J. Boissonnat, R. Chaine, P. Frey, G. Malandain, S. Salmon et al., From arteriographies to computational flow in saccular aneurisms: the INRIA experience, Medical Image Analysis, vol.9, issue.2, pp.133-143, 2005.
DOI : 10.1016/j.media.2004.11.004

URL : https://hal.archives-ouvertes.fr/hal-00017614

A. Caiazzo, G. Montecinos, L. Müller, E. Toