species-area relationships and distance-decay relationships on small spatial and
temporal scales could be analyzed for planktonic and benthic protists at the same
locales (Franzén, Schweiger and Betzholtz 2012; Zinger, Boetius and Ramette
2014). In addition to habitat heterogeneity, geological structures at the seafloor may
act as biogeographical barriers. Even locally, this results in a spatial separation of
protist communities (Scheckenbach et al. 2010). Both factors, niche partitioning and
allopatric speciation processes may work in concerto to generate and maintain a high
diversity of protists in sediments. In direct comparison, environmental heterogeneity
is surely much more pronounced in the benthos (Orcutt et al. 2011) than in the
plankton, although the pelagic realm may create patchy distributions of protists as
well (Menden-Deuer and Fredrickson 2010; Dolan and Stoeck 2011).

Additional reasons for diverging protist communities between individual
benthic sites (Fig. 2) may also be of technical nature: we found that all sediment
samples were severely undersampled as a result of their high diversity
(Supplemental Fig. S3). Because of this undersampling, community divergence
among different sediment samples may be artificially inflated. It is, however,

reasonable to assume that with increasing sampling effort the proportion of OTUs
15
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that are shared between two samples and the proportion of OTUs that are unique to
each of these samples would remain similar. We therefore argue that the observed
high Jaccard-distance between the sediment protist communities is more due to true
(biological) heterogeneity in species memberships rather than to (technical)

undersampling.

Different protist taxon groups thrive in plankton and benthos

Benthic protist diversity uncovered by environmental HTS is comprised of i)
resident species of truly benthic origin; ii) transient species, which spend at least part
of their life cycle living actively in or on sediments; iii) non-resident species of
planktonic origin present as inactive resting stages, or as recently settled cells. OTUs
of resident species clearly dominated the benthic protist communities in our analyses
(Fig. 1B). Though transient species are commonly found among different taxonomic
groups (Garstecki et al. 2000), we found only little overlap between benthic and
planktonic OTUs (Figs. 1B and 2). A notable fraction of this overlap was related to
diatoms, Chrysophyceae and Chlorophyta (Supplemental Fig. S4). Since all of these
groups include species of planktonic origin which are able to form benthic resting
stages (McQuoid and Hobson 1996; Duff, Zeeb and Smol 2013), we cannot rule out
that at least some of the phototrophic OTUs in sediments could correspond to
phytoplankton cysts or cells that had sunk to the sea floor shortly before sampling.
Genetic signatures of the planktonic diatom family Leptocylindraceae in sediment
samples represent such a peculiar case (Nanjappa et al. 2014). However, particularly
among phototrophic protists, diatoms were more often detected in the benthos than
in the plankton. Indeed this group is known to harbour a larger diversity of benthic
than planktonic species, especially in shallow coastal waters (Mann and Evans

2007). Regarding the small amount of shared OTUs between benthos and plankton
16
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in general, we argue that genetic signatures of dead or sinking organisms or
dissolved RNA were considerably limited.

A striking difference in the community composition between planktonic and
benthic protists at a higher taxonomic level is the dominance of numerous previously
undescribed Rhizaria in coastal sediments. More than 95% of these rhizarian OTUs
were assigned to the phylum Cercozoa (Supplemental Fig. S6), which have emerged
as an abundant and diverse lineage in several other benthic protist diversity studies
(summarized by Epstein and Lépez-Garcia, 2008). This phylum comprises a large
number of gliding zooflagellates, filose and often large reticulose amoebae, which are
well adapted to a psammophilic lifestyle (Bass et al. 2009; Howe et al. 2011), but
also occur as parasites of invertebrates, algae and stramenopiles with benthos-
associated stages of their lifecycles (Hartikainen et al. 2014). Recent studies on
cercozoans could link many previously uncultured environmental sequences to novel
benthic cercozoans (Chantangsi and Leander 2010; Howe et al. 2011; Berney et al.
2013). In addition, genetically divergent benthic cercozoans, both free-living and
parasitic, are common and diverse but rarely detected in eukaryote-wide
environmental surveys, e.g. the amoebo-flagellate Reticulamoeba (Bass et al. 2012)
or the parasitic Ascetosporea (Hartikainen et al. 2014). These examples further
emphasize the importance of this phylum in the marine benthos.

Among the most abundant taxonomic groups we observed a trend of
distinctively higher OTU richness in benthic than in planktonic communities (Fig. 4).
Beside Cercozoa, this trend was especially prominent for Discosea and Tubulinea,
two groups of rhizopod Amoebozoa, which are common inhabitants of coastal
benthic ecosystems (Garstecki and Arndt 2000). Likewise, the detection of a high
proportion of saprotrophic fungi that contribute to detritus processing in marine

sediments is not surprising (Richards et al. 2012). Higher OTU richness in benthic
17
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samples, though less pronounced, was also observed for ciliates. This result is
supported by previous morphological and molecular studies that reported higher
benthic than planktonic ciliate diversity (Patterson, Larsen and Corliss 1989; Doherty
et al. 2010). As discussed above, the situation was similar for diatoms.

