V. L. Mitchell, Health risks associated with chronic exposures to arsenic in the environment, Reviews in Mineralogy and geochemistry 79, pp.435-449, 2014.

N. T. Basta and A. Juhasz, Using in vivo bioavailability and/or in vitro gastrointestinal bioaccessibility testing to adjust human exposure to arsenic from soil ingestion, Reviews in Mineralogy and geochemistry 79, pp.451-472, 2014.

G. Morin and C. G. , Arsenic in Soils, Mine Tailings, and Former Industrial Sites, Elements, vol.2, issue.2, pp.97-101, 2006.
DOI : 10.2113/gselements.2.2.97

URL : https://hal.archives-ouvertes.fr/hal-00084975

C. Casiot, S. Lebrun, G. Morin, O. Bruneel, J. C. Personné et al., Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage, Science of The Total Environment, vol.347, issue.1-3, pp.122-130, 2005.
DOI : 10.1016/j.scitotenv.2004.12.039

URL : https://hal.archives-ouvertes.fr/hal-00020206

A. M. Sarmiento, A. Delvalls, J. M. Nieto, M. J. Salamanca, and M. A. Caraballo, Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain), Science of The Total Environment, vol.409, issue.22, pp.4763-4771, 2011.
DOI : 10.1016/j.scitotenv.2011.07.043

D. B. Johnson and K. B. Hallberg, Acid mine drainage remediation options: a review, Science of The Total Environment, vol.338, issue.1-2, pp.3-14, 2005.
DOI : 10.1016/j.scitotenv.2004.09.002

P. Palfy, E. Vircikova, and L. Molnar, Processing of arsenic waste by precipitation and solidification, Waste Management, vol.19, issue.1, pp.55-64, 1999.
DOI : 10.1016/S0956-053X(99)00014-8

L. Carlson, J. M. Bigham, U. Schwertmann, A. Kyek, and F. Wagner, Scavenging of As from Acid Mine Drainage by Schwertmannite and Ferrihydrite:?? A Comparison with Synthetic Analogues, Environmental Science & Technology, vol.36, issue.8, pp.1712-1719, 2002.
DOI : 10.1021/es0110271

G. Morin, C. Casiot, O. Bruneel, J. Personne, F. Elbaz-poulichet et al., Bacterial formation of tooeleite and mixed Arsenic(III) or Arsenic(V)-Iron(III) gels in the carnoules acid mine drainage, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00085109

F. Maillot, G. Morin, F. Juillot, O. Bruneel, C. Casiot et al., Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoul??s acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation, Geochimica et Cosmochimica Acta, vol.104, pp.310-329, 2013.
DOI : 10.1016/j.gca.2012.11.016

M. Egal, C. Casiot, G. Morin, M. Parmentier, O. Bruneel et al., Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water, Chemical Geology, vol.265, issue.3-4, pp.432-441, 2009.
DOI : 10.1016/j.chemgeo.2009.05.008

URL : https://hal.archives-ouvertes.fr/hal-00515293

M. Egal, C. Casiot, G. Morin, F. Elbaz-poulichet, M. A. Cordier et al., An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France), Applied Geochemistry, vol.25, issue.12, pp.25-1949, 2010.
DOI : 10.1016/j.apgeochem.2010.10.012

D. K. Newman, T. J. Beveridge, and F. M. , Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum, Applied and environmental microbiology, vol.63, issue.5, pp.2022-2028, 1997.

C. S. Demergasso, C. D. Guillermo, E. G. Lorena, P. Mur, J. J. Pedros-alio et al., Microbial Precipitation of Arsenic Sulfides in Andean Salt Flats, Geomicrobiology Journal, vol.15, issue.2, 2007.
DOI : 10.1016/S0016-7037(96)00320-1

E. O. Omoregie, R. Couture, P. Van-cappellen, C. L. Corkhill, J. M. Charnock et al., Arsenic Bioremediation by Biogenic Iron Oxides and Sulfides, Applied and Environmental Microbiology, vol.79, issue.14, pp.79-4325, 2013.
DOI : 10.1128/AEM.00683-13

L. Rodriguez-freire, R. Sierra-alvarez, R. Root, J. Chorover, and J. A. Field, Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions, Water Research, vol.66, pp.242-253, 2014.
DOI : 10.1016/j.watres.2014.08.016

L. Rodriguez-freire, S. E. Moore, R. Sierra-alvarez, R. Root, J. Chorover et al., Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor, Biotechnology and Bioengineering, vol.40, issue.3, pp.522-530, 2015.
DOI : 10.1002/bit.25825

J. A. Saunders, M. Lee, M. Shamsudduha, P. Dhakal, A. Uddin et al., Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters, Applied Geochemistry, vol.23, issue.11, pp.3205-3214, 2008.
DOI : 10.1016/j.apgeochem.2008.07.002

S. Kimura, K. B. Hallberg, and D. B. Johnson, Sulfidogenesis in Low pH (3.8???4.2) Media by a Mixed Population of Acidophilic Bacteria, Biodegradation, vol.129, issue.2, pp.159-167, 2006.
DOI : 10.1007/s10532-005-3050-4

D. B. Johnson and K. B. Hallberg, Carbon, Iron and Sulfur Metabolism in Acidophilic Micro-Organisms, Adv. Microbial. Physiol, vol.54, pp.201-255, 2008.
DOI : 10.1016/S0065-2911(08)00003-9

D. B. Johnson, E. Jameson, O. F. Rowe, K. Wakerman, and K. B. Hallberg, Sulfidogenesis at Low pH by Acidophilic Bacteria and its Potential for the Selective Recovery of Transition Metals from Mine Waters, Advanced Materials Research, vol.71, issue.73, pp.71-73, 2009.
DOI : 10.4028/www.scientific.net/AMR.71-73.693

J. A. Saunders, M. Lee, . L. Wolf, C. M. Morton, Y. Feng et al., Geochemical, Microbiological, and Geophysical Assessments of Anaerobic Immobilization of Heavy Metals, Bioremediation Journal, vol.95, issue.1, pp.33-48, 2005.
DOI : 10.1099/00207713-47-4-1134

D. Alazard, M. Joseph, F. Battaglia-brunet, J. Cayol, and B. Ollivier, Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments, Extremophiles, vol.129, issue.73, pp.305-317, 2010.
DOI : 10.1007/s00792-010-0309-4

URL : https://hal.archives-ouvertes.fr/hal-00756278

I. Sanchez-andrea, A. J. Stams, S. Hedrich, I. Nancucheo, and D. B. Johnson, Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments, Extremophiles, vol.47, issue.11, pp.39-47, 2015.
DOI : 10.1007/s00792-014-0701-6

O. V. Karnachuk, A. V. Mardanov, M. R. Avakyan, V. V. Kadnikov, M. Vlasova et al., Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment, FEMS Microbiology Letters, vol.362, issue.4, pp.1-3, 2015.
DOI : 10.1093/femsle/fnv007

F. Battaglia-brunet, C. Crouzet, A. Burnol, S. Coulon, D. Morin et al., Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor, Water Research, vol.46, issue.12, pp.3923-3933, 2012.
DOI : 10.1016/j.watres.2012.04.035

URL : https://hal.archives-ouvertes.fr/hal-00693293

C. K. Jackson, I. Koch, and R. K. , Mechanisms of dissolved arsenic removal by biochemical reactors: A bench- and field-scale study, Applied Geochemistry, vol.29, pp.174-181, 2013.
DOI : 10.1016/j.apgeochem.2012.11.012

J. Lee, M. Kim, B. Yoo, N. V. Myung, J. Maeng et al., Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp, 2007.

E. Resongles, C. Casiot, F. Elbaz-poulichet, R. Freydier, O. Bruneel et al., Fate of Sb(v) and Sb(iii) species along a gradient of pH and oxygen concentration in the Carnoul??s mine waters (Southern France), Environmental Scienc-Processes & impacts, pp.15-1536, 2013.
DOI : 10.1039/c3em00215b

F. Battaglia-brunet, D. Morin, S. Coulon, and C. Joulian, Bioprecipitation of Arsenic Sulphide at Low pH, Advanced Materials Research, vol.71, issue.73, pp.71-73, 2009.
DOI : 10.4028/www.scientific.net/AMR.71-73.581

B. Planer-friedrich, E. Suess, A. C. Scheinost, and D. Wallschläger, Arsenic Speciation in Sulfidic Waters: Reconciling Contradictory Spectroscopic and Chromatographic Evidence, Analytical Chemistry, vol.82, issue.24, pp.10228-10235, 2010.
DOI : 10.1021/ac1024717

S. Stauder, B. Raue, and F. Sacher, Thioarsenates in Sulfidic Waters, Environmental Science & Technology, vol.39, issue.16, pp.5933-5939, 2005.
DOI : 10.1021/es048034k

A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Physical Review B, vol.58, issue.12, pp.7565-7576, 1998.
DOI : 10.1103/PhysRevB.58.7565

D. J. Mullen and N. W. , Refinement of the crystal structures of realgar, AsS and orpiment, As2S3. Zeitschrift für Kristallographie -Crystalline Materials, vol.136, pp.1-6, 1972.

