
HAL Id: hal-01384153
https://hal.sorbonne-universite.fr/hal-01384153

Submitted on 19 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Opacity for Linear Constraint Markov Chains
Béatrice Bérard, Olga Kouchnarenko, John Mullins, Mathieu Sassolas

To cite this version:
Béatrice Bérard, Olga Kouchnarenko, John Mullins, Mathieu Sassolas. Opacity for Linear Constraint
Markov Chains. [Research Report] LIP6 UMR 7606 UPMC Sorbonne Universités, France; Univ. de
Franche-Comté; Ecole Polytechnique de Montréal; LACL, Université Paris-Est. 2016. �hal-01384153�

https://hal.sorbonne-universite.fr/hal-01384153
https://hal.archives-ouvertes.fr

Opacity for Linear Constraint Markov Chains?

Béatrice Bérard1 and Olga Kouchnarenko2 and John Mullins3 and
Mathieu Sassolas4

1 Sorbonne Université, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
2 Université de Franche-Comté, FEMTO-ST, CNRS UMR 6174, Inria/NGE,

Besançon, France
3 Dept. of Computer & Software Eng., École Polytechnique de Montréal

Montreal (Quebec), Canada, H3C 3A7
4 Université Paris-Est, LACL, Créteil, France

Abstract. On a partially observed system, a secret ϕ is opaque if an
observer cannot ascertain that its trace belongs to ϕ. We consider specifi-
cations given as Constraint Markov Chains (CMC), which are underspec-
ified Markov chains where probabilities on edges are required to belong
to some set. The nondeterminism is resolved by a scheduler, and opacity
on this model is defined as a worst case measure over all implementa-
tions obtained by scheduling. This measures the information obtained by
a passive observer when the system is controlled by the smartest sched-
uler in coalition with the observer. When restricting to the subclass of
Linear CMC, we compute (or approximate) this measure and prove that
refinement of a specification can only improve opacity.

1 Introduction

Context and motivation. When modeling complex systems, a top-down
approach allows gradually specifying various system requirements, while
preserving some behavioral properties, like safety, reachability, and live-
ness under some conditions.

Security requirements, which are not behavioral ones [1], may not
fare well under refinement, unless tailored specially to do so, as in [2].
Several known security properties such as noninference or anonymity can
be encoded in the framework of opacity [3,4,2]. In this context, an external
observer tries to discover whether a predicate (given as an ω-regular set)
holds by partially observing the system through a projection of its actions.

? Partially supported by a grant from Coopération France-Québec, Service Coopé-
ration et Action Culturelle 2012/26/SCAC (French Government), the NSERC Dis-
covery Individual grant No. 13321 (Government of Canada), the FQRNT Team
grant No. 167440 (Quebec’s Government) and the CFQCU France-Quebec Coop-
erative grant No. 167671 (Quebec’s Government). This research has been partially
done while this author was visiting the LIP6, Université Pierre & Marie Curie.

A system is opaque if the attacker fails to discover this information. In
the possibilistic setting, a violation of opacity captures the existence of
at least one perfect leak.

In probabilistic models like Discrete Time Markov Chains (DTMCs),
naturally random events such as faults or message transmission failure,
can be taken into account. Opacity was extended in this setting [5,6,7] to
provide various measures of what is disclosed by observation.

Consider for instance the two systems in Fig. 1(a)-(b), which are
DTMCs with the addition of labels on states (indicated inside). We as-
sume that the occurrence of b must be kept secret and that all labels
except b are observable. In this case, the only runs disclosing the secret
are those observed by adω, since every such run betrays the occurrence of
b. The probability of disclosure is 1/4 in A1 while it is 3/4 in A2, hence
A1 is more secure than A2. Our aim is to establish sufficient conditions
on systems like A1 and A2, that can be compared, for one of them to be
more secure than the other.

In the process of system modeling, it is common practice to use under-
specified models as first steps of specification. A first approach is to con-

a

b c

b

c

d

1
4 1

2

1
4

1

1

1

1

1

(a) A1

a

b c

b

c

d

3
4 1

8

1
8

1

1

1

1

1

(b) A2

a

b c

b

c

d

[1
8
, 8
9
]

[1
8
, 2
3
]

[1
9
, 1
3
]

[1, 1]

[1, 1]

[1, 1]

[1, 1]

[1, 1]

(c) S

Fig. 1. Probabilistic systems A1 or A2 implementing underspecified sys-
tem S.

sider sub-stochastic models where transition probabilities need not sum
up to 1. In this framework, the notions of satisfaction and simulation
were extensively studied in [8]. The second approach is to introduce non-
determinism in the model to describe environment choices [9,10,11,12,13,7,14].
These models have also been studied in relation to the refinement pro-
cess [9], with the particular case of Interval Markov Chains (IMCs) where
the transitions are equipped with probability bounds in the form of inter-
vals, as done in Fig. 1(c). For example, both systems of Fig. 1(a)-(b) could
have been derived from the single underspecified system S of Fig. 1(c),
with the same structure but imprecise probabilities.

Unfortunately, while closure under conjunction is a nice feature for
specification formalisms, IMCs do not have this property. This is shown
in [12], where Constraint Markov Chains (CMCs), first introduced in [9],
are considered for the specification of finite state processes, and proved to
provide a more robust model. In a CMC, the family of intervals associated
with a state is replaced by a given (possibly infinite) set of distributions.

Scheduling is an effective way to obtain implementations of a CMC:
at each step, a scheduler provides a distribution belonging to the given
set, thus producing a (possibly infinite) DTMC on-the-fly. In the case of
opacity, a scheduler represents a strategy of an agent inside the system,
trying to disclose as much information as possible to a passive observer.
Several works used schedulers to evaluate disclosure: [7] in the context of
(fully specified) Markov Decision Processes and [15] for IMCs.

Contributions. We extend the latter work, investigating opacity for CMCs.
As before, disclosure is defined in the worst case scenario, as the supre-
mum of the disclosure for all scheduled implementations. This measures
the information obtained by a passive observer when the system is con-
trolled by the smartest scheduler in coalition with the observer.

However, without an explicit description of the given probability sets,
algorithmic questions cannot be solved on CMCs. Therefore, we consider
here a subclass called Linear Constraint Markov Chains (LCMCs), where
the set of distributions associated with a state is defined by linear in-
equalities. This class is closed under conjunction and contains IMCs.

We first show how to compute the disclosure for a subclass of LCMCs,
where no transition can be completely blocked by the scheduler. In the
general case, we give an overapproximation for bounded memory sched-
ulers. We then establish monotonicity of the disclosure for LCMCs: re-
fining an LCMC can only improve the opacity of all implementations
obtained by scheduling.

Organization of the paper. After short preliminaries on probabilistic tran-
sition systems and opacity (Section 2), we recall in Section 3 the back-
ground on Constraint Markov Chains, with the associated refinement re-
lations, and we define probabilistic disclosure in this contex. We show
how to compute this measure for a restricted case of LCMCs in Sec-
tion 4, with an approximation scheme for the general case. Finally, we
prove monotonicity of opacity under refinement in Section 5.

2 Probabilistic transition systems and opacity

The set of natural numbers is denoted by N and the set of rational
numbers by Q. The composition of relations R2 and R1 is defined by
R2 ◦R1 = {(x, z) | ∃y, (x, y) ∈ R1 ∧ (y, z) ∈ R2}. Given a finite alphabet
Σ, we denote by Σ∗ (resp. Σω) the set of finite (resp. infinite) words
over Σ, with Σ∞ = Σ∗ ∪ Σω and ε the empty word. We denote by |w|
the length of word w in N ∪ {+∞} with the same notation |E| for the
cardinality of a set E.

Given a countable set Z, a discrete distribution is a mapping µ : Z →
[0, 1] such that

∑
z∈Z µ(z) = 1. The support of µ is supp(µ) = {z ∈

Z | µ(z) > 0}. The set of all discrete distributions on Z is denoted by
Dist(Z). When dealing with a joint distribution µ on domain Z1 × Z2,
we write µ(Y1, Y2) =

∑
y1∈Y1,y2∈Y2 µ(y1, y2) for Y1 ⊆ Z1 and Y2 ⊆ Z2, and

we use as shorthands µ(y1, Y2) = µ({y1}, Y2) and µ(Y1, y2) = µ(Y1, {y2}).

