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Key points

• A mathematical model is developed for predicting the effects of repetitive intermittent

umbilical cord occlusions of variable severity on fetal cardiovascular and metabolic

responses.

• Our model is capable of reproducing the salient features observed in the various ovine

fetal experimental models such as fetal heart rate (FHR) decelerations, mean arterial

blood pressure (MABP) responses, pH, lactate and base deficit (BD) dynamics with

worsening mixed respiratory and metabolic academia.

• Our model also shows that the FHR variability, combined with secondary features of

FHR (such as overshoots) and MABP decline can serve as indicators of worsening fetal

acidemia with increased BD.

Abstract Fetal acidemia during labour is associated with an increased risk for brain injury

and lasting neurological deficits. This is in part due to the repetitive occlusions of the

umbilical cord (UCO) induced by the uterine contractions. While fetal heart rate (FHR)

monitoring is widely used clinically, it fails to detect fetal acidemia. Hence, new approaches

are needed for early detection of fetal acidemia during labour. We built a mathematical
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model of the UCO effects on FHR, mean arterial blood pressure (MABP), oxygenation

and the metabolism. Mimicking fetal experiments, our in silico model reproduces salient

features of experimentally observed fetal cardiovascular and metabolic behavior including

FHR overshoot, gradual MABP decrease and mixed metabolic and respiratory acidemia

during UCO. Combined with statistical analysis, our model provides valuable insight of the

labour-like fetal distress and guidance for refining FHR monitoring algorithms to improve

detection of fetal acidemia and cardiovascular decompensation.

Abbreviations FHR, Fetal Heart Rate; MABP, Mean Arterial Blood Pressure; UCO,

Umbilical Cord Occlusions; BD, Base Deficit, RMSSD, Root Mean Square of the Successive

Differences.

I. INTRODUCTION

One of the main issues during childbirth is the possibility of developing severe fetal

acidemia (pH < 7.0) caused by umbilical cord occlusions (UCO) due to repetitive uterine

contractions. The resulting increased risk of schemic brain injury can be associated with

acidemia [1]. The sudden compression of the umbilical cord leads to fetal hypertension

and fetal heart rate (FHR) decelerations, which are mediated through chemoreflex and

sympathetic stimulation [2–4]. Fetal oxygen delivery via umbilical cord is interrupted

and leads to hypoxemia and acute cerebral hypoxia [5–10]. In addition, FHR reduction and

oxygen deficiency also activate sympathetic and parasympathetic brainstem centers resulting

in changes of afferent and threshold efferent firing rates [11, 12]. These activities, in turn,

via efferent signaling, regulate FHR and systemic arterial blood pressure. Furthermore,

prolonged cord compression and/or repeated cord compressions may cause accumulation of

metabolites, such as CO2 and lactate, in the fetus, which contributes to acidemia [4, 13], as

well as prolonged cerebral hypoperfusion [14]. A comprehensive discussion on the dynamic

changes of the fetal circulation and blood flow distribution during hypoxia and asphyxia due

to different experimental disturbances can be found in a review paper [15].

Beyond the physiological understanding of the general process, a clinically relevant ques-

tion is how to monitor and predict the levels of fetal acidemia based on the available clinical

data so that the fetal brain can be protected by medical intervention. Since direct continuous

measurements of acidemia from fetal blood are not possible clinically and measurements can
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only be done intermittently in an animal model, attempt has been made to use statistical

approaches to make prediction of acidemia based on FHR [16]. However, current FHR-based

clinical algorithms do not provide an accurate prediction of acidemia [17]. This is because

there is no a priori knowledge of which FHR properties reflect acidemia best. Therefore,

a mechanistic modeling approach that can identify FHR properties related to acidemia will

provide valuable insights that are useful for developing more effective diagnostic tools.

Mathematical modeling and simulation are useful alternatives to experiments, especially

when they are too difficult or too expensive. One of the advantages of mathematical models

is that they allow us to conduct parametric studies easily. The physical quantities can

be easily tracked. A popular mathematical model in describing the cardiovascular system

coupled with the central nervous system has been proposed by Ursino [18], followed by

many related studies that can reproduce and predict the cardiovascular responses in various

systems successfully [19–23]. The drawback is that usually the biological system has a large

number of parameters, some of which are difficult or impossible to measure. This makes

analysis difficult and can easily introduce uncertainties and errors in the model. A similar

cardiovascular mathematical model was used to explore physiological mechanisms in postural

change and related physiology problems [24–26]. The common ground of those models

shared is the electric circuit analog, but in the meantime, Olufsen’s group also performed

mathematical analysis and sensitivity analysis [26] to better understand the model dynamics

and the impact of the parameters on outputs. A recent review on various models can be

found in [27].

The metabolic dynamics formulated using a deterministic approach, is based on the car-

diovascular model by Olufsen’s group and a similar (local) sensitivity analysis. A regulation

model is incorporated to provide cardiovascular feedback with respect to the arterial pres-

sure and substrate (oxygen, lactate, glucose · · · ) concentrations via central neural system,

following the works in [18, 21, 23, 28]. Details are revealed in section II. Furthermore, cur-

rent modeling includes biochemical processes with proper substrate transfer between blood

and organs is incorporated. As indicated by the experiments [13, 29], metabolic dynamics

is closely related to the development of acidemia in fetal sheep and accumulation of wastes,

such as CO2 and lactate, contributes to the decline in pH. A mathematical model can contin-

uously display both in time and space the evolution of implicated molecular concentrations,

unlike measurements.
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The present mathematical model consists of three elements: a lumped parameter model

for the cardiovascular circuit coupled with nervous regulation and reciprocal perfusion–

metabolism influences. This model is used to investigate the effect of UCOs on FHR, MABP

pattern and acidemia development. Our model reproduces some of the patterns observed

in animal experiments such as FHR overshoot, deceleration, MABP and pH decline, lactate

and CO2 increase. More importantly, we have confirmed correlation between RMSSD, a

statistical measure of FHR variability and critical levels of lactate and pH. On the other

hand, we have also shown that one has to be careful when applying RMSSD as a predictive

index. In particular, a variable window size should be used to compute RMSSD when the

occlusion duration varies instead of blindly applying standard signal processing techniques.