C. Hejni, R. Sagl, D. M. Tobbens, R. Miletich, M. Wildner et al., Crystal-structure properties and the molecular nature of hydrostatically compressed realgar, Physics and Chemistry of Minerals, vol.25, issue.Suppl. 1, pp.399-412, 2012.
DOI : 10.1007/s00269-012-0495-y

F. C. Hawthorne, The hydrogen positions in scorodite, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.32, issue.10, pp.2891-2892, 1976.
DOI : 10.1107/S0567740876009138

G. Morin, G. Rousse, and E. Elkaim, Crystal structure of tooeleite, Fe6(AsO3)4SO4(OH)4{middle dot}4H2O, a new iron arsenite oxyhydroxy-sulfate mineral relevant to acid mine drainage, American Mineralogist, vol.92, issue.1, pp.193-197, 2007.
DOI : 10.2138/am.2007.2361

F. Delavat, M. Lett, and L. D. , Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches, Biology Direct, vol.7, issue.1, p.28, 2012.
DOI : 10.1128/AEM.00654-11

G. B. Street, The structure and thermal properties of synthetic realgar (As4S4), Journal of Inorganic and Nuclear Chemistry, vol.32, issue.12, pp.3769-3774, 1970.
DOI : 10.1016/0022-1902(70)80550-4

H. G. Dill, The geology of aluminium phosphates and sulphates of the alunite group minerals: a review, Earth-Science Reviews, vol.53, issue.1-2, pp.35-93, 2001.
DOI : 10.1016/S0012-8252(00)00035-0

G. Pe-piper and D. L. , Early diagenetic origin of Al phosphatesulfate minerals (woodhouseite and crandallite series) in terrestrial sandstones, American Mineralogist, vol.9089, pp.1434-1441, 2005.

M. E. Muhe, G. Morin, L. Scheer, L. Pape, P. Esteve et al., Arsenic(V) incorporation in vivianite during microbial reduction of arsenic(V)-bearing biogenic Fe(III) (oxyhyd)oxides, Environmental Science & technology, 2016.

J. Xu, M. Murayama, C. M. Roco, H. Veeramani, F. M. Michel et al., Highly-defective nanocrystals of ZnS formed via dissimilatory bacterial sulfate reduction: A comparative study with their abiogenic analogues, Geochimica et Cosmochimica Acta, vol.180, 2016.
DOI : 10.1016/j.gca.2016.02.007

I. Nancucheo and D. B. Johnson, Removal of sulfate from extremely acidic mine waters using low pH sulfidogenic bioreactors, Hydrometallurgy, vol.150, pp.222-226, 2014.
DOI : 10.1016/j.hydromet.2014.04.025

L. E. Eary, The solubility of amorphous As2S3 from 25 to 90??C, Geochimica et Cosmochimica Acta, vol.56, issue.6, pp.2267-2280, 1992.
DOI : 10.1016/0016-7037(92)90188-O

J. Miot, G. Morin, F. Skouri-panet, C. Ferrard, A. Poitevin et al., Cells Exposed to As(V), Environmental Science & Technology, vol.43, issue.9, pp.3315-3321, 2009.
DOI : 10.1021/es802833s

R. N. Ledbetter, S. A. Connon, A. L. Neal, A. Dohnalkova, and T. S. Magnuson, Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord basin Applied and environmental microbiology, 2007.

D. Rickard and L. G. , Chemistry of Iron Sulfides, Chemical Reviews, vol.107, issue.2, pp.514-562, 2007.
DOI : 10.1021/cr0503658

R. T. Wilkin, D. Wallschlager, and F. R. , Speciation of arsenic in sulfidic waters, Geochemical Transactions, vol.4, issue.1, pp.1-7, 2003.
DOI : 10.1186/1467-4866-4-1

L. Xu, X. Wu, W. Shaofeng, Z. Yuan, F. Xiao et al., Speciation change and redistribution of arsenic in soil under anaerobic microbial activities, Journal of Hazardous Materials, vol.301, pp.538-546, 2016.
DOI : 10.1016/j.jhazmat.2015.09.030