We detected an inverse trend in diversity among the Acantharea,
Dinoflagellata and MALYV, all of which are commonly observed in planktonic
communities (Guillou et al. 2008; Jeong et al. 2010; Massana 2011; Decelle et al.
2013). Acantharea and dinoflagellates are mostly planktonic organisms and both
groups comprise mixotrophs or members with phototrophic symbionts (Gilg et al.
2010; Hansen 2010). MALV, on the other hand, can be found as parasites of ciliates,
dinoflagellates, radiolarians and fish eggs (Massana 2011) and are known to form
planktonic lifecycles (Guillou et al. 2008). Unicellular Archaeplastida (Chlorophyta)
and Hacrobia (Haptophyta) were also largely missing from benthos samples but
occurred in plankton samples. These groups mainly consist of autotrophic organisms
performing carbon fixation (Vaulot et al. 2008; Not et al. 2012) and are major
contributors to the pico- and nanoplankton diversity and biomass across the world’s

oceans (Bittner et al. 2013; Egge et al. 2015).

High degree of genetic novelty among benthic protist assemblages

The genetic divergence of benthic OTUs from reference sequences described
the marine coastal benthic realm as a habitat having a vast majority of protist
diversity still uncharted. This applied to both BLAST analyses, against the curated
PR? reference database and the environmental genetic signatures of the SRA
database. Thereby, the mean sequence similarity to taxonomic references (93.4%,
Fig. 5A) and to environmental references (95.4%, Fig. 5B) was higher than reported

from abyssal sediment communities of protists (87% similarity to taxonomic
18
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references, 89% to environmental references) (Scheckenbach et al. 2010). Recent
advances in sequencing technologies enable the detection and assemblage of a
broader diversity of genetic signatures in environmental microbial surveys than ever,
but there still remains a clear discrepancy between what can be detected and what
can be taxonomically assigned. This discrepancy is especially pronounced among
benthic organisms, which display a much higher novelty in genetic diversity surveys
than planktonic organisms (Figs. 5 and 6). A promising approach towards exploring
this novel diversity is the combination of multiple SRA datasets in network analyses
to screen for groups of sequences that do not have closely described relatives
(Forster et al. 2015). Such highly divergent groups detected in independent
environmental samples have a high potential to represent genuine undescribed
organisms. The design of novel probes and primer-sets specifically for these groups
will in turn enable the targeted recovery and identification of the respective organisms
from life samples by molecular methods (Gimmler and Stoeck 2015). As our picture
of protist diversity heavily depends on the coverage of available public databases
(Pawlowski et al. 2012), increasing the efforts to isolate, cultivate and describe
benthic protist species will also help to link genetic signatures obtained in
environmental sequencing studies to a real biological entity with a phylogenetic
context. Although the isolation of individual specimen remains a challenging task,
methods exist to successfully address organisms in benthos samples. For example,
even small flagellates can be isolated by quantitative centrifugation (Starink et al.
1994). More recently, a serial dilution method enabled the recovery of diatom spores
from coastal sediment samples (Montresor et al. 2013). First studies on highly
divergent BioMarKs sediment OTUs already led to the discovery of novel cercozoan
vampirellids (Berney et al. 2013) and opisthokont Fonticulida (del Campo et al.

2015), two groups that were mostly known from soil or freshwater samples.
19
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Regarding the divergence of benthic OTUs from publicly available reference
sequences, we suppose that we are just scratching the surface of protist diversity in
coastal sediments. Thus, we understand the BioMarKs data as a starting point that
may guide the discovery of more novel benthic protist diversity by further taxon-

specific screening.

Conclusions

Over the last 60 years, our perception of marine benthic environments has
changed from being biologically inert deserts towards being highly heterogeneous
habitats teeming with a multitude of microbial organisms. Even though new
technologies allow for addressing this vast diversity, the results of the BioMarKs
project strongly imply that the most part of benthic protist diversity remains a black
box. While sampling the deep-seafloor surely imposes many challenges and
restrictions that have lagged the exploration of benthic diversity, our data show that it
is not mandatory to focus on such remote environments when looking for highly
diverse protist communities. From a quantitative (i.e. OTU richness) and qualitative
(i.e. degree of genetic divergence) point of view, coastal sediments inhabit
intriguingly rich protist assemblages on local and regional scales. Increasing the
efforts to explore these assemblages will be beneficial to learn more about the
dispersal patterns of benthic protists, their roles in ecosystem functioning and to

complement current species inventories by identifying many still unknown organisms.
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Table 1 Overview of BioMarKs samplings along the European coastline.

Quality sequences per sampled habitat

Sampling Event Latitude/Longitude Oceanic region Surface water DCM Sediment
Blanes 41°40'N/2°48'E Mediterranean Sea 16 568 n.d. 3576
Gijon 43°40'N/5°35'W Atlantic Ocean 20966 n.d. n.d.
Naples 2009 40°48'N/14°15'E Mediterranean Sea 62 250 52114 15739
Naples 2010 40°48'N/14°15'E Mediterranean Sea 22132 31268 3159
Oslo 2009 59°16'N/10°43'E Skagerrak 33133 36 988 12 835
Oslo 2010 59°16'N/10°43'E Skagerrak 19 316 24 819 3071
Roscoff 48°46'E/3°57'W English Channel 9298 n.d. 1720
Varna 43°10'N/28°50'E Black Sea 22939 39003 n.d.

692 DCM, deep-chlorophyll maximum; n.d., no data available.

693  Total number of surface water quality sequences: 206 602.

694  Total number of DCM quality sequences: 184 192.

695  Total number of sediment quality sequences: 40 100.

696
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Fig. 1 OTU richness and shared OTUs of planktonic and benthic protist
communities. (A) For each habitat the bars show the number of observed (left, dark
colored part) and estimated OTUs (right, lighter colored part). Estimations are based
on the incidence-based coverage estimator (ICE). (B) The Venn-Diagram highlights
how many non-singleton OTUs were shared between all habitats, shared between
any two of the sampled habitats or exclusively detected in a single habitat. Numbers
indicate the amount of OTUs which fall into the respective category. The area of each
category was proportionally approximated to the number of OTUs from the respective

habitat.
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709  Fig. 2 Beta diversity analysis of single sampling events. The NMDS is based on
710 binary-Jaccard distances between protist communities of single samples (NMDS

711  stress level = 0.2). Colors of the data points were chosen with respect to their habitat

©CoO~NOUTA,WNPE

10 712 affiliation. Data points of the same affiliation were linked and the area between the
12 713 linked points was colored with respect to their habitat affiliation.
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717  Fig. 3 Taxonomic community compositions as revealed by the PR? database.
718  The pie charts reflect the distribution of OTUs within major protist groups, by pooling
719  the data of all samples from each habitat. The surface dataset included 5747 distinct
720 OTUs, the DCM dataset 5685 distinct OTUs and the sediment dataset 5616 distinct
721 OTUs.

722

Surface DCM Sediment

N WA
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s m Archaeplastida O Incertae sedis m Stramenopiles
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Fig. 4 Number of OTUs within taxonomic groups in planktonic and benthic
samples. Only groups contributing to at least 1% of the OTU number in either
surface, DCM or sediment communities were considered. Note the different scale
among the two panels, to display taxonomic groups with more than 200 OTUs in total

(A) or with less than 200 OTUs in total (B).
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733  Fig. 5 Rank abundance curves displaying the sequence similarity distribution
734  of OTUs against reference databases. Results are shown for two different BLAST

735  queries, against the PR? database (A) and against a custom-built subset of NCBI’s

©CoO~NOUTA,WNPE

10 736  Short Read Archive (B). The curves display the number of OTUs with a given
12 737  similarity with the closest match from the respective reference database. Sequence
14 738  similarities are binned in 0.5 % intervals.
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Fig. 6 Sequence divergence of OTUs to their closest taxonomic hit. Each
boxplot comprises the sequence divergence values of all OTUs within a given
taxonomical group from the same habitat to their closest reference in the PR?
database. The taxonomic assignment is shown at the supergroup level. Missing
boxplots indicate that the taxonomical group was not detected in the respective
habitat. For each taxonomic group, differences between the distribution of sequence
dissimilarity values of sediment OTUs to planktonic OTUs was tested for significance
(p<0.001, indicated by stars). The distribution of sequence dissimilarity values was
never significantly different between DCM and surface OTUs. Black bars represent
the median of each boxplot, the part of the box above the median represents the
upper quartile; accordingly, the part of the box below the median represents the

lower quartile. Circles show the outliers of each group of data.
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Table 1 Overview of BioMarKs samplings along the European coastline.