The rest of the paper is organized as follows. The model equations are given in section

II for different components. In section III, model calibration is discussed and a sensitivity

analysis is carried out to identify the most sensitive parameters in the mathematical model.

Numerical results motivated by different fetal experiments are presented in cardiovascular

responses in section III B and metabolic dynamics in section III C. Statistical analysis based

on contingency table and RMSSD are discussed in section III D. Finally a summary and

conclusion are given in section IV.

II. MATHEMATICAL FORMULATION

A. Cardiovascular system

Our model includes both maternal and fetal circulations. Similar to previous stud-

ies [24, 28], we use the electrical circuit analogs, where pressure p(t) is analogous to voltage,

volumetric flow rate q(t) to the current, and compliance Ci to capacitance. In addition, the

resistance R accounts for the viscous pressure drop in each element of the circuit. A schemat-

ics of the model with individual components is given in Fig. 1. We model the heart (both

in the maternal and fetal circulation) as an effective left ventricle [24], which has two ideal

valves on two sides. Two compartments are used to model the branching flow before and

after the ventricle, where pa and pv are computed [24]. Our model hearts are effective pumps

that produce the desirable cardiovascular outputs to maintain both maternal and fetal blood

circulations. The fetal systemic circulation is modeled as one compartment with subscript
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FIG. 1. Illustration of model setup. Our model includes two circulatory networks: maternal

circulation (top) and fetal (bottom) circulations. Resistors R and compliances C are indicated,

arrows giving blood flow direction, similar to [28]. In this mathematical domain sketch, ‘a’ stands

for artery, ‘v’ for vein, ‘um’ for umbilical cord, ‘mc’ for systemic part, ‘c’ for cerebral part, ‘ut’ for

uterine and ‘ivs’ for intervillous space.

‘mc’ (Fig. 1). While the remaining fetal circulation is considered as one compartment, the

umbilical cord and cerebral circulation are modeled separately with arteries and veins [28].

The maternal circulation system is coupled with the fetal circulation system through par-

tial oxygen pressure in intervillous space of the placental connected to the umbilical cord.

We adopt an oxygen transport model [30] and the oxygen distribution in the circulation

systems is given by the conservation of mass [28] including convection, diffusion and reac-

tion (metabolic uptake and consumption) in the circuit. The blood pressure and oxygen

content are coupled through a regulatory model on heart rate by the vagal–sympathetic

control [18, 28].
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The basic equations predicting blood pressure and flow can be obtained by computing

the volume V and its change for each compartment, V = Cp, where C is the compliance,

which plays the role of capacitance and p is the pressure for the corresponding compartment.

The change of volume in each compartment is then given by

dV

dt
= qin − qout. (1)

Analogy to the Ohm’s law provides a linear relation between pressure p and flow rates q

qi =
pin − pout

Ri

, (2)

where the subscript i stands for a (artery), v (vein), um (umbilical), c (cerebral; Fig.1). In

this study only the resistance in system is modelled while inertia is neglected [24] . With

compliances kept as constants, the equations for pressure change are given by

Ci
dpi
dt

= qin − qout. (3)

The fetal heart is modeled similarly as the left ventricle used in the study [24] (a combined

ventricle) where the details in pulmonary circulation and the ductus arteriosus are ignored.

The rate of volume change [24], is given by

dVh
dt

= smvqmv − savqav, (4)

where smv and sav are the indicator functions for valves with zero and one for a closed and

open valve, respectively. Conservation of volume V requires that dVtotal/dt = 0, where Vtotal

is the total volume of all compartments [24]. To model the branching before and after the

ventricle, flow rate satisfies the law of mass conservation [24, 25, 28], given by

qav = qac + qmc + qaum, (5)

qmv = qvc + qmc + qvum. (6)

The pressure-volume relationship is given by [24]

ph = a(Vh − b)2 + (c(t)Vh − d)g(t), (7)

where Vh, ph, and c(t) are the heart volume, pressure, and contractility, respectively. Here

g(t) = f(t)/f(tp) is an activation function that controls periodic oscillation. In maternal
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circulation, c(t) = cm is assumed to be a constant, while in fetal circulation c(t) = cf (t) is

regulated by β sympathetic activity (see 35 below) and f(t) is given by [24],

f(t) =

 pp(H) tn(β(H)−t)m
nnmm((β(H)−α)/(m+n))m+n , 0 ≤ t ≤ βh(H),

0, βh(H) < t ≤ T

where H is the heart rate controlled by the nervous system (Section II D), n and m char-

acterize the contraction and relaxation phases, tp and pp are the peak time and peak value

of the activation, and βh(H) is the time when the valve is closed and flow stops. According

to [24], the expressions for tp, pp and βh(H) are given by

tp = tmin +
θν

Hν + θν
(tmax − tmin), (8)

pp = pmin +
Hη

Hη + φη
(pmax − pmin), (9)

βh(H) =
n+m

n
tp(H) (10)

where ν and η are parameters that control the steepness of the sigmoidal change. Blood is

pumped out from heart into arterial system and flows through each individual compartment

such as the umbilical cord, cerebral and systemic compartment in fetal circulation system,

and returns to the heart via vein (Fig.1).