2.1 Probabilistic Labelled Transition Systems and their
languages

The secret to be protected from disclosure is described by a Determin-
istic Parity Automaton (DPA, see example in Fig. 2). Implementations
are given by Probabilistic Transition Systems (PTSs). They are classi-
cal Discrete Time Markov Chains, with the addition of state labeling [8],
restricting the processes of [9] with a countable set of states.

Definition 2.1 (Deterministic Parity Automaton). A deterministic
parity automaton (DPA) over finite alphabet Σ is a tuple A = (Q, q0, θ, F),
where Q is a finite set of states, q0 ∈ Q is an initial state, θ : Q×Σ → Q
is a transition function, and F is a mapping from Q to a finite set of
colors {1, . . . , k}.

A run of A on a word w = a1a2 · · · ∈ Σω is an infinite sequence
ρ = q0q1 · · · ∈ Qω such that for all i ≥ 0, qi+1 = θ(qi, ai+1). For such a

q0 q1 q2
a b

Σ

Fig. 2. A DPA for ϕb = abΣω with F (q0) = F (q2) = 1 and F (q2) = 2.

run ρ, we define Inf(ρ) as the set of states appearing infinitely often in the
sequence. The run is accepting if min{F (q) | q ∈ Inf(ρ)} is even. In this
case, the corresponding word is accepted by A and L(A) is the subset of
Σω of words accepted by A. A subset K of Σω is ω-regular if there is an
automaton A such that K = L(A).

Definition 2.2 (Probabilistic Transition Systems). A probabilistic
transition system (PTS) over alphabet Σ is a tuple A = (Q, qinit, ∆, L)
where Q is a countable set of states, with qinit ∈ Q the initial state,
∆ : Q → Dist(Q) is a mapping associating with any state q ∈ Q a
distribution ∆(q) over Q, with finite support, and L : Q → Σ is the
labeling function on states.

PTSs can be seen as Discrete Time Markov Chains where the states
are equipped with labels in Σ. While our presentation uses an alphabet
Σ of labels for simplicity, it is always possible as done in [9,12] to consider
the case where Σ = 2A for a set A of atomic propositions.

A (finite or infinite) run of A starting from state q ∈ Q is a sequence
of states ρ = q0q1q2 . . . such that q0 = q and for each i, 0 ≤ i < |ρ|,
∆(qi)(qi+1) > 0. When the run is finite ρ = q0q1 . . . qn, we note qn = lst(ρ).
The trace of ρ is the word tr(ρ) = L(q0)L(q1) . . . ∈ Σ∞. We denote by
Runsq(A) the set of infinite runs starting from q and we set Runs(A) =
Runsqinit(A), and Tr(A) = {tr(ρ) | ρ ∈ Runs(A)}, the set of traces
of A. We also define FRunsq(A) the set of finite runs starting from q,
and similarly FRuns(A) = FRunsqinit(A) and FTr(A) = {tr(ρ) | ρ ∈
FRuns(A)}, the subset of Σ∗ of finite traces of A.

Recall [16] that a probability measure PA can be defined on Runs(A):
measurable sets are generated by cones, where the cone Cρ associated
with a finite run ρ = q0q1 . . . qn is the subset of infinite runs in Runs(A)
having ρ as prefix. The probability of Cρ is PA(Cρ) =

∏n−1
i=0 ∆(qi)(qi+1).

The cone of a word w ∈ Σ∗ is defined by Cw =
⋃
ρ∈tr−1(w)Cρ.

2.2 Probabilistic Opacity

The original definition of opacity was given in [4] for (non probabilistic)
transition systems, w.r.t. some observation functionO and some predicate
ϕ (the secret) on the runs of the system.

For an ω-regular set ϕ ⊆ Σω, a run ρ of a PTS A satisfies ϕ if its trace
belongs to ϕ. We consider an observation function defined as a morphism
O : Σ∞ → Σ∞o , based on a mapping π : Σ → Σo ∪ {ε} for a finite
alphabet Σo. For instance, if Σ = 2A for a set A of atomic propositions,
we can define a subset Ao of observable propositions. Then, by setting
Au = A \ Ao, Σo = 2Ao , π can be defined by π(σ) = ε for σ ∈ 2Au and
π(σ) = σ ∩Ao otherwise.

The set ϕ is opaque with respect to A and O if each time a word
satisfies ϕ, another word with the same observation does not. More pre-
cisely, the set of words violating this condition is defined by V(A,O, ϕ) =
(Tr(A) ∩ ϕ) \ (O−1(O(Tr(A) \ ϕ))) and ϕ is opaque if V(A,O, ϕ) = ∅.

This set is used in [17,5] to define various notions of probabilistic opac-
ity. For instance, in [5], one of the measures corresponds to the particular
case where ϕ is the set of finite traces of runs reaching a fixed set of secret
states. The boolean property is extended by defining the probability of
this set, which is measurable since ϕ is ω-regular:

Definition 2.3 (Probabilistic Disclosure). Let A be a PTS, O an
observation function and ϕ an ω-regular predicate. The probabilistic dis-
closure of ϕ in A for O is Disc(A,O, ϕ) = PA(V(A,O, ϕ)).

For instance, recall systems A1 and A2 of Fig. 1. The secret predicate
in this case is the set ϕb = abΣω, accepted by the DPA in Fig. 2, and
the observation function is the projection π onto {a, c, d}ω. This predi-
cate is not opaque since the run abdω discloses the occurrence of b. This
is measured by the disclosure: Disc(A1, π, ϕb) = PA1(abdω) = 1

4 and
Disc(A2, π, ϕb) = PA2(abdω) = 3

4 .

Remark that disclosure only measures probabilities of the observer
being sure that the run is in the secret. For example, one can model
anonymity of an agent α initiating some protocol by defining ϕα as the
set of all runs initiated by α. Anonymity of α is then equivalent to opacity
of ϕα. In the case where anonymity is not guaranteed, disclosure provides
a measure of the threat. In the case where anonymity holds, this measure
will be 0 and does not give any insight on the “strength” of anonymity.
Other notions measuring this strength were proposed in [18,19] and quan-
titative opacity for partial disclosure of the secret have also been defined

in [6], although they are not linear hence do not fare well under standard
optimization techniques.

For two PTSs A1 and A2 over the same alphabet Σ, predicate ϕ
and observation function O, we say that A1 is more opaque than A2 if
Disc(A1,O, ϕ) ≤ Disc(A2,O, ϕ).

3 Constraint Markov Chains, Opacity and Refinement

3.1 Constraint Markov Chains and Opacity

Constraint Markov chains (CMCs) were first introduced in [9] as a spec-
ification formalism and further studied in [12]. They generalize Interval
Markov Chains (IMCs), that were also investigated in [11,13,15] and ex-
tended with parameters in [14] with a focus on the consistency problem,
i.e., the problem of existence of an implementation satisfying a given
specification.

Definition 3.1 (Constraint Markov Chains). A Constraint Markov
Chain (CMC) over alphabet Σ is a tuple S = (S, sinit, T, λ) where S is
a finite set of states, with sinit ∈ S the initial state, T : S → 2Dist(S)

associates with any state s ∈ S a set T (s) of distributions over S, and
λ : S → 2Σ is the labeling function.

The class of CMCs is very general and benefits from nice closure
properties as shown in [12]. However, without an explicit description of
the sets T (s) for s ∈ S, algorithmic questions cannot be solved. For our
purpose, we simply consider the subclass of Linear CMCs, where each
set T (s) is defined by a conjunction of linear inequalities and the label
λ(s) is a singleton. In this case, with a slight abuse of notation, we note
λ(s) = a instead of λ(s) = {a}, as done in Fig. 1(c). By construction,
Linear CMCs are closed under conjunction.

More precisely, a linear constraint over S is of the form
∑

s∈S αsxs ./
β, with all αs and β in Q, ./∈ {<,≤,=,≥, >}, and each xs is a variable
for state s. A linear probability set on S is a subset of Dist(S) where
the distributions µ = (µ(s))s∈S are the solutions of a system of linear
constraints over S. Remark that the conditions for µ to be a distribu-
tion are also described by linear constraints:

∑
s∈S xs = 1 and, for all s,

0 ≤ xs ≤ 1; these constraints are implicit in the sequel. Thus a linear
probability set is a linear set in R|S| in the usual sense. It is also a convex
polytope. We denote by L(S) the set of linear probability sets on S.

Definition 3.2 (Linear CMC). A Linear CMC (or shortly LCMC)
is a CMC S = (S, sinit, T, λ) where for each s ∈ S, T (s) ∈ L(S) and
|λ(s)| = 1.

For IMCs, each set T (s) is defined by a family (I(s, s′))s′∈S of inter-
vals in [0, 1] and contains all distributions µ such that for each s′ ∈ S,
µ(s′) ∈ I(s, s′). This can be expressed as a system of linear inequalities by
introducing the lower and upper bounds of the intervals. Note that any
PTS can be seen as an IMC (hence as an LCMC), where each interval is
reduced to a point. For convenience, we keep the interval notation when
applicable.

For example, consider the LCMC of Fig. 3, representing a simple
system. For graphical depiction, an edge from s to s′ is labeled by the
variable for xs′ in the system of linear constraints defining T (s); as usual,
absence of edge (s, s′) means xs′ = 0 is a constraint of T (s). The aim
of this system is to achieve Success, but there can be errors (which may
be recovered) and failures (which cannot). The probabilities underlying
the behavior of the system are not fixed, although a certain number of
constraints are known. For example, the probability of a recoverable error
is at least twice the one of an unrecoverable one, as expressed by the
equation x2 ≥ 2x3, and when trying to recover from an error, there is a
probability of success exceeding the probability of definite failure by 1

4 .

Idle

q0

Error

q2

Recover

q4

Success

q1

Failure

q3

x1

x2

x3

1

y2

y1

y3

1

1

x2 ≥ 2x3

x2 + x3 ≤ 1
2

y1 > y3 +
1
4

Fig. 3. An LCMC which is not a conjunction of IMCs.

Note that it is not an IMC. Indeed, assume that the constraints on
T (q0) can be expressed by intervals. Any values for x1, x2, and x3 that
satisfy the linear constraints should be in the intervals. In particular, it is
the case for the three tuples of values for (x1, x2, x3): (1, 0, 0), and (12 ,

1
2 , 0),

(12 ,
1
3 ,

1
6). So it must be the case that [12 , 1] ⊆ I(q0, q1), [0, 12] ⊆ I(q0, q2),

and [0, 16] ⊆ I(q0, q3). Hence the distribution defined by x1 = 5
6 , x2 = 0,

x3 = 1
6 is within the bounds of the intervals, although it does not satisfy

the constraint x2 ≥ 2x3, which is a contradiction.
In addition, it is neither the result of conjunction of several IMCs,

as those only yield constraints where coefficients are positive, hence con-
straint x2 ≥ 2x3 (which is actually x2 − 2x3 ≥ 0) cannot be expressed.

Several semantics can be given to CMCs with respect to the set of
PTSs they specify. The simplest one corresponds to first choosing for
each state s a distribution belonging to T (s), thus producing a PTS (the
implementation), with the same structure as the CMC (the specification).
This was done for IMCs in [11,13] and called the Uncertain Markov Chain
semantics. A richer semantics consists in introducing a scheduler, choosing
the distribution at each step to obtain an implementation, as in a Markov
Decision Process (MDP). This was also defined in [11] for IMCs and called
IMDP for Interval Markov Decision Process. Finally, the most general
semantics corresponds to the satisfaction relation from [9,12], restricted
in [12] to finite state processes. This relation can be obtained from the
refinement defined below in Section 3.2.

We consider here the MDP semantics. A run of S starting from a state
s is a sequence s

µ1−→ s1
µ2−→ . . . where si ∈ S and each µi is a distribution

over S such that ∀s ∈ S, µi ∈ T (si−1). As before, we denote by Runss(S)
the set of runs starting from s, we set Runs(S) = Runssinit(S), FRuns(S)

is the set of finite runs of S starting from sinit, and for a run ρ = s
µ1−→

s1
µ2−→ . . . sn−1

µn−→ sn in FRuns(S) we define lst(ρ) = sn.
To associate a probability measure with the runs, it is necessary to

resolve the non determinism by a scheduler that chooses a distribution at
each step. More precisely:

Definition 3.3 (Scheduler). A scheduler A for a CMC specification
S = (S, sinit, T, λ), is a mapping A : FRuns(S) → Dist(S) such that for
each run ρ with s = lst(ρ), A(ρ) ∈ T (s).

We denote by Sched(S) the set of schedulers for S. Like for Markov
Decision Processes, scheduling S with A produces a PTS denoted by
S(A), where states are finite runs of S and the labelings must be con-
sistent: S(A) = 〈Q, qinit, ∆, L〉 with Q ⊆ FRuns(S), the initial state is
qinit = sinit, the run containing only the initial state of S, and for ρ ∈ Q,

L(ρ) ∈ λ(lst(ρ)) and ∆(ρ)(ρ′) = A(ρ)(s′) for ρ′ = ρ
A(ρ)−−−→ s′. We note:

sat(S) = {S(A) | A ∈ Sched(S)}.

Note that the Uncertain Markov Chains semantics corresponds to the
particular case of memoryless schedulers.

We now lift the notion of disclosure to the set of scheduled implemen-
tations of a specification S by:

Disc(S,O, ϕ) = sup
A∈Sched(S)

Disc(S(A),O, ϕ).

This measure differs from the similar one in [7] for Markov Decision Pro-
cesses. The notion presented here is finer since the set of runs measured
by the disclosure depends on the scheduled implementation. In [7], the
set of runs of the disclosure is defined on the (unscheduled) MDP, and
its probability is optimized afterwards. This would not be well-defined
in CMCs, since two scheduled implementations can have different sets of
edges with non-null probability, as explained in Section 4.

3.2 Refinement

The notion of strong refinement between probabilistic specifications was
introduced in [9] through simulation. A weaker refinement was also pro-
posed in [12]. These notions are adapted to our setting in Definitions 3.4
and 3.5 below.

Definition 3.4 (Strong refinement relation). For two CMC specifi-
cations S1 = (S1, s1,init, T1, λ1) and S2 = (S2, s2,init, T2, λ2) over alphabet
Σ, S1 strongly refines S2, written S1 �s S2, if there exists a relation
R ⊆ S1 × S2 such that s1,initR s2,init and if s1Rs2 then:

(1) λ1(s1) ⊆ λ2(s2),
(2) there exists a function δ : S1 → Dist(S2) such that for all µ ∈ T1(s1)∑

s′1∈S1
µ(s′1) · δ(s′1) ∈ T2(s2),

(3) s′1Rs′2 whenever δ(s′1)(s
′
2) > 0.

For weak refinement, the mapping δ depends on the chosen distribu-
tion µ (as well as on s1 and s2) instead of being uniform:

Definition 3.5 (Weak refinement relation). For two CMC specifi-
cations S1 = (S1, s1,init, T1, λ1) and S2 = (S2, s2,init, T2, λ2) over alpha-
bet Σ, S1 weakly refines S2, written S1 �w S2, if there exists a relation
R ⊆ S1 × S2 such that s1,initR s2,init and if s1Rs2 then:

(1) λ1(s1) ⊆ λ2(s2),

a

q0

S1 :

b

q1

b

q2

[0, 1]

[1
3
, 2
3
]

[1
4
, 1
3
]

[1, 1]

[1, 1]

a

r0

S2 : b

r1

[0, 1]

[0, 1] [1, 1]

1

1

1

Fig. 4. A refinement of S2 by S1.