Quality sequences per sampled habitat

Sampling Event Latitude/Longitude Oceanic region Surface water DCM Sediment

©CoO~NOUTA,WNPE

Blanes 41°40'N/2°48'E Mediterranean Sea 16 568 n.d. 3576
11 Gijon 43°40'N/5°35'W Atlantic Ocean 20 966 n.d. n.d.
13 Naples 2009 40°48'N/14°15'E Mediterranean Sea 62 250 52114 15739
15 Naples 2010 40°48'N/14°15'E Mediterranean Sea 22132 31268 3159
Oslo 2009 59°16'N/10°43'E Skagerrak 33133 36 988 12 835
Oslo 2010 59°16'N/10°43'E Skagerrak 19 316 24 819 3071
20 Roscoff 48°46'E/3°57'W  English Channel 9298 n.d. 1720

22 Varna 43°10'N/28°50'E Black Sea 22939 39003 n.d.

24 DCM, deep-chlorophyll maximum; n.d., no data available.
25 Total number of surface water quality sequences: 206 602.
27 Total number of DCM quality sequences: 184 192.

29 Total number of sediment quality sequences: 40 100.
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A dark-colored: observed OTUs
light-colored: estimated OTUs
Surface
DCM
Sediment
I T T T T T 1
0 3000 6000 9000 12 000 15 000 18 000
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B
Surface

701

Sediment

DCM

Fig. 1 OTU richness and shared OTUs of planktonic and benthic protist communities. (A) For each habitat the
bars show the number of observed (left, dark colored part) and estimated OTUs (right, lighter colored part).
Estimations are based on the incidence-based coverage estimator (ICE). (B) The Venn-Diagram highlights
how many non-singleton OTUs were shared between all habitats, shared between any two of the sampled
habitats or exclusively detected in a single habitat. Numbers indicate the amount of OTUs which fall into the
respective category. The area of each category was proportional approximated to the number of OTUs from
the respective habitat.
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Fig. 2 Beta diversity analysis of single sampling events. The NMDS is based on binary-Jaccard distances

37 between protist communities of single samples (NMDS stress level = 0.2). Colors of the data points were
38 chosen with respect to their habitat affiliation. Data points of the same affiliation were linked and the area
39 between the linked points was colored with respect to their habitat affiliation.
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Fig. 3 Taxonomic community compositions as revealed by the PR2 database. The pie charts reflect the
distribution of OTUs within major protist groups, by pooling the data of all samples from each habitat. The
surface dataset included 5747 distinct OTUs, the DCM dataset 5685 distinct OTUs and the sediment dataset
5616 distinct OTUs.
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47 Fig. 4 Number of OTUs within taxonomic groups in planktonic and benthic samples. Only groups contributing
to at least 1% of the OTU number in either surface, DCM or sediment communities were considered. Note
the different scale among the two panels, to display taxonomic groups with more than 200 OTUs in total (A)
49 or with less than 200 OTUs in total (B).
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Fig. 5 Rank abundance curves displaying the sequence similarity distribution of OTUs against reference
databases. Results are shown for two different BLAST queries, against the PR2 database (A) and against a
custom-built subset of NCBI's Short Read Archive (B). The curves display the number of OTUs with a given

similarity with the closest match from the respective reference database. Sequence similarities are binned in
0.5 % intervals.
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32 Fig. 6 Sequence divergence of OTUs to their closest taxonomic hit. Each boxplot comprises the sequence
33 divergence values of all OTUs within a given taxonomical group from the same habitat to their closest
34 reference in the PR2 database. The taxonomic assignment is shown at the supergroup level. Missing
35 boxplots indicate that the taxonomical group was not detected in the respective habitat. For each taxonomic
group, differences between the distribution of sequence dissimilarity values of sediment OTUs to planktonic
OTUs was tested for significance (p<0.001, indicated by stars). The distribution of sequence dissimilarity
values was never significantly different between DCM and surface OTUs. Black bars represent the median of
38 each boxplot, the part of the box above the median represents the upper quartile; accordingly, the part of
39 the box below the median represents the lower quartile. Circles show the outliers of each group of data.
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Supplemental Table S1 Additional information of the SRA database. The table
includes all 167 distinct datasets used to build our custom subset of the SRA. We
screened the complete archive for protist datasets of the eukaryotic 18S gene. After
downloading the respective data, we removed all sequences shorter than 100 bp.
The final customized SRA reference database consisted of 11 708 385 sequences.
Information in the table was downloaded directly from NCBI’s SRA platform along

with the respective sequences.

Supplemental Fig. 2 Observed and estimated OTU richness calculated by
abundance-based analyses. Additionally to incidence-based ICE analyses (Fig.1)
we estimated OTU richness with the abundance-based CatchAll tool. In direct
comparison ICE and CatchAll results show the same trends, though the estimated
richness of the abundance-based analyses always exceeded the one of the
incidence-based analyses. For each habitat the plot shows the amount of observed
and estimated OTUs. The left, dark colored part of each bar shows the actually
observed number of OTUs, the right, light colored part of each bar shows how many

more OTUs were estimated to be in each dataset by extrapolation of the data.