B. Metabolic model

The model for oxygen distribution is based on mass conservation [28, 30]. Oxygen con-

centration [O2] in each compartment is given by the following equations

d ([O2]ivsVivs)

dt
= qivs([O2]

m
in − [O2]ivs)− SO2,d, (11)

d ([O2]umVum)

dt
= qaum([O2]in − [O2]um) + SO2,d, (12)

d ([O2]cVc)

dt
= qac ([O2]in − [O2]c)−Omet,c, (13)

d ([O2]mcVmc)

dt
= qmc([O2]in − [O2]mc)−Omet,mc, (14)

where the subscript ivs stands for the intervilious space. Vi is the blood volume in compart-

ment i, qi is the flow through the compartment. The feeding oxygen concentration in fetus

is given by

[O2]in =
[O2]umq

a
um + [O2]mcqmc + [O2]cq

a
c

qav
, (15)
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while [O2]
m
in = 0.2 is fixed in maternal part [30]. SO2,d and Omet,i account for diffusion and

metabolic uptake, respectively [28, 30]. The oxygen diffusion in the placenta is determined

by the oxygen partial pressure difference between the intervillous space and the umbilical

cord (or umbilical microcirculation),

SO2,d = D(POivs
2
− POum

2
) (16)

with PO2 being the partial oxygen pressure andD is the mass transfer coefficient. The oxygen

concentration is related to the oxygen partial pressure by the following relation (subscript

omitted)

[O2] =
αHbS(PO2)

100
+ βPO2 , (17)

where α represents the maximum binding capacity of hemoglobin, Hb the hemoglobin con-

centration and β the content of dissolved oxygen. In addition, S in (17) is given by

S(PO2) =
100

1 + c1(PO2

3 + c2PO2)−1
. (18)

The metabolic uptake in equations (13, 14) is a constant when the oxygen supply is sufficient.

When oxygen concentration drops below a threshold concentration, [O2]th, it is assumed to

be a linear function of the oxygen concentration. Combining the two, we have

Omet =

 Omet,0, [O2] ≥ [O2]th,

Omet,0 +K([O2]− [O2]th), [O2] < [O2]th

for all fetal compartments [28]. In maternal circulation, we assume that oxygen supply is

sufficient [28, 30].

As an indicator for asphyxia (due to prolonged UCO typically), we model CO2 distri-

bution, using the law of mass conservation equation for CO2 in each fetal compartment as

following

d ([CO2]umVum)

dt
= qaum([CO2]in − [CO2]um) +DCO2(PCO2

ivs − PCO2

um), (19)

d ([CO2]cVc)

dt
= qac ([CO2]in − [CO2]c) +Mc, (20)

d ([CO2]mcVmc)

dt
= qmc([CO2]in − [CO2]mc) +Mmc +MpH, (21)

where [CO2]in is given by

[CO2]in =
[CO2]umq

a
um + [CO2]mcqmc + [CO2]cq

a
c

qav
. (22)
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DCO2 is the diffusion coefficient, PCO2 the partial pressure of carbon dioxide, Mi the pro-

duction rate of [CO2]i and MpH is given by

MpH = 0.1
([H+]− 40)

2

1 + ([H+]− 40)2
. (23)

We assume that CO2 is cleared in the placenta and PCO2

ivs = 40 mmHg is fixed. In addition,

we assume that the production of carbon dioxide is related to the metabolic rate of oxygen

and MCO2 = KOmet [31] with a constant K (taken to be 0.2 in this study). The partial

pressure of carbon dioxide relates to the concentration linearly as [32]

[CO2] = KCO2PCO2 + kCO2 , (24)

where KCO2 and kCO2 are scaling constants.

To assess the acidity level [13, 17, 33], lactate and pH values that are usually measured in

fetal animal experiments, are include in our model (Fig. 2). Following [34, 35], we consider

FIG. 2. Illustration of the simplified metabolic process in certain compartment in the model. Left

(right) column stands for artery (vein).

pyruvate, glucose and lactate related metabolic pathways in the fetal body or systemic com-

partment, in particular, anaerobic glycolysis, pyruvate reduction, glycoeogenesis, glycogen

synthesis and breakdown, lactate oxidation, lactate buffering. The equations for glucose

(GL), lactate (LA) and pyruvate (PY), from literature [35], which is solving a coupling
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between cardiovascular and metabolism for excises, are

V
d[GL]

dt
= q (GLin − [GL]) +mφGY b

PS

PS + kGY b
[GY]

− φGLb
PS

PS + kPSGLb

[GL]

RS/kRSGLb + 1
− φGY s

[GL]

PS/kGY s + 1
(25)

V
d[PY]

dt
= q (PYin − [PY]) + 2φGLb

PS

PS + kPSGLb

[GL]

RS/kRSGLb + 1

− φPY r
RS

RS/kPY r + 1
[PY ]− φPY o

RS

RS/kPY o + 1
[PY]

+ φLA
1

RS/kLAo + 1
[LA] (26)

V
d[LA]

dt
= q (LAin − [LA]) + φPY r

RS

RS/kPY r + 1
[PY]− φLA

1

RS/kLAo + 1
[LA] (27)

where the first term on the right hand side of the equations models convective exchange, [∗]in
is the arterial concentration (Eq. (15)), PS = [ADP ]/[ATP ] and RS = [NADH]/[NAD],

which are picked as constants in [34] as 0.13 and 0.11 respectively, GY is Glycogen whose

concentration is much larger than the rest (table 2 in [34]) and hence is treated as a constant

in current model, φ[∗] is the reaction rate accordingly and k[∗] are constants. In addition,

the subscripts are short names for different stoichiometry GY b(GY → mGL), GY s(mGL→

GY), GLb(GL→ 2PY), LAo(LA→ PY), PY r(PY → LA).

A close inspection reveals that the kinetic coefficients in front of substrates are effec-

tively (unknown) constants and we tune those to fit the experimental measurements. Using

simplifying notations, we obtain

dV [GL]

dt
= q (GLin − [GL]) +K1 −K2[GL], (28)

dV [PY]

dt
= q (PYin − [PY]) +K3[GL]−K4[PY] +K5[LA], (29)

dV [LA]

dt
= q (LAin − [LA]) +K6[PY]−K5[LA], (30)

where Ki are constants. Constant concentrations for GL,PY,LA are imposed in cerebral

and umbilical cord compartments (Table II). This needs to be modified when asphyxia is

fully developed [14], which is beyond of the scope of current paper.