(2) for each µ ∈ T1(s1) there exists a function δ : S1 → Dist(S2) such
that

∑
s′1∈S1

µ(s′1) · δ(s′1) ∈ T2(s2),
(3) s′1Rs′2 whenever δ(s′1)(s

′
2) > 0.

Fig. 4 illustrates the strong refinement relation R of S2 by S1. For
Condition (2) above, we may uniformly use the function: δ0(qi)(rj) = 1 if
(qi, rj) ∈ R and 0 otherwise, represented with dashed lines in Fig. 4.

Note that there is no weak refinement relation of S1 by S2. Indeed, let
µ ∈ T2(r0) defined by µ(r0) = 4

5 and µ(r1) = 1
5 . Given any function δ :

S2 → Dist(S1) as in Definition 3.5, it must be the case that δ(r0)(q1) = 0
since labels do not match. However, µ(r1) · δ(r1)(q1) ≤ µ(r1) = 1

5 /∈ [13 ,
2
3].

So µ(r1)·δ(r1) is not a distribution in T1(q0), which violates Condition (2).

When a PTS refines a specification, both notions coincide and corre-
spond to the satisfaction relation, which defines the most general seman-
tics of CMCs (from [9]): A PTS A = (Q, qinit, ∆, L) implements a CMC
S = (S, sinit, T, λ), written A � S for the associated relation �⊆ Q × P ,
if A refines S, where A is seen as a CMC with point distributions. Spec-
ification S is said consistent if it admits at least one implementation.

Refinement also applies to two PTSs, and since each probability set
reduces to a single distribution, Condition (2) becomes (2′):

For all s′2 ∈ S2,
∑
s′1∈S1

∆1(s1)(s
′
1) · δ(s′1)(s′2) = ∆2(s2)(s

′
2).

It is proved in [12] that S1 �s S2 implies S1 �w S2, which in turn
implies that for any PTS A, if A � S1 then A � S2, all implications being
strict.

Finally, it can be seen that scheduling a CMC specification is a partic-
ular case of implementation but not every implementation can be mapped
to a scheduler:

Proposition 3.6. Let S be a CMC specification. For each scheduler A
of S, S(A) � S.

Proof. The relation R ⊆ Q × S is defined by R = {(ρ, s) | lst(ρ) = s}.
We prove that the relation R is a refinement relation by defining δ(ρ,s)
over Q× S as follows:

δ(ρ,s)(ρ
′, s′) =

{
A(ρ)(s′) if ρ′ = ρ

A(ρ)−−−→ s′,
0 otherwise.

(1)

The first condition results from the definition of the labeling and con-
ditions 2 and 3 come from the fact that the joint distribution δ(ρ,s) is
diagonal in this case.

(2) (a) δ(ρ′, S) = A(ρ)(s′) = ∆(ρ)(ρ′) with ρ′ = ρ
A(ρ)−−−→ s′ for all ρ′ ∈ Q.

(b) δ(Q, s′) = A(ρ)(s′) ∈ T (s)(s′) with s = lst(ρ) for all s′ ∈ S.
(3) ρ′Rs′ whenever δ(ρ′, s′) > 0 since s′ = lst(ρ′) by definition of R. ut

Indeed, for any scheduler A, S(A) is a kind of unfolding of S, which
restricts the structure of S(A): at each step, the scheduler chooses a valid
distribution among successor states. Hence not every implementation can
be mapped to a scheduler. Said otherwise, not all implementations can
be put in relation with S through a satisfaction relation where the joint
distributions δ are diagonal.

For example, consider the specification S0 of Fig. 5(a). There is a
single possible scheduler for this specification: the one that picks in q0
probability 1

2 to go to either q1 or q2 (A1 in Fig. 5(b)). However, the PTS
A2 of Fig. 5(c) is also an implementation of this specification (A2 |= S0)
where r2 is split between q1 and q2. The corresponding matrix is

δ(q0, r0) =


r0 r1 r2 r3

q0 1 0 0 0
q1 0 1

3
1
6 0

q2 0 0 1
6

1
3


3.3 Motivating example

Consider a simple access control database mechanism to a medical database
(inspired from [20]) as illustrated in Fig. 6(a). In S2, a user is first re-
quested to input a username (a). If the user name is not on the list of

a

q0

b

q1

b

q2

[1
2
, 1]

[1
2
, 1]

[1, 1]

[1, 1]

(a) A specification
S0

a

q0

b

q1

b

q2

1
2

1
2

1

1

(b) A1, the only
scheduling of

S0

a

r0

b

r1

b

r2

b

r3

1
3

1
3

1
3

1

1

1

(c) A2, an implementation
(not a scheduling) of S0

Fig. 5. A specification with an implementation that is not the result of
scheduling.

authorized medical staff (d), the request is rejected (e) and otherwise,
the user is requested to input a password (b). If the password is cor-
rect, access to the database records is provided (c) and is refused (e),
otherwise. The transition probabilities take in accountdepend many fac-
tors e.g. the number of legitimate users of the database, the robustness
of their respective passwords, or the attacker’s knowledge. S1 depicted
in Fig. 6(b) refines the password verification process. If the password is
correct, it is accepted. Otherwise, a lookup of a black list of common
password is performed. If the password is in the list, access is refused,
considering it is a malicious attacker and the user is allowed to try again,
otherwise. The refinement removes the modalities by restricting intervals
(as explained below) and splits the state q1 onto r1 and r2 in S1. In order
to express security requirements that any implementation of these spec-
ifications should assume, consider the observation function O defined as
O(a) = a, O(c) = c, O(d) = d, O(e) = e et O(b) = ε. It reflects the fact
that the password input by the user should be kept secret. This could be
realized by mean of some cryptographic infrastructure later on along the
refinement process but it is not useful to specify this any further here.

It is well known that this kind of mechanism is not robust enough
to provide an adequate protection against covert channels allowing an
attacker to access any private information from patient medical record
whose access should be strictly limited to medical professionals, the le-
gitimate users of the database. As an example, imagine an observer who
could discriminate between abcω, the execution where a legitimate user is
accepted at the first password try and any execution in abb+cω where he

a q0S2 :

b

q1

c

q3

d

q2

e

q4

[0.2, 1]

[0.2, 1]
[1, 1]

[0, 1]

[0, 1]

[0, 1]

[1, 1]

[1, 1]

(a) S2

a r0S1 : b

r2

b

r1

c

r4

d

r3

e

r5

[0.2, 0.4]

[0.2, 1]
[1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

[1, 1]

[1, 1]

(b) S1

Fig. 6. An access control mechanism to a medical database S2 and its
refinement S1.

is only accepted after several tries. This could serve as a channel between
this user and an attacker on behalf of whom he is acting for in order to
leak any private information of any patient record. Requesting as best
opacity as possible of the predicate ϕ = abcω, for all implementations of
the specification tears down the possibility of such information flow. Let
us have a look at the opacity of ϕ. First note that Disc(S2,O, ϕ) > 0:
since the interval labeling the loop on q1 contains 0, there is a distribution
µ ∈ T2(q1) such that µ(q1) = 0. This loop may or may not be scheduled
by an attacker and is later called a modal edge for this reason. Hence any
implementation S2(A) of S2 blocking the loop on q1 but not the edge
(q1, q2) discloses ϕ. Indeed, in this case Tr(S2(A)) = abcω + abeω + adeω,
L \ ϕ = abeω + adeω, O(ϕ) = acω and O(L \ ϕ) = aeω + adeω proving
that O(ϕ) 6⊆ O(L \ ϕ). Note also that as there is no modal edge in S1,
for any scheduler A, ∆(r1)(r2), ∆(r2)(r1) > 0 where ∆ is the S1(A) tran-
sition function. Hence, Tr(S1(A) = abcω + ab(bb)∗cω + a(bb)+eω + adeω,
and O(L \ ϕ) = acω + aeω + adeω, proving that ϕ is opaque for the in-
finitely many implementations S1(A) of S1 that is, Disc(S1,O, ϕ) = 0.
In Section 4 we give an algorithm to compute the exact disclosure of a
specification without modal edges (such as S1) and a scheme to approx-
imate the general case (like for S2). Finally note that Disc(S1,O, ϕ) <
Disc(S2,O, ϕ). In Section 5 we prove that amazingly, since in general
information flow properties are not preserved under refinement, when S1
refines S2, it is always the case that Disc(S1,O, ϕ) ≤ Disc(S2,O, ϕ), for
any secret ϕ and observation function O.