Supplemental Fig. S3 Normalized rarefaction curves of sampled habitats.
Sequence data of all single sampling events were pooled with regard to the
respective habitat. Each habitat rarefaction curve was normalized to 40 100
sequences, which equals the smallest total amount of sequences found in any of the
three habitats. Depicted is the amount of SSU V4 rDNA sequences in relation to the

amount of resulting OTUs into which the sequences were clustered.
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Supplemental Fig. S4 Community composition among phototrophic protist
taxon groups. Represented are all phototrophic groups detected in BioMarKs. The
upper bar shows the phototrophic OTUs exclusively found in the plankton, the middle
bar the phototrophic OTUs present in both plankton and benthos and the lower bar
the phototrophic OTUs exclusively found in the benthos. Dinoflagellates were not

considered in the analyses.

Supplemental Fig. S5 Occurrence of each phototrophic protist taxon group in
the sampled habitats. For each phototrophic taxon group, the bars indicate the
fraction of OTUs which was found exclusively in the plankton, in both plankton and
benthos and exclusively in the benthos. Dinoflagellates were not considered in these

analyses.

Supplemental Fig. S6 Community composition across different taxonomic
levels. The pie charts reflect the proportion of taxonomic groups of the total microbial
eukaryote community in each habitat. The inner ring is equivalent to Fig. 4 and
represents the taxonomical assignment into major protist groups (corresponding to
the left part of the taxonomic legend). The outer ring represents the taxonomical
assignment at the phylum level (corresponding to the right part of the taxonomic
legend). Only phyla which contributed with at least 5% to the total community where
considered with a specific color in the outer ring. Exact proportions are given in

square brackets behind the taxonomical group names.
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Experiment Accession

ERX145205
ERX145206
ERX145207
ERX145208
ERX250340
ERX250341
ERX250342
ERX250343
SRX003229
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SRX006204
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SRX157990
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SRX157994
SRX157995
SRX157996
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SRX176184
SRX176202
SRX193126
SRX204625
SRX206793
SRX206833
SRX270898
SRX272400
SRX275327
SRX275961
SRX276149
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SRX276150
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SRX276152
SRX276153
SRX276154
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SRX341095
SRX341096
SRX341097
SRX341098
SRX341099
SRX341100
SRX341101
SRX341102
SRX341103
SRX341104
SRX341105
SRX341107
SRX341108
SRX341110
SRX373203
SRX382997
SRX391657
SRX391659
SRX391660
SRX472244
SRX476875
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SRX484165
SRX497463
SRX497495
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SRX497528
SRX497529
SRX497530
SRX497531
SRX497532
SRX497533
SRX497534
SRX497535
SRX497536
SRX497537
SRX497538
SRX497539
SRX497540
SRX497541
SRX497542
SRX497543
SRX497544
SRX497545
SRX497546
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SRX504618
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Experiment Title

Gene expression during the initiation phase of growth in the dinoflagellate Alexandrium catenella (Dinophyceae)
community profiling of Mirs Bay seawater by 18S rRNA V4 amplicon 454 sequencing

community profiling of Tolo Harbor seawater by 18S rRNA V4 amplicon 454 sequencing

Pooled bacterial amplicons from 10 Arctic marine surface water samples from 2003-2009 plus 2010

Pooled archaeal amplicons from 10 Arctic marine surface water samples from 2003-2009 plus 2010

Pooled eukarya amplicons from 10 Arctic marine surface water samples from 2003-2009 plus 2010

Marine microbial eukaryote community analysis in Korea

Marine microbial eukaryote community analysis in Korea

GS_FLX sequencing for environmental diversity study using the SSU rRNA as taxonomic marker

GS_FLX_Titanium sequencing for environmental diversity study using the SSU rRNA as taxonomic marker
RN_RepliG_Sequencing

Pooled sample of 12 Arctic (Amundsen Gulf and Franklin Bay) sea ice samples from 2008