The effect of pH is not included in lactate equation (30), which is modified by adding the

production due to deprotonation of lactic acid,

dV [LA]

dt
= q (LAin − [LA]) +K6[PY]−K5[LA] +K10[H

+]. (31)

10



In addition, we add an equation for [H+] which takes into account two sources of acidity:

lactate dehydrogenase and CO2 accumulation, since under umbilical cord occlusion, experi-

mental reports show significant waste accumulation (especially CO2). We use the following

equation [36]

dV [H+]

dt
= q

(
Hin − [H+]

)
+K7[LA] +K8[CO2]−K9, (32)

where K7 and K8 are coefficients for [H+] accumulation due to increased level of lactate and

CO2; K9 accounts for the ATP consumption among other effects, which is assumed to be an

effective constant that helps to restore normal [H+] level.

C. Effectors

Following [18, 23], there are a few effectors in the model. For autoregulation in fetal

brain, we use the following equation [23],

dRcmc

dt
=
R∗cmc −Rcmc

τRcmc
(33)

where

R∗cmc =
Rcmc,min +Rcmc,maxe

(
[O2]a−[O2]a,n

kcmc

)

1 + e

(
[O2]−[O2]a,n

kcmc

) (34)

Once the oxygen is low, the reduced resistance will allow more flow to the brain. This acts

in opposite direction as the one in systemic circulation (Eq. 37).

The fetal heart contractility cf (t) in Eq. (7) is regulated by sympathetic nervous control

that targets mainly β-adrenergic receptors with a firing rate fsh (Section II D).

4c = Gc ln

(
fsh − fes,min + fs1

fs1

)
(35)

which is set to zero if fsh < fes,min.

The compliance Cv and resistance Rmc [23] are regulated by sympathetic nervous system

that targets mainly α-adrenergic receptors with a firing rate fsp,

4Cv = Gv ln

(
fsp − fes,min + fs1

fs1

)
, (36)

4Rmc =
Rmc,min +Rmc,maxe

(
fsp−fsp,n
krmc

)

1 + e

(
fsp−fsp,n
krmc

) . (37)
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D. Afferent/efferent pathways

Changes in blood and oxygen partial pressures trigger nervous responses via baro- and

chemoreceptors. Their effects on heart rate have been described [18, 21, 23], modified in the

present work, and incorporated in the model. In particular, the period of heart pumping

motion T , is given by T = T0 +4Ts+4Tv, where T0 = τ0 +Ts0 +Tv0 with τ0 an offset term,

Ts,v0 the baseline values of sympathetic/vagal contribution and 4Tv,4Ts are determined by

d4Tv(t)
dt

=
1

τT,v
(−4Tv(t) +GT,vfv(t−DT,v)− Tv0) , (38)

d4Ts(t)
dt

=
1

τT,s

(
−4Ts(t) + ḠT,sfs(t−DT,s) +G′T,s (fs − fs0)

)
. (39)

Here τT,v and τT,s are the respective time constant, GT,v and ḠT,s, G
′
T,s the gains, DT,v and

DT,s the delay of the vagal and sympathetic responses. In the results presented in this paper,

they are set to zero. At equilibrium state, the second and third terms in the right hand side

of Eqs. 38 and 39 vanish, which leads to 4Tv → 0 and 4Ts → 0, so that the baseline period

is recovered at T = T0. Finally, fv and fs are given by

fv = Wb,v
fev,min + fev,maxe

(fab−fab,n)/kev

1 + e(fab−fab,n)/kev
+Wc,vfac + fvh, (40)

fs = ln

(
fsh − fes,min + fs1

fs1

)
, (41)

with

fvh =
fvh,min + fvh,maxe

(PO2c
−PO2c,0

)/kvh

1 + e(PO2c
−PO2c,0

)/kvh
− fv,o, (42)

fsh/sp = fes,∞ + (fes,0 − fes,∞)ekes(−Wb,sh/spfab+Wc,sh/spfac−fsh/sp,o), (43)

where fab and fac are the afferent baro- and chemoreceptor firing rates, respectively, and

fsh/sp,o is the hypoxia offset that creats a threshold for sympathetic response. In addition,

fs = 0 when fsh/sp < fes,min, and fs = fes,max when fsh/sp exceeds a threshold value fes,max.

Furthermore, the baro- and chemoreceptors afferent firing rates fab and fac are governed by

the following first order ODE [23]

dfab
dt

=
f ∗ab − fab
τab

,
dfac
dt

=
f ∗ac − fac
τac

,
dp̄

dt
=
pa − p̄a
Np

(44)
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where according to [37]

f ∗ab =
fab,min + fab,maxe

p̄−pn
τkab

1 + e
p̄−pn
τkab

, (45)

f ∗ac =
fac,max + fac,mine

PO2a
−PO2n
τkac

1 + e
PO2a

−PO2n
τkac

(
K̄ ln

(
Pmc
CO2

Pmc
CO2,n

)
+ 1

)
, (46)

p̄a =
1

Np

∫ t

0

pa(s)e
−ψ(t−s)ds, (47)

where p̄a is the mean arterial blood pressure. The formula used in [23] is recovered when

Pmc
CO2

is in the normal range and fac rises when Pmc
CO2

increases. Unless otherwise stated,

K̄ = 1.

The normalization factor Np is introduced to ensure that the correct mean arterial blood

pressure is calculated [24],

Np =

∫ t

0

e−ψ(t−s)ds =
1− e−ψt

ψ
. (48)

The offset value fsh/sp,o in Eq. (43) is determined by

dfsh/sp,o
dt

=
f ∗sh/sp,o − fsh/sp,o

τisc
(49)

where

f ∗sh/sp,o =
fsh/sp,min + fsh/sp,maxe

(
PO2a

−PO2a,n
kisc,sh

)

1 + e

(
PO2a

−PO2a,n
kisc,sh

) . (50)

Due to hypoxemia in fetal circulation, the vagal firing rate increases, hence decreasing FHR.

The sympathetic response has the opposite effects [11, 38].