4 Computing the probabilistic disclosure

4.1 Modal edges

When the probability of an edge can be equal to 0, the corresponding
action can be completely blocked by a scheduler. From a modeling point
of view, modal edges add a lot of flexibility for refinement. This however
means that the range of potential implementations is larger and so it
will be harder to obtain meaningful properties. Therefore such edges are
desirable in an early modeling phase but less so in the latest refinements.
As in [9], we call these edges modal edges, and CMCs that contain such
edges are called modal CMCs.

Definition 4.1 (Modal edge). An edge (s, s′) in CMC S is modal if

there exists a scheduler A such that ∆(ρ)(ρ
A(ρ)−−−→ s′) = 0 for any run ρ of

S(A) with lst(ρ) = s.

a c b
[0; 1]

[0; 1]

[1; 1]

[1; 1]

(a) A modal IMC Sm.

a c b
]0; 1]

]0; 1]

[1; 1]

[1; 1]

(b) A non-modal IMC Snm.

a c b
1 1

1

(c) A disclosing implementation of
Sm (but not of Snm).

a c b
1− ε

ε

1

1

(d) A non-disclosing implementa-
tion of Snm (and Sm), ε > 0.

Fig. 7. The influence of modal transitions on disclosure.

In the context of opacity, removing an edge drastically changes the
disclosure, since it can remove ambiguities. For example, consider the
modal IMC Sm of Fig. 7(a), where a and b are observed and the secret is
the presence of c. An implementation of Sm that blocks the direct edge
from a to b (Fig. 7(c)) has a disclosure of 1, since the secret is guaranteed
to be part of the only possible run. On the other hand, in the non-modal
version of the IMC (Fig. 7(b)), such implementations are banned and only
implementations that retain a small probability to avoid c are allowed. In

these implementations, the disclosure is 0, since every run is observed as
abω and it is possible that c did not occur.

The detection of modal edges is the first step toward computation of
the disclosure.

Proposition 4.2. The set of modal edges can be computed in time poly-
nomial in the number of edges.

Proof. The procedure for each edge (s, s′) is as follows. Assume T (s) is
defined by the conjunction

∧k
i=1Ci where each Ci is a linear constraint.

The edge (s, s′) is modal if and only if xs′ = 0∧
∧k
i=1Ci admits a solution.

This can be checked in polynomial time [21]. ut

4.2 Computation in non-modal LCMCs

In the case of non-modal LCMCs, the disclosure can be computed:

Theorem 4.3. Computing the value of disclosure for an LCMC S with-
out modal edges can be done in 2EXPTIME.

Proof. The proof relies on constructing an (exponentially larger) MDP
on which an optimization problem is solved. In the spirit of [22], the con-
struction of the MDP relies on basic feasible solutions (BFSs), otherwise
called corner points.

Starting from a DPA Aϕ for ϕ, a DPA AV for V(AK ,O, ϕ) can be
built, with size exponential in the size of S and Aϕ (and with a number
k of colors polynomial in the size of A and Aϕ). This construction relies
on intersections and complementations of DPA, with a determinization
step that brings the exponential blowup [23]. Synchronizing the DPA
AV with the original LCMC yields an LCMC SV . Finding the optimal
scheduler for SV to accept yields the optimal value of Disc(AK ,O, ϕ).
This optimization is done by translating SV into an MDPMV as follows.

For each state s of SV , we compute the set of the BFS of the polytope
defined by T (s). Then we build the corresponding state in the MDPMV
by adding a transition (i.e. a probability distribution) per BFS. As a
property of BFSs, any distribution in T (s) in SV can be expressed as a
barycentric combination of BFSs. Hence a scheduler on MV corresponds
exactly to a scheduler on SV . As a result maximizing the probability of
V(AK ,O, ϕ) in MV is exactly the same as computing said optimum in
SV . This yields a memoryless scheduler, which in turn can be translated
into a finite memory scheduler in S.

Note that this construction annihilates the difference between strict
and large inequalities. This is of no consequence on the computation of
the value of the disclosure. Indeed, if the optimal value is reached on a
facet of the polytope defined through a strict inequality, one can build a
sequence of ever closer schedulers converging in the limit to the optimal
value. In the case where the strict constraint is of the form xs > 0, i.e. that
the edge should disappear in the limit, this actually does not introduce a
modal edge in the sense that the set V(AK ,O, ϕ) is not changed.

The number of BFSs of a system of rank r in dimension n is bounded
by
(
n
r

)
(the number of subsets of cardinality r in a set of n elements),

hence for each state there is an exponential number of BFSs to consider.
As a result the overall complexity of the procedure is in 2EXPTIME. ut

An example of the transformation described in the above proof is
illustrated for state q0 of the LCMC in Fig. 3. The BFSs are depicted
in Fig. 8: all possible distributions are points in the red triangle with
corners µ1, µ2, and µ3 being the three BFSs. Note that these distributions
only consider values for x1, x2, x3, since all other values are null. The
transformation of the LCMC (for state q0) into an MDP is illustrated in
Fig. 9.

•

•

•

µ1

µ2

µ3

x1

x2

x3

1
2

1

1
2

1
6

µ1 = (1, 0, 0)

µ2 = (1
2
, 1
2
, 0)

µ3 = (1
2
, 1
3
, 1
6
)

Fig. 8. Basic Feasible Solutions for state q0.

4.3 Towards the general case

When a scheduler is faced with the choice to include or exclude a modal
edge, it can produce several versions of PTSs, say A1 and A2, with
Tr(A1) 6= Tr(A2), hence V(A1,O, ϕ) 6= V(A2,O, ϕ). In addition, these

Idle
q0

Error q2

Success q1

Failure q3

x1

x2

x3

Idle
q0

Error q2

Success q1

Failure q3

µ1, 1

µ2,
1
2

µ3,
1
2

µ2,
1
2

µ3,
1
3

µ3,
1
6

Fig. 9. Transforming an LCMC into an MDP using BFSs.

choices may be history dependent, as in the example of Fig. 10, with
ϕ = aΣω and only letters c and d being observed. Intuitively, a way for
the scheduler to always disclose the presence of an initial a is to always
follow an a by the same letter, say a c. However, this choice must be
made after the first letter has been seen. Moreover, leaving the possibility
of a run ad · · · to occur means that run ac · · · does not disclose ϕ. As a
result, the scheduler should also take into account ϕ and the observation
function before committing to a choice with respect to modal edges.

a

b

c

d

1
2

1
2

1

1

[0; 1]

[0; 1]

1

1

Fig. 10. IMC where the choice on modal edge requires history.

So far, the general case of modal LCMCs remains open. However, we
now propose an approximation scheme using finite memory schedulers.

In the case of modal LCMCs, disclosure can be approximated by com-
puting only what can be disclosed by an adversary with bounded mem-
ory. Increasing the allotted memory provides a better approximation of
the disclosure, although there is no guarantee that the disclosure can be
achieved with finite memory. A finite memory adversary can be defined
as follows:

Definition 4.4 (n-memory scheduler). Let [n] denote the set {1, 2, . . . , n}.
An n-memory scheduler A for an LCMC specification S = (S, sinit, T, λ),
is a tuple A = ([n], iinit, θ, γ) where [n] is the set of modes, iinit is the
starting mode, θ : [n] × S → [n] is a mode transition function and
γ : [n] × S → Dist(S), is the choice function with γ(i, s) ∈ T (s) for
all i ∈ [n] and all s ∈ S.