microbial diversity of ornamental fish aquarium water sample D1

microbial diversity of ornamental fish aquarium water sample E1

microbial diversity of ornamental fish aquarium water sample D2

microbial diversity of ornamental fish aquarium water sample Al

microbial diversity of ornamental fish aquarium water sample A2

microbial diversity of ornamental fish aquarium water sample E2

microbial diversity of ornamental fish aquarium water sample E1.V4

microbial diversity of ornamental fish aquarium water sample D1.V4

microbial diversity of ornamental fish aquarium water sample A1.V4

microbial diversity of ornamental fish aquarium water sample A2.V4

microbial diversity of ornamental fish aquarium water sample D2.V4

microbial diversity of ornamental fish aquarium water sample E2.V4

microbial diversity of ornamental fish aquarium water sample B2.V4

Pooled samples of protist communities at 8 depth from Lake A in May 2008

Pooled samples of protist communities at 4 depths from Lake A in August 2008

Pooled samples of protist communities at 5 depths from Lake A in July 2009

Environmental Samples from ANT-XXVI/3-NS

Partial ribosomal gene sequences Ciliates in DHABs in the Mediterranean Sea

V4 18S rRNA amplicons from cDNA prepared from different microbialite sediment samples from Highborne Cay, B
V4 amplicons (18S rRNA) of eukaryotes obtained from cDNA prepared from various microbialite samples from Sha
ANT XXVI/3 - WE

a test of 16-18s universal primers using sponge samples

Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Protistan communities of the upper Arctic Ocean

Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af

ScholarOne Support 1-434/964-4100
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Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Comparative Microbial Analysis to Understand Taxonomic Fingerprints of Healthy Coral Holobiont Communities af
Expl.Ward Hunt Lake Dilution Experiment Eukaryotes RNA
Characterisation of uncultured marine eukaryotes in the Canada Basin
Chukchi Sea < 3 um Stn BS1
Chukchi Sea < 3 um Stn AN1
Chukchi Sea < 3 um Stn KS6
Chukchi Sea < 3 um Stn EC5
Chukchi Sea < 3 um Stn HLY
Chukchi Sea < 3 um Stn CC18
Chukchi Sea < 3 um Stn CN3
Chukchi Sea < 3 um Stn CN14
Chukchi Sea < 3 um Stn BCH?7
Chukchi Sea < 3 um Stn IE
Chukchi Sea < 3 um Stn HSN5
Chukchi Sea > 3 um Stn BS1
Chukchi Sea > 3 um Stn AN1
Chukchi Sea > 3 um Stn KS6
Chukchi Sea > 3 um Stn CHA1
Chukchi Sea > 3 um Stn EC5
Chukchi Sea > 3 um Stn HLY
Chukchi Sea > 3 um Stn CC18
Chukchi Sea > 3 um Stn CN3
Chukchi Sea > 3 um Stn CN14
Chukchi Sea > 3 um Stn BCH?7
Chukchi Sea >3 um Stn IE
Chukchi Sea > 3 um Stn HSN5

454
Sequences from three sediments
Design and validation of four primers for next-generation sequencing to target the 18S rRNA gene of gastrointesti
Design and validation of four primers for next-generation sequencing to target the 18S rRNA gene of gastrointesti
Design and validation of four primers for next-generation sequencing to target the 18S rRNA gene of gastrointesti
454 pyrosequencing of plankton community collected from Hamilton harbour
454 pyrosequencing of plankton community collected from Nanaimo harbour

ScholarOne Support 1-434/964-4100
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1

2 Investigating marine microbial plankon in meso-eutrophic ecosytem (Eastern English Channel)
2 JB121SF_DNA

5 JB121SF_RNA GoMA July 2010

6 JB121SCM_DNA GoMA July 2010
7 JB121SCM_RNA GoMA July 2010
g JB700SF_DNA GoMA July 2010
10 JB700SF_RNA GoMA July 2010
11 JB700SCM_DNA GoMA July 2010
12 JB700SCM_RNA GoMA July 2010
ﬁ JB601SF_DNA GoMA July 2010
15 JB601SF_RNA GoMA July 2010
16 JB601SCM_DNA GoMA July 2010
17 JB601SCM_RNA GoMA July 2010
ig NEC211SF_DNA

20 NEC211SF_RNA GoMA July 2010
21 NEC211SCM_DNA GoMA July 2010
22 NEC211SCM_RNA GoMA July 2010
gi NEF43SF_DNA GoMA July 2010
25 NEF43SF_RNA GoMA July 2010
26 NEF43SCM_DNA GoMA July 2010
27 NEF43SCM_RNA GoMA July 2010
28 NEF512SF_DNA GoMA July 2010
ég NEF512SF_RNA GoMA July 2010
31 NEF512SCM_DNA GoMA July 2010
32 NEF512SCM_RNA GoMA July 2010
33 Eukaryota Arctic Ocean Survey
34 .

35 Eukaryota Arctic Ocean Survey
36 Eukaryota Arctic Ocean Survey
37 Eukaryota Arctic Ocean Survey
38 Eukaryota Arctic Ocean Survey
39 .

40 Eukaryota Arctic Ocean Survey
a1 Eukaryota Arctic Ocean Survey
42 Eukaryota Arctic Ocean Survey
43 Eukaryota Arctic Ocean Survey
44 .