To take into account of the apparent mutual inhibition of sympathetic and vagal nerves,

we model the sympathetic gain ḠT,s as a sigmoidal function of vagal firing rate fv,

ḠT,s =
δGT e

fv−fvn
τgs

1 + e
fv−fvn
τgs

, (51)

which shows the sympathetic gain tends to the minimal value as the vagal firing rate increases

due to the inhibition effect as mentioned. Similarly, we introduce the following for the vagal

gain GT,v

GT,v =
GTv,max +GTv,mine

− fsh−fshn
τgv

1 + e
− fsh−fshn

τgv

, (52)
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It was pointed out [39–41] that the gains may depend on pressure and other dynamic vari-

ables. For simplicity, they are chosen as constants in current model. Meanwhile, we assume

that the sympathetic and vagal activity in system are mutually inhibitory and mediated

via the chemoreceptors and baroreceptors (see (51) and (52)), which is consistent with the

physiological explanations [9].

In summary, the above set of equations form a coupled system. Due to the nonlinear

nature of the equations, they are solved numerically using Matlab solver ode15s and sub-

routines sens sys and sens ind, which are given in [42], for sensitivity analysis.

III. RESULTS AND DISCUSSION

Two control parameters are used to measure UCO severity: 1) the ratio between the

occlusion and the recovery durations and 2) the occlusion degree (partial or complete). As

we show below, the effects of these parameters on FHR are significant.

A. Model calibration: baseline values and sensitivity analysis

As in many cardiovascular models [18, 24, 28], the parameter space is large. Most of the

parameter values are obtained from the literature and the remaining ones are calibrated by

comparing our model outputs with available experiments. For example, GTv ∼ 0.04 is taken

instead of 0.09 used for the adult model [18, 28] to reflect the fact that the vagal control in

fetus is not as mature. G′T,s, δGT are tuned to achieve a reasonable reduction in FHR for

fetus. The values of adjusted parameters are given in Tables I and II.

1. Baseline case

Several important and clinically relevant quantities are listed in Table III, which is the

baseline case used for our model calibration. The predicted values from our model are

consistent with experimental data. At the onset of a complete UCO, the flow rate in umbilical

cord qa,vum = 0 and O2 exchange SO2,d = 0 in the corresponding transport equations (Section

II). The flow is stopped in the umbilical cord compartment and the O2 and CO2 cannot be

delivered continuously between placental and fetal circulations. Mild and moderate UCOs
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represent partial occlusions, where the passed flow is set to be 50% and 25% of the normal

case respectively [33]. The severe case refers to as the complete occlusion regarding the

degree.

From the experimental point of view, FHR and MABP are two important quantities

often used in modeling and monitoring fetal acidemia with FHR being the single quantity

available clinically. One important feature of FHR in experiments with repetitive UCOs is

its significant drop during occlusions. In our model it is assumed that the sympathetic and

vagal activities are mutually inhibitory and mediated via baro- and chemoreceptors (Eqs. 51

and 52) [9]. FHR does not change markedly when these mechanisms are blocked [23].

FHR overshoot and MABP decline are determined by systemic vascular resistance, my-

ocardial contractility, and venous compliance under the central nervous control as proposed

in the literature [23]. We tune the parameters Gc and Gv in Eqs. (35) and (36) for the

myocardial contractility and venous compliance, respectively, to achieve FHR overshoot and

MABP decline comparable to experimental data. In most cases, sufficient control is achieved

with Gv = 0, namely, the venous compliance is chosen as a constant [24]. However, for 1:5

UCO, a nonzero Gv is used to reproduce experimental data [3, 29].

2. Sensitivity analysis

We carry out a local sensitivity analysis on model parameters according to [26], using

Matlab subroutines, sens sys and sens ind [42].

Suppose the system of equations can be written as

dX

dt
= F (X, t,p), (53)

where X denotes the state variables, and p = [p1, p2, · · · pn] stands for the parameters. Then

the relative sensitivity matrix is defined as

Sij(t,p)|p=p0 =
∂Xi(t, p)

∂pj

pj
Xi(t, p)

|p=p0 , pj, Xi 6= 0. (54)

We compute a maximum relative sensitivity

Sj = max
i

(
max
k
Sij(t, p)

)
|p=p0 . (55)

We conduct simulations over a period of 500 seconds during which data were recorded.

A ranking of parameter sensitivity (Fig. 3) and associated histogram (Fig. 4) illustrate
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the distribution of most to least sensitive parameters. Some parameters appearing in the

regulation model are most sensitive. Many kinetic coefficients appear to be less sensitive [45].

We listed top 10 most sensitive parameters in table IV with their effects.

Our simulation approach differs from that of [26], in which high quality data were avail-

able. In that case, an optimization procedure is used to fit model output to experimental

data. The sensitivity analysis further helps to reduce the computational cost as optimiz-

ing the most sensitive parameters suffices to obtain robust results. Unfortunately, we do

not have high quality experimental data as in [24] at this stage. Our sensitivity analysis

can only point out most important controlling parameters that can guide potentially future

experiments.

B. Cardiovascular dynamics: FHR and MABP hehavior

We studied the one minute occlusion scenario, a clinically relevant case. The recov-

ery time for one minute complete occlusion, that is, the UCO frequency, influences the

system behavior significantly. Based on our in silico experiments, for 1:2.5 UCO, FHR

overshoot appears after about two and half hours and acidosis develops, as demonstrated in

vivo [3, 4, 29]. In contrast, 1:5 UCO scenario does not show any significant FHR overshoots

and acidosis, as shown in the literature [29]. The numerical results displayed in Fig. 5,

show the typical time variations of FHR and MABP at the early and late stages of occlu-

sion, respectively. For 1:2.5 UCO, FHR deceleration appears once the occlusion starts. The

pronounced FHR overshoot occurs only after a delay of approximately 3 hours, in agreement

with experiments [29]. This is accompanied by an eventual decline in MABP after approxi-

mately 2 hours. At the early stage of the occlusions, MABP rises as soon as the occlusion

starts [4, 17]. The inset in the bottom panel of Fig. 5 (for 1:5 UCO) shows that MABP

rises during each occlusion period, even after numerous repetitive occlusions, as expected,

but this initial rise tends to disappear in 1:2.5 UCO (left bottom panel). This is again in

agreement with experiments [43], hypotension being expected when pH drops below 7.2.