Scheduling S with A produces a PTS S(A) where the set of states is
[n]×S, the initial state is (iinit, sinit), for (i, s) ∈ [n]×S, L(i, s) ∈ λ(s) and
θ(i, s)(i′, s′) = γ(i, s)(s′) for i′ = θ(i, s). We denote by Schedn(S) the set
of n-memory schedulers for S, with satn(S) = {S(A) | A ∈ Schedn(S)}
and

Discn(S,O, ϕ) = supA∈Schedn(S)Disc(S(A),O, ϕ).

Memoryless schedulers are those in Sched1(S) and the set of finite mem-
ory schedulers is

⋃
n Schedn(S) [24].

The computation of the disclosure of an LCMC S under bounded
memory adversaries relies on:

– the computations of the set of modal edges of S (Proposition 4.2);
– the value of disclosure for LCMCs without modal edges (Theorem 4.3);
– the unwinding of S with respect to a memory bound and the removal

of modal edges (described below).

The unwinding construction. Given S = (S, sinit, T, λ) and a finite tran-
sition system An,θ = ([n], iinit, θ), we construct the LCMC An,θ × S =

([n]× S, (iinit, sinit), T̂ , λ̂) s.t.

– µ̂ ∈ T̂ (i, s) iff ∃µ ∈ T (s) such that for i′ ∈ [n],

µ̂(i′, s′) =

{
µ(s′) if i′ = θ(i, s)
0 otherwise

– λ̂(i, s) = λ(s)

The unwinding of S by an n-state automaton A produces an LCMC SA
formed with n copies of S (one for each state of A), communicating with

each other according to the mode transition function of A. Memoryless
schedulers on SA then correspond to n-memory schedulers on S. We note
SchedAn,θ(S) the set of schedulers for S of the form A = (An,θ, γ) for
γ : [n] × S → Dist(S) where for s ∈ S and for all i ∈ [n], γ(i, s) ∈ T (s).
Hence, any implementation of satn(S) can be obtained by a memoryless
scheduler on some SA. Remark that there is only a finite number of such
automata. This construction entails:

Lemma 4.5. For any LCMC S,

sat1(An,θ × S) = {S(A) | A = (An,θ, γ) for some γ}.

The modal edge removing construction. Given S = (S, sinit, T, λ), an
LCMC, letM(S) be the set of modal edges of S. For a subset ξ ⊆M(S),
we define S \ ξ as the modal edge free LCMC obtained from S by re-
moving edges in ξ and “unmodalizing” modal edges of S not in ξ: this
means that if (s, s′) ∈ ξ, we add the constraint xs′ = 0 to T (s) and if
(s, s′) /∈ ξ, we add the constraint xs′ > 0 to T (s). Note that removing an
arbitrary subset ξ of M(S) may result in an inconsistent specification.
These will be ignored by our algorithm (recall that consistency checks are
polynomial for LCMCs [12]).

The algorithm. Algorithm 1 enumerates all possible finite transition sys-
tems with n states and unwinds S over them. For each such unwinding,
the algorithm explores the set of memoryless schedulers. This exploration
is done by first selecting the set of modal edges to remove and for each
set, compute the maximal disclosure using the procedure of Theorem 4.3.
Since this procedure may use arbitrary schedulers, the output of the al-
gorithm is an overapproximation of Discn(S,O, ϕ), the disclosure of S
restricted to n-memory schedulers. On the other hand, it is an underap-
proximation of the actual disclosure.

Correctness. The partial correctness of Algorithm 1 relies on Lemma 4.5
above as well as the following observation, indicating that the choice of
some set of modal edges to remove exactly corresponds to the scheduler
choice:

Lemma 4.6. For any LCMC S and for any memoryless scheduler A =
(A, γ) of S, there exists a maximal subset ξ of M(S) such that for any
(s, s′) ∈M(S), γ(1, s)(s′) = 0 iff (s, s′) ∈ ξ.

Proof. Since the scheduler is memoryless, the choice of scheduling a modal
edge to 0 must be uniformly taken along any run, hence this edge never

ALGORITHM 1: Overapproximating Discn(S,O, ϕ)

Input: n ∈ N,S,O and ϕ
Output: Disc(n,S,O, ϕ) such that

Discn(S,O, ϕ) ≤ Disc(n,S,O, ϕ) ≤ Disc(S,O, ϕ)
1 Disc(n,S,O, ϕ) = 0;
2 foreach θ : [n]× S → [n] do
3 construct An,θ × S;
4 compute the set M(An,θ × S);

// By the procedure described in the proof of Prop. 4.2

5 foreach ξ ∈ 2M(An,θ,S) do
6 construct (An,θ × S) \ ξ;
7 if (An,θ × S) \ ξ is consistent then
8 compute Disc((An,θ × S) \ ξ,O, ϕ);

// By the procedure described in the proof of Thm. 4.3

9 Disc(n,S,O, ϕ) =
max{Disc(n,S,O, ϕ), Disc((An,θ × S) \ ξ,O, ϕ)};

10 end

11 end

12 end
13 return Disc(n,S,O, ϕ);

appears in the PTS scheduled by A. This is equivalent to remove this
edge from S so the set ξ is the collection of all such edges. ut

Theorem 4.7 (Correctness of Algorithm 1). Given a an LCMC S,
an observation O and a secret ϕ for S, the disclosure of ϕ in S for O by
a polynomial size adversary (in the size of S) can be over-approximated
in 2EXPTIME.

Proof. We prove that the output of Algorithm 1:

Disc(n,S,O, ϕ) = max
θ

max
ξ
Disc(An,θ × S \ ξ,O, ϕ)

satisfies the post-conditionDiscn(S,O, ϕ) ≤ Disc(n,S,O, ϕ) ≤ Disc(S,O, ϕ).
For the first inequality, let A = (A, γ) be an n-memory scheduler for S and
let SA be the corresponding unwinding. This unwinding is computed in
the loop of Algorithm 1 at line 3. By Lemma 4.5 the n-memory schedulers
on S are exactly the memoryless schedulers on SA. Hence the choice func-
tion γ is memoryless on A× S. Therefore Lemma 4.6 provides a set ξ of
modal edges to be removed, such that SA and SA\ξ coincide when sched-
uled by γ. The removal of this set ξ is performed in the inner loop at line
6. Hence the disclosure of S(A) is less than or equal to Disc(SA \ ξ,O, ϕ)

computed at line 8 (equality is not ensured since the computation of The-
orem 4.3 does not restrict memory). This value is itself smaller than the
output of the algorithm, hence Discn(S,O, ϕ) ≤ Disc(n,S,O, ϕ).

The second inequality results from the fact that all values computed
by Algorithm 1 are of the form Disc(SA \ ξ,O, ϕ). Since the maximum
is obtained on a subset of schedulers, Disc(n,S,O, ϕ) ≤ Disc(S,O, ϕ)
holds.

This algorithm makes 2O(n) calls to the 2EXPTIME procedure of
Theorem 4.3. Thus the complexity of Algorithm 1 remains in 2EXPTIME
as long as n is polynomial in the size of S. ut

5 Monotonicity of disclosure

This section is devoted to the proof of the following result, establish-
ing monotonicity with respect to weak refinement for the disclosure over
scheduled implementations:

Theorem 5.1. Let S1 and S2 be LCMC specifications such that S1 �w
S2. Then Disc(S1,O, ϕ) ≤ Disc(S2,O, ϕ).

Since scheduling is a restrictive way to derive implementations from a
specification, it is not the case in general that sat(S1) ⊆ sat(S2): although
any scheduling S1(A1) of S1 with A1 is an implementation of S2, this
implementation may not be a scheduling.

Instead, the proof builds a scheduler A2 for S2, producing an imple-
mentation S2(A2) that is refined by S1(A1) (Theorem 5.2, illustrated in
Fig. 11). Then, this refinement is shown to ensure that the probabilities
of (cones of) finite words coincide (Propositions 5.3 and 5.4). The disclo-
sure set being a measurable event, coincidence of probabilities on cones
ensures coincidence of probabilities for the disclosure.

Notations. Given two specifications S1 and S2 such that S1 weakly re-
fines S2 through relation R, we define the relation ∼ on FRuns(S1) ×
FRuns(S2) by: ρ1 ∼ ρ2 if |ρ1| = |ρ2| and at any intermediate step i, the
corresponding states satisfy s1,iR s2,i.