45 Eukaryota Arctic Ocean Survey
46 Eukaryota Arctic Ocean Survey
47 Eukaryota Arctic Ocean Survey
48 Eukaryota Arctic Ocean Survey
gg Eukaryota Arctic Ocean Survey
51 Eukaryota Arctic Ocean Survey
52 Eukaryota Arctic Ocean Survey
53 Eukaryota Arctic Ocean Survey
gg Eukaryota Arctic Ocean Survey
56 Eukaryota Arctic Ocean Survey
57 Eukaryota Arctic Ocean Survey
gg Eukaryota Arctic Ocean Survey
60

ScholarOne Support 1-434/964-4100
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Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
Eukaryota Arctic Ocean Survey
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Marine microbial community structure assessed from combined metagenomic analysis and ribosomal tag pyroseq

Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon
Protists in Havre-aux-Maisons Lagoon

Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

Marine picoplankton

Deep Hypersaline Anoxic Basin sediment microbial eukaryotes
Three years diversity in the Eastern English Channel

ScholarOne Support 1-434/964-4100
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1

2 Organism Name Instrument

2 marine metagenome 454 GS FLX

5 marine metagenome 454 GS FLX

6 marine metagenome 454 GS FLX

7 marine metagenome 454 GS FLX

g aquatic metagenome 454 GS FLX Titanium

10 aquatic metagenome 454 GS FLX Titanium

11 aquatic metagenome 454 GS FLX Titanium

12 aquatic metagenome 454 GS FLX Titanium

ﬁ, Alexandrium catenella 454 GS FLX

15 marine metagenome 454 GS FLX

16 marine metagenome 454 GS FLX

17 marine metagenome 454 GS FLX Titanium
8

ig marine metagenome 454 GS FLX Titanium

20 marine metagenome 454 GS FLX Titanium

21 uncultured marine eukaryote 454 GS FLX Titanium

22 uncultured marine eukaryote 454 GS FLX Titanium

gi metagenomes 454 GS FLX

25 metagenomes 454 GS FLX Titanium

26 Rotylenchulus reniformis 454 GS FLX Titanium

27 marine metagenome 454 GS FLX Titanium

gg metagenomes 454 GS FLX

30 metagenomes 454 GS FLX

31 metagenomes 454 GS FLX

32 metagenomes 454 GS FLX

22 metagenomes 454 GS FLX

35 metagenomes 454 GS FLX

36 metagenomes 454 GS FLX

37 metagenomes 454 GS FLX

gg metagenomes 454 GS FLX

40 metagenomes 454 GS FLX

a1 metagenomes 454 GS FLX

42 metagenomes 454 GS FLX

43 metagenomes 454 GS FLX

jg freshwater metagenome 454 GS FLX Titanium

46 freshwater metagenome 454 GS FLX Titanium

47 freshwater metagenome 454 GS FLX Titanium

48 uncultured marine eukaryote 454 GS FLX Titanium

gg marine metagenome 454 GS FLX Titanium

51 eukaryote XCL-2011 454 GS FLX Titanium

52 eukaryote XCL-2011 454 GS FLX Titanium

53 marine metagenome 454 GS FLX

o Suberites ficus 454 GS FLX Titanium

56 Isopora palifera 454 GS FLX Titanium

57 marine metagenome 454 GS FLX Titanium

58 Seriatopora hystrix 454 GS FLX Titanium

59

60

ScholarOne Support 1-434/964-4100
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Montipora digitata
Porites cylindrica
Isopora palifera
Isopora palifera
Isopora palifera
Montipora digitata
Montipora digitata
Montipora digitata
Seriatopora hystrix
Seriatopora hystrix
Seriatopora hystrix
Porites cylindrica
Porites cylindrica
Porites cylindrica
aquatic metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
gut metagenome

marine sediment metagenome

gut metagenome
gut metagenome
gut metagenome

freshwater metagenome

marine metagenome

FEMS Microbiology Ecology

454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX

454 GS FLX+

454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium

ScholarOne Support 1-434/964-4100
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marine metagenome
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
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454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
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uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
uncultured eukaryote
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
marine metagenome
aquatic metagenome
marine metagenome

marine sediment metagenome

marine metagenome
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454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX+

454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX Titanium
454 GS FLX

454 GS FLX

454 GS FLX Titanium
454 GS FLX Titanium

ScholarOne Support 1-434/964-4100
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Submitter

ESE

ESE

ESE

ESE

MPIMM

MPIMM

MPIMM

MPIMM

CNRS/UNIVERSITE MONTPELLIER 2
The Chinese University of Hong Kong
The Chinese University of Hong Kong
Universite Laval

Universite Laval

Universite Laval

Inha univ.

Inha univ.