The difference in 1:5 and 1:2.5 UCOs indicates that with a sufficient time for recovery, the

regulation is able to maintain the blood pressure level and avoid instability. The detailed

mechanism is still unknown and in the real situation, the regulatory functions represented by

Eqs. (35) and (36) may depend on time-dependent or memory-related factors. Overall, the
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FIG. 3. Results of sensitivity for 70 parameters used in the model. The vertical axis is calculated

based on Eq. (55).
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FIG. 4. Histogram of ranked parameters showing the distribution from most to least sensitive

parameters.

results in Fig. 5 demonstrate a reasonable agreement between experimental and numerical

data. We will compute the correlation of FHR, MABP, and acidosis in Section III D, as well

as the output of the metabolic model.

In addition, intermediate rise occurs typically in FHR and MABP in each occlusion for

1:2.5 UCO, when the FHR overshoot is pronounced. Similar intermediate rise was reported

in [3], where in the UCO 1:2.5 group, FHR initially recovers after the occlusion but rapidly

falls again before returning to the baseline value eventually. In our case, the trend is similar

but it appears earlier than experiments, with a relatively larger magnitude. We suspect that

it is caused by some system delay factor. Eqs. 38 and 39 contain delay variables DTv and

DTs . These are set to zero here because: 1. the delay model in the literature was developed

for adults and the correct parameter values are unknown for fetuses; 2. computational cost

is much higher for a delayed differential equation system for 4-hour simulations rather than

a few minutes as in [24]). In addition, this transient growth due to delay does not seem to

affect the general feature of our model outcome including the metabolic dynamics (reported

below).

Fig. 6 displays the numerical results of FHR and MABP for variable UCOs. Complete

UCO with varying frequency were motivated by experiments carried out in [13]. The FHR

overshoot occurs only after a delay of more than two hours for the 1:2 UCOs, and MABP
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FIG. 5. Numerical results of FHR and MABP for 1:2.5 and 1:5 UCO. Numerical results

for four hours of occlusions with 1:2.5 UCO (left) and 1:5 UCO (right). Gc = 0.27 and Gv = −0.67

are used in simulation with 1:5 UCO. The dashed lines in the upper left panel divide the time

periods into four one-hour windows. The first dashed line marks the beginning of the occlusions.

The middle row displays a zoom of 5 (left) and 10 (right) minute windows for each case at the

beginning of the occlusion, and the bottom row 5 (left) and 10 (right) minute windows near the

end of occlusions. The black bar indicates the occlusion duration. The inset of the right bottom

panel shows that MABP rises slightly at the beginning of each occlusion, and then declines.

declines from the second hour for 1:3 UCOs. This is consistent with Fig. 5 in that relatively

small frequency promotes the MABP decline and FHR overshoot. Constant frequency UCOs

with varying degrees mimic experiments in [38]. Mild occlusion has little effect, but moderate

occlusion decreases FHR (∼ 10 mmHg) to lesser extent to complete UCOs (∼ 70 mmHg). As

in [38], after two hours of severe UCOs, pH drops below 7.0. Therefore, the FHR overshoot

instability may be correlated with the worsening acidemia.

19



50 100 150 200 250

50

100

150

200

230 231 232 233 234 235

50

100

150

time (min)

F
H

R
 (

b
p
m

) 
 

M
A

B
P

 (
m

m
H

g
)

225 226 227 228 229 230

50

100

150

200

time (min)

50 100 150 200 250

50

100

150

200

F
H

R
 (

b
p
m

) 
 

M
A

B
P

 (
m

m
H

g
)

20 22 24 26 28 30

50

100

150

200

F
H

R
 (

b
p
m

) 
 

M
A

B
P

 (
m

m
H

g
)

120 121 122 123 124 125

50

100

150

200

FIG. 6. Numerical results of FHR and MABP for variable UCO. Left panel: Complete

UCO with varying occlusion frequency (1:5 UCO for the first, 1:3 for second, and 1:2 for the third

and fourth hours). Right panel: Constant frequency UCOs with varying occlusion degree (mild

occlusion during the first, moderate during the second, and severe during the third and fourth

hours). Dashed lines are inserted to divide the periods into four windows, each representing one

hour. The left dashed line marks the beginning of occlusions. The middle row represents 5-minute

windows at the beginning of the occlusion, and the bottom row 5-minute windows near the end of

occlusions. The black bar indicates the occlusion duration.

C. Metabolic dynamics

To assess the fetal acidemia, a simplified metabolic model is coupled with the cardiovas-

cular model to evaluate pH as well as BD defined by Eq. (56) (see also [13])

BD = −(0.02786PCO210pH−6.1 + 13.77pH− 124.58). (56)
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FIG. 7. Numerical results of pH, lactate, PCO2 and BD for 1:2.5 and 1:5 UCO. Time

variations of pH, lactate, PCO2 in the systemic compartment and BD for 1:2.5 UCOs (left) and

1:5 UCO (right). The ′◦′ symbol represents the mean values over 5 minutes after occlusion begins.

The ′+′ symbol represents experimental data (table 1 in [4]).

In particular, we computed the variations of lactate, [H+] and PCO2 in the systemic com-

partment to compare with the experimental data.