For ρ2 ∈ FRuns(S2), we set sim(ρ2) = {ρ1 ∈ FRuns(S1) | ρ1 ∼ ρ2}.
We now define a measure µρ2 over sim(ρ2) by µρ2(ρ1) =

PA1
(ρ1)

PA1
(sim(ρ2))

(where the probability of finite run ρ is abusively written instead of the
probability of its cone Cρ).

We first show how to build a scheduler A2 for S2 such that S1(A1)
refines S2(A2). Recall from Section 3.2 that for PTSs, weak and strong re-

S2S1

S1(A1) S2(A2)

R

sat1 R ◦ sat1

R′

sat2

Fig. 11. Result of Theorem 5.2. Relation R◦sat1 always exists but might
not be a scheduling.

finement coincide and are thus simply called refinement in the remainder
of this section.

Theorem 5.2. Let S1 and S2 be LCMC specifications such that S1 weakly
refines S2. Then for any A1 ∈ Sched(S1) there exists A2 ∈ Sched(S2)
such that S1(A1) refines S2(A2).

Proof. Let S1 = (S1, sinit,1, T1, λ1) and S2 = (S2, sinit,2, T2, λ2) be LCMCs
such that S1 refines S2 withR. Let sat1 be the satisfaction relation related
to A1 and A1 = S1(A1) = (Q1, qinit,1, ∆1, L1). Then we show that there
exists A2 ∈ Sched(S2) and a refinement relation R′ such that R◦ sat1 =
sat2 ◦ R′ where sat2 is the satisfaction relation related to A2.

Let ρ2 ∈ FRuns(S2) with lst(ρ2) = s2. Then, for any ρ1 ∈ sim(ρ2),
A1(ρ1) ∈ T1(lst(ρ1)) and lst(ρ1)R s2. Since S1 weakly refines S2, there
exists δρ1 : S1 → Dist(S2) such that

∑
s′1∈S1

A1(ρ1)(s
′
1)δρ1(s′1) ∈ T2(s2).

We define A2 on FRuns(S2) by:

A2(ρ2) =
∑

ρ1∈sim(ρ2)

µρ2(ρ1)
∑
s′1∈S1

A1(ρ1)(s
′
1) · δρ1(s′1).

From the definition of µρ2 and the convexity of T2(s2), we can conclude
that A2(ρ2) also belongs to T2(s2), hence A2 is a scheduler of S2.

Writing now A2 = S2(A2) = (Q2, qinit,2, ∆2, L2), the relation R′ can
be defined as ∼ (relating runs that are similar “step by step”, as defined
above). To see that the conditions are satisfied, let ρ1 and ρ2 be runs in Q1

and Q2 respectively. Then the mapping δ′ : Q1 → Dist(Q2) is obtained
by:

δ′(ρ1)(ρ2) =

{
µρ2(ρ1)δρ1(lst(ρ1))(lst(ρ2)) if ρ1 ∼ ρ2,
0 otherwise.

Since A1 and A2 are PTSs, we just need to show that Equation (3.2)

holds. Writing ρ′2 = ρ2
A2(ρ2)−−−−→ s′2, we have:

∆2(ρ2)(ρ
′
2) = A2(ρ2)(s

′
2)

=
∑

ρ1∈sim(ρ2)

µρ2(ρ1)
∑
s′1∈S1

A1(ρ1)(s
′
1) · δρ1(s′1)(s

′
2)

=
∑

ρ1∈sim(ρ2)

∑
s′1∈S1

A1(ρ1)(s
′
1) · δ′(ρ1

A(ρ1)−−−→ s′1)(ρ
′
2)

=
∑
ρ′1∈Q1

A1(ρ1)(s
′
1) · δ′(ρ′1)(ρ′2)

by defining ρ′1 = ρ1
A1(ρ1)−−−−→ s′1 for each ρ1 and remarking that δ′ = 0 if its

arguments are not similar runs. Hence:

∆2(ρ2)(ρ
′
2) =

∑
ρ′1∈Q1

∆1(ρ1)(ρ
′
1) · δ′(ρ′1)(ρ′2). ut

Now we show that refinement between two PTSs is sufficient to com-
pare their disclosure. Namely, we show that the probabilities of cones of
words are equal in both systems. Note that although this property is well
known to hold for paths, it needs to be lifted to words in order to compare
disclosure.

We start by considering the sets of traces globally; although it is
folklore that refinement implies trace inclusion, we provide a proof for
completeness sake.

Proposition 5.3. Let A1 and A2 be PTSs such that A1 refines A2.
Then Tr(A1) = Tr(A2).

Proof. We prove the proposition by induction on a strengthened state-
ment. Namely, we claim that for every finite run in A1 there exists a
similar run in A2. Since an infinite run is the limit of the sequence of its
finite prefixes, this claim is sufficient to prove the proposition. Assume
by induction that the proposition holds for every word of length n. Let
w ∈ FTr(A1) of length n+1. We write w = w0a for some a ∈ Σ. Consider
a run of A1 that produces w. It is of the form ρ0s

′
1 where λ(s′1) = a; let

s1 = lst(ρ0). Let ρ′0 be a run in A2, similar to ρ0, and s2 = lst(ρ′0). By
definition of refinement, there exists a function δ such that for any state
s′2 of A2,

∆2(s2)(s
′
2) =

∑
σ1∈S1

∆1(s1)(σ1) · δ(σ1)(s′2).

Moreover, whenever δ(σ1)(s
′
2) > 0, λ(s′1) = λ(s′2). Since δ(s′1) is a dis-

tribution over S2, δ(s
′
1)(s

′
2) > 0 for at least one state s′2. Hence ρ′0s

′
2 is

similar to ρ, which shows in particular that w ∈ FTr(A2). ut

We additionally show that probabilities coincide:

Proposition 5.4. Let A1 and A2 be PTSs such that A1 refines A2. Then
for all w ∈ Σ∗, PA1(Cw) = PA2(Cw).

Since a given word may be produced by several paths, their probabilities
should be considered altogether. Hence the proof of the above proposition
is not immediate; it is quite technical and can be found in Appendix A.

Existing properties about refinement for PTSs can be retrieved as
consequences of the above result. They were for example obtained as a
particular case of sub-stochastic refinement in [8]. Although not neces-
sary to prove the main theorem, these results illustrate how constraining
refinement between PTSs is.

Recall that a probabilistic bisimulation [9] is a bisimulation that pre-
serves transition probabilities, i.e., a bisimulation relation R on states
such that for any equivalence class R of R, and any two related states
sRs′, ∆(s)(R) = ∆(s′)(R).

Corollary 5.5 ([8]). Let A1 and A2 be PTSs such that A1 refines A2.
Then there exists a probabilistic bisimulation over the union of both PTSs.

Corollary 5.6 ([8]). Let A1 and A2 be PTSs such that A1 refines A2.
Then A2 also refines A1.

We are now ready to prove Theorem 5.1:

Proof. Let A1 ∈ sat(S1). By Theorem 5.2 there exists A2 ∈ sat(S2) that
is refined by A1. By Proposition 5.4, PA1(Cw) = PA2(Cw) for every word
w ∈ FTr(A1). Hence, for any ω-regular (hence measurable) language L,
one has PA1(L) = PA2(L). It is in particular the case for V(A1,O, ϕ) =
V(A2,O, ϕ). Therefore, Disc(A1,O, ϕ) = Disc(A2,O, ϕ). Consequently,
the theorem holds. ut

The result above can now be combined with compositional results
on refinement obtained in [12]. In particular, since the conjunction of
two CMC specifications is the greatest lower bound with respect to weak
refinement, and LCMCs are closed under conjunction, we have:

Proposition 5.7. Let S1 and S2 be LCMC specifications. Then Disc(S1∧
S2) ≤ min(Disc(S1), Disc(S2)).