University of Kaiserslautern
University of Kaiserslautern

Alabama A&M University

Universite Laval

MBL

MBL

MBL

MBL

MBL

MBL

MBL

MBL

MBL

MBL

MBL

MBL

MBL

Université Laval

Université Laval

Université Laval

Alfred Wegener Institute for Polar and Marine Rese
University of Kaiserslautern

Woods Hole Oceanographic Institution
Woods Hole Oceanographic Institution
Alfred Wegener Institute for Polar and Marine Rese
hkust-kaust

University of Sydney

Laval University

University of Sydney

ScholarOne Support 1-434/964-4100
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Study Accession

ERP001773
ERP001773
ERP001773
ERP001773
ERP002513
ERP002513
ERP002513
ERP002513
SRP000647
SRP000936
SRP000936
SRP005272
SRP005272
SRP005272
SRP006126
SRP006126
SRP003169
SRP003169
SRP008476
SRP013740
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP013874
SRP014823
SRP014823
SRP014823
SRP016049
SRP017187
SRP017332
SRP017334
SRP016049
SRP021898
SRP022083
SRP022176
SRP022083
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University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
University of Sydney
Universit* Laval
Universite Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
AWI

University of Bergen
University of Vermont
University of Vermont
University of Vermont

RCEES, Chinese Academy of Sciences
RCEES, Chinese Academy of Sciences

FEMS Microbiology Ecology

SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP022083
SRP027540
SRP029291
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP029300
SRP032538
SRP033298
SRP034591
SRP034591
SRP034591
SRP038053
SRP039005
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Universite du Littoral Cote d'Opale

Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
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SRP039908
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040423
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
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Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval
Université Laval

Universite du Littoral Cote d'Opale

Universié Laval
Universié Laval
Universié Laval
Universié Laval
Universié Laval
Universié Laval
Universié Laval
Universié Laval
Universié Laval
Universié Laval

Institute of Shandong River Wetlands
Alfred Wegener Instiute

Woods Hole Oceanographic Institution
Universite du Littoral Cote d'Opale
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SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP040734
SRP039908
SRP043016
SRP043016
SRP043016
SRP043016
SRP043016
SRP043016
SRP043016
SRP043016
SRP043016
SRP043016
SRP045389
SRP048617
SRP049010
SRP039908
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1

2 Study Title

2 Accuracy of protist diversity assessments: morphology compared to cloning and direct pyrosequencing of 18S rRN
5 Accuracy of protist diversity assessments: morphology compared to cloning and direct pyrosequencing of 18S rRN
6 Accuracy of protist diversity assessments: morphology compared to cloning and direct pyrosequencing of 18S rRN
7 Accuracy of protist diversity assessments: morphology compared to cloning and direct pyrosequencing of 18S rRN
g Microbial community response during the iron fertilization experiment LOHAFEX

10 Microbial community response during the iron fertilization experiment LOHAFEX

11 Microbial community response during the iron fertilization experiment LOHAFEX

12 Microbial community response during the iron fertilization experiment LOHAFEX

ﬁ, Alexandrium catenella

15 Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 sequencing-|
16 Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 sequencing-|
17 Microbial Community Diversity Response to a Changing Arctic Ocean

ig Microbial Community Diversity Response to a Changing Arctic Ocean

20 Microbial Community Diversity Response to a Changing Arctic Ocean

21 Marine microbial eukaryote community analysis in Korea

22 Marine microbial eukaryote community analysis in Korea

23 Error rate of 454 GS FLX sequenced V4 and V9 PCR amplicons of various protists

gg Error rate of 454 GS FLX sequenced V4 and V9 PCR amplicons of various protists

26 Rotylenchulus reniformisGenome sequencing

27 Arctic sea ice Targeted Locus (Loci)

28 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

ég Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

31 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

32 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

33 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

gg Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

36 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

37 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

38 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

Zg Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

41 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

42 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

43 Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

jg Lake A protist communities

46 Lake A protist communities

47 Lake A protist communities

48 Marine eukaryotic protists Metagenome

gg Partial ribosomal RNA gene of DHAB Ciliates

51 Highborne Bay eukaryotic small subunit ribosomal RNA diversity

52 Shark Bay eukaryotic small subunit ribosomal RNA diversity

53 Marine eukaryotic protists Metagenome

gg Sponge metagenome

56 Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
57 Protistan communities of the upper Arctic Ocean (18S SSU-rRNA Targeted Locus)

gg Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
60
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Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Reef-building coral species harbour Chromera velia and apicomplexan “type-N" (cf. Gemmocystis cylindrus) on the
Ward Hunt Lake Dilution Experiment Eukarya

Uncultured marine eukaryotes Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Surface ocean Targeted Locus (Loci)

Gut content of salps Targeted Locus (Loci)

Environmental eukaryotes Metagenome
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