Fig. 7 shows several experimentally measurable quantities over 4-hour occlusions. Agree-

ment is shown when comparing with the data extracted from [4]. Corresponding to the FHR

overshoot instability for 1:2.5 UCO in Fig. 5, we find that pH drops below 7.00 and lactate

accumulates beyond 10 mM. On the other hand, pH remains in the normal range for 1:5

UCOs, even after four hours of repeated occlusions [4, 29]. pH, lactate and PCO2 remain

close to baseline values. The results depicted in Fig. 8 for variable UCOs captured the ex-

perimental data trend. Relatively low-frequency UCOs and completely occluded UCOs have

greater influence than those with higher frequency or partially occluded UCOs. The fetal

acidosis occurs for severe UCOs, indicated by the BD values and FHR overshoot instability.
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FIG. 8. Numerical results of pH, lactate, PCO2 and BD for variable UCOs. Time

variations of pH, lactate, PCO2 and BD in the systemic compartment for complete UCO with

varying frequency (left column; 1:5 UCO for the first, 1:3 for second, and 1:2 for the third and

fourth hours) and UCO of varying degree with constant frequency (right column: mild occlusion

during the first, moderate during the second, and severe during the third and fourth hours). In

the simulations displayed by the left column, K7 = 35 × 10−6 s−1 in Eq. 32 and K6 = 5 s−1 are

chosen to match with the experimental pH variation; kCO2 = 0.008 in Eq. 24 is chosen to match

the baseline value of PCO2 = 52.7± 0.9 mmHg in the experiments [13]. The remaining parameters

are given in Tables I and II.

In an attempt to quantify the relationship of these variables, we compute the correlations

between relevant quantities in Section III D.
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D. Statistical Analysis

We begin this section by computing the contingency table for each case discussed earlier.

In order to make a direct comparison with experimental data, we also present some analysis

on RMSSD, an index of vagal modulation of heart rate variability.

We examined correlations between acidemia quantified by BD and lactate on one hand

and FHR and MABP on the other. Due to the cyclical nature and time dependency, classical

Pearson correlation is not applicable to the data considered here. Therefore, we discretize

the original signal into binary time sequences with 1 indicating the occurrence of an anomaly

and 0 otherwise. An anomaly is defined as an event when an observation occurs outside

an estimated confidence interval of long term average. We use the mean µ̃ and standard

deviation σ̃ to set a threshold value, µ̃± 2σ̃, in order to sort out the relevant quantities. For

example, when the FHR (or BD or lactate) is larger than the upper bound threshold value

µ̃ + 2σ̃, these quantities are set to 1, otherwise to zero. Similarly, when MABP is smaller

than the lower bound of the threshold value µ̃−2σ̃, the MABP is set to 1, otherwise to zero.

Contingency tables are then constructed for each pair based on the simultaneous occurrence

of 1s and 0s.

For 1:2.5 UCOs, representative tables are constructed by taking the last two hours of

simulation data, given in Table V. The counts in each cell record the total number of

occurrence for one combination between two discretized time sequences. For example, the

first cell in each table records the total numbers of normal occurrence in both time series.

To search possible correlations among FHR, MABP, lactate, and BD, two statistical tests

are carried out. The first is the traditional Chi-square test and the second is on the odds ratio

derived from each contingency table. Both tests reject the hypothesis that these variables

are independent with very small p-values (p < 0.0001). Therefore, we conclude that the

anomalies in these sequences are indeed correlated with each other. Same conclusion can

be drawn for UCOs with varying frequencies (Table VI). These findings are consistent with

our results in Sections III B and III C, as FHR overshoot, MABP declines, and lactate level

increase becomes significant when large BD value appears near the end of the occlusions.

However, our results from Table VII for UCOs with variable occlusion degrees suggest

that contingent table along may not be sufficient to reveal the subtle relationship among

FHR and MABP and BD. Following [11, 38, 48]) via Eq. 57, we compute RMSSD based on
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FIG. 9. Computed RMSSD with a sampling frequency of 4 Hz and BD for UCOs with

varying occlusion degrees (left) and varying frequencies (right). Patterns of FHR (top),

RMSSD and BD (middle), and the corresponding representative experimental results [46] and [47]

(bottom). In the middle row, RMSSD is computed using 5-minute windows for the left column.

For the right column, RMSSD is computed using both 3- (cross-symbol) and 5-minute (dashed

line) windows.

our FHR output

RMSSD =

√√√√ 1

N − 1

(∑
i

Di

)
, (57)

where Di = |Pi+1 − Pi|2 with Pi the period between two maximum peaks and N is the

number of intervals within a certain window. For the case in the left column of Fig. 9,

where the frequency is varying, the computed RMSSD qualitatively captures the trend of

experimental data, which is displayed in the bottom panel (the discrepancy in magnitude is

due to sampling frequency). As occlusion proceeds, RMSSD increases monotonically. The

contingency tables do not exhibit significant correlation for this case. However, based on our

pH and BD results, we obtain significant increase in RMSSD when acidosis occurs, compared

to the baseline values.

In contrast, RMSSD is overestimated for moderate occluded UCOs as soon as occlusion
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occurs (middle right panel using 5-minute window as indicated by the dashed line) while no

obvious increase is observed afterwards. This is similar to a representative set of experimental

data [47] (bottom right panel).

Interestingly, if we reduce the window size, the computed RMSSD evolves very differently.

For example, RMSSD using a 3-minute window (cross-symbols, middle right panel of Fig. 9)

gradually increases as UCOs proceed and acidosis develops. This suggests that, in addition

to the importance of sampling frequency [48], a proper window size is also important.

IV. CONCLUDING REMARKS

We have investigated the cardiovascular and metabolic responses to UCOs in a fetal sheep

circulation using a mathematical model. Our model comprises a cardiovascular circuit, a

simplified metabolic model, and nervous control of blood pressure and oxygen content by

baro- and chemoreceptors [18, 23, 28]. Waste accumulation in the systemic compartment,

such as CO2 and lactate, is solved simultaneously with the cardiovascular response.

Our mathematical model produces the pattern observed in animal experiments, including

FHR decrease and overshoot, MABP and pH decline, and increased levels of lactate and

CO2. In particular, the development of the cardiovascular and metabolic responses in our

model are the result of sufficiently long lasting repetitive occlusions. In other words, acidosis

depends on the total duration of occlusion rather than on an individual event, as in [17].