6 Conclusion

This work investigates how refinement between probabilistic models im-
pacts the security, modeled as opacity, showing that disclosure is mono-
tonic with respect to refinement when implementations are produced by
an adversary through scheduling. We provide 2EXPTIME procedures to
compute (1) the worst-case disclosure for a subclass of LCMCs and (2)
lower bounds on disclosure for all LCMCs when restricted to polynomial
size memory schedulers (in the size of the LCMC).

Directions for future work include computing exact disclosure for
LCMCs with modal edges for example by bounding the size of sched-
ulers required to reach the supremal value. We also plan to extend our
results to larger sub-classes of CMCs or Parametric IMCs from [12,14].
In particular, a question that was left aside is the parallel composition of
LCMC, which generates polynomial and possibly non-convex constraints
on distributions. Studying the effect of disclosure with respect to this
operation would be an interesting (but difficult) task.

References

1. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6) (September 2010) 1157–1210

2. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In: Proc.
ICALP’06. Volume 4052 of LNCS., Springer (2006) 107–118

3. Mazaré, L.: Decidability of opacity with non-atomic keys. In: Proc. FAST’04.
Volume 173 of Intl. Federation for Information Processing., Springer (2005) 71–84

4. Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to tran-
sition systems. Intl. Journal of Information Security 7(6) (2008) 421–435

5. Saboori, A., Hadjicostis, C.N.: Current-state opacity formulations in probabilistic
finite automata. IEEE Transactions on Automatic Control 59(1) (2014) 120–133

6. Bérard, B., Mullins, J., Sassolas, M.: Quantifying opacity. Mathematical Structures
in Computer Science 25(2) (2015) 361–403

7. Bérard, B., Chatterjee, K., Sznajder, N.: Probabilistic Opacity for Markov decision
processes. Information Processing Letters 115(1) (2015) 52–59

8. Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Information and Computation 200 (2005) 149–214

9. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proc. LICS’91, IEEE Computer Society (1991) 266–277

10. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, Department of Electrical Engineering and Computer Sci-
ence (1995)

11. Chatterjee, K., Henzinger, T., Sen, K.: Model-checking omega-regular properties of
interval Markov chains. In Amadio, R.M., ed.: Proc. FoSSaCS’08. (2008) 302–317

12. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski,
A.: Constraint Markov chains. Theoretical Computer Science 412(34) (2011)
4373–4404

13. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov
chains. In: Proc. TACAS’13. Volume 7795 of LNCS., Springer (2013) 32–46

14. Delahaye, B.: Consistency for parametric interval Markov chains. In André, É.,
Frehse, G., eds.: Proc. SynCoP’15. Volume 44 of OASICS., Schloss Dagstuhl - LZI
(2015) 17–32

15. Bérard, B., Kouchnarenko, O., Mullins, J., Sassolas, M.: Preserving opacity on
interval Markov chains under simulation. In Cassandras, C.G., Giua, A., Li, Z.,
eds.: Proc. of 13th International Workshop on Discrete Event Systems, WODES’16,
IEEE (2016) 319–324

16. Billingsley, P.: Probability and Measure. 3rd edn. Wiley (1995)
17. Bérard, B., Mullins, J., Sassolas, M.: Quantifying opacity. In Ciardo, G., Segala,

R., eds.: Proc. QEST’10, IEEE Computer Society (September 2010) 263–272
18. Chaum, D.: The dining cryptographers problem: unconditional sender and recipi-

ent untraceability. Journal of Cryptology 1 (1988) 65–75
19. Bhargava, M., Palamidessi, C.: Probabilistic Anonymity. In Abadi, M., de Alfaro,

L., eds.: Proc. CONCUR’05. Volume 3653 of LNCS. (2005) 171–185
20. Biondi, F., Legay, A., Nielsen, B.F., Wa̧sowski, A.: Maximizing entropy over

Markov processes. Journal of Logical and Algebraic Methods in Programming
83(5–6) (2014) 384–399

21. Roos, C., Terlaky, T., Vial, J.P.: Theory and Algorithms for Linear Optimization.
An Interior Point Approach. Wiley-Interscience, John Wiley & Sons Ltd (1997)

22. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence
of uncertainties. In Hermanns, H., Palsberg, J., eds.: Proc. of 12th Intl. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS’06.
Volume 3920 of LNCS., Springer (2006) 394–410

23. Piterman, N.: From Nondeterministic Büchi and Streett Automata to Determin-
istic Parity Automata. Logical Methods in Computer Science 3(3) (2007)

24. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

A Proof of Proposition 5.4

Assume by induction that the proposition holds for every word of length
n. Let w ∈ FTr(A1) = FTr(A2) (recall Proposition 5.3) of length n + 1
with w = w0a for some a ∈ Σ. A run ρ′ of A2 that produces w can be
assumed to be of the form ρ′ = ρ′0s

′
2 with tr(ρ′0) = w0 and λ(s′2) = a.

Then PA2(Cρ′) = PA2(Cρ′0)∆2(s2)(s
′
2) where s2 = lst(ρ′0) and hence:

PA2(Cw) =
∑

ρ′∈FRuns(A2)
tr(ρ′)=w

PA2(Cρ′)

=
∑

s2,s′2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,
lst(ρ′0)=s2,lst(ρ

′)=s′2

PA2(Cρ′0) ·∆2(s2)(s
′
2)

Now let A1 s.t. A2 simulates A1 then, as∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0) =
∑
s1∈S1

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0) = 1

we get:

PA2(Cw) =
∑

s2,s′2∈S2

∑
ρ′0∈FRuns(A2)
tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2(Cρ′0) ·∆2(s2)(s
′
2) ·

∑
s1∈S1

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

=
∑
s1∈S1
s2,s′2∈S2

∑
ρ′0∈FRuns(A2)
tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2(Cρ′0) ·∆2(s2)(s
′
2)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

Since the terms are null if it is not the case that s1Rs2, we have:

PA2(Cw) =
∑
s1∈S1
s2,s′2∈S2

∑
ρ′0∈FRuns(A2)
tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2(Cρ′0) ·


∑
s′1∈S1

∆1(s1)(s
′
1) · δs1,s2(s′1)(s

′
2)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)



And since the terms are null if λ(s′1) 6= λ(s′2) = λ(lst(ρ)):

PA2(Cw) =
∑
s1∈S1
s2,s′2∈S2

∑
ρ′0∈FRuns(A2)
tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2(Cρ′0)
∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1) ·

δs1,s2(s′1)(s
′
2)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)


=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
s2∈S2
s′2∈S2

δs1,s2(s′1)(s
′
2) ·


∑

ρ′0∈FRuns(A2)
tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2(Cρ′0)∆1(s1)(s
′
1) ·

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)



Since
∑

s′2∈S2
δs1,s2(s′1)(s

′
2) = 1:

PA2(Cw) =
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
s2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,
lst(ρ′0)=s2

PA2(Cρ′0) ·∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

PA2(Cρ′0) ·∆1(s1)(s
′)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0(ρ0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1) ·

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

PA2(Cρ′0)µρ′0(ρ0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

·
∑

ρ0∈FRuns(A1)
ρ0∼ρ′0

lst(ρ0)=s1

PA2(Cρ′0)
PA1(Cρ0)

PA1(sim(ρ′0))

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)

PA1(sim(ρ′0))

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

PA2(Cρ′0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1) ·

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)

PA1(sim(ρ′0))
·PA2(Cw0)

By induction hypothesis, PA2(Cw0) = PA1(Cw0) hence:

PA2(Cw) =
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1) ·

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)

PA1(sim(ρ′0))
·PA1(Cw0)

and since PA1(sim(ρ′0)) = PA1(Cw0):

PA2(Cw) =
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1) ·

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0)

=
∑
s1∈S1

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0

lst(ρ0)=s1

PA1(Cρ0) ·
∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s
′
1)

=
∑

ρ0∈FRuns(A1)
tr(ρ0)=w0

PA1(Cρ0)∆1(lst(ρ0))(lst(ρ)) = PA1(Cw)

	Opacity for Linear Constraint Markov Chains
	 Béatrice Bérard and Olga Kouchnarenko and John Mullins and Mathieu Sassolas