In addition, the FHR decrease, FHR overshoot, and MABP response evolve accordingly to

observations obtained using various experimental scenarios. In particular, our results from

1:5 and 1:2.5 UCO demonstrate the possibility that properly functioning effectors (cardiac

contractility, systemic resistance, and venous compliance) are able to main the blood pressure

level and avoid instabilities in FHR. Our simplified metabolic model reproduces measured

changes in pH, lactate, and glucose. Although expected correlation between FHR overshoot,

MABP decline, and acidosis (quantified by BD) can be obtained when the occlusion is

complete, our results suggest that the correlation analysis may fail when the UCO degree

varies significantly. In that case, we show RMSSD is able to qualitatively predict acidemia.

The choice of window size is important in computing RMSSD when UCO frequency

varies. Uterine contractions during labour varies in frequency and degree. Therefore, the

usual choice of fixed window size may affect the results obtained in [48], in addition to the
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sampling frequency. A proper combination of FHR monitoring and RMSSD computation

may then be used to detect acidemia.

One limitation of our model is that, as other mathematical biology models in the litera-

ture, the parameter space is large, despite our effort to keep the model simple. Although the

sensitivity analysis has been carried out, physiological parameters are difficulty to estimate

accurately. We plan to use statistical modeling to control the uncertainty in parameters in

the future work [49]. Another limitation deals with the simplified metabolic process. A more

detailed model will potentially improve predictions of impaired supply of nutrients [50]. The

transport equations are used with relatively simple kinetic reaction terms involving only O2,

CO2, pyruvate, lactate, glucose and [H+] in the systemic compartment. Nevertheless, more

experimental data will be needed to properly model the kinetics and regulation.
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TABLE I. Parameter values.

parameter (cardiovascular model) value parameter value

cf (mmHg/cm3) 0.9 cm (mmHg/cm3) 1.5

dm (mmHg) 1.1264 df 5

ψ (1/s) 0.05 Hm (1/s) 0.9

Ca (ml/mmHg) 0.8 Cv (mmHg s/ml3) 3.5

Cum (ml/mmHg) 1.1 Cc (mmHg s/ml3) 0.057

Ra (mmHg s/ml3) 0.045 Rv (mmHg s/ml3) 0.27

Rmc0 (mmHg s/ml3) 1.5 Rumv (mmHg s/ml3) 0.015

Rcv (mmHg s/ml3) 0.015 Rcmc0 (mmHg s/ml3) 10.485

parameter (regulation model) value parameter value

Rmc,min (mmHg s/ml3) 0 Rmc,max 11.25

T0 (s) 0.406 Tv0 (s) 0.373

Ts0 (s) -0.177 PO2a,n (mmHg) 7.5

fevmin (1/s) 3.2 fevmax (1/s) 6.3

fesmin 2.66 fesmax 60

fes0 16.11 fesinf 2.1

fvn (1/s) 10 τgs (1/s) 0.05

fshn,0 (1/s) 8 τgv (1/s) 0.04

kes 0.0675 kev (mmHg−1) 7.06

Wcv 0.2 Wbv 1

GT,s (s2) -0.13 GT,v (s2) 0.04

G′T,s (s2) 0.046 δGT (s2) 0.1235

τT,s (s) 6 τisc (s) 30

fac (mmHg) 11 fab,n (mmHg) 25

Gc 0.27 Gv -0.17
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TABLE II. Parameter values.

parameter (metabolic model) value parameter value

[O2]a,0 (ml3 O2/ml3 blood) 0.04 ka 0.005

Kf (ml3 blood) 9.33 [O2]th (ml3 O2/ml3 blood) 0.068

KCO2 (ml3 O2/ml3 blood/mmHg) 0.244 kCO2 (ml3 O2/ml3 blood) 0.007

DCO2 (ml CO2/s/mmHg) 0.1 kum (ml CO2/s) 0.2

GLa (mM) 1 LAa (mM) 0.8

Pya (mM) 0.12 [H+]a (nM) 40

K1 (mM/s) 100 K2 (1/s) 40

K3 (1/s) 0.4 K4 (1/s) 4

K5 (1/s) 0.5 K6 (1/s) 10

K7 (10−61/s) 55 K8 (nmol/s) 10

K9 (nM/s) 15 K10 (106 1/s) 0.2

TABLE III. Clinically relevant quantities.

Baseline case

physical quantity reference/target value model output

FHR (bpm) 135 [28], 163±5 [43] 148

mean fetal arterial p̄a (mmHg) 55± 5 [4], 46±2 [8] 52.5

umbilical PO2 (mmHg) 18 [28] 17.6

cerebral PO2 (mmHg) 10±1 [7] 12.3

systemic PCO2 (mmHg) 45.5±2 [4] 52.7± 0.9 [38, 43] 47.5

intervillous space PO2 (mmHg) 23.3 [28, 44] 23.2

systemic lactate (mM) 1.6±0.2 [38] 2.1

systemic pH 7.36± 0.1 [38], 7.4±0.01 [4] 7.25
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TABLE V. Contingency tables for 1:2.5 UCO. X represents for the binary series for FHR,

MABP and lactate from left to right respectively, while Y represents for BD.

Y = 0 Y = 1

X = 0 3303 266

X = 1 4 27

Y = 0 Y = 1

X = 0 3167 251

X = 1 140 42

Y = 0 Y = 1

X = 0 3204 31

X = 1 103 262

TABLE VI. Contingency tables for UCO with various frequencies. X represents for the

binary series for FHR, MABP and lactate from left to right respectively, while Y represents for

BD.

Y = 0 Y = 1

X = 0 3250 324

X = 1 4 22

Y = 0 Y = 1

X = 0 3137 304

X = 1 117 42

Y = 0 Y = 1

X = 0 3151 74

X = 1 103 272

TABLE VII. Contingency tables for UCO with various degrees. X represents for the binary

series for FHR, MABP and lactate from left to right respectively, while Y represents for BD.

Y = 0 Y = 1

X = 0 3220 376

X = 1 2 2

Y = 0 Y = 1

X = 0 3135 372

X = 1 87 6

Y = 0 Y = 1

X = 0 3118 92

X = 1 104 286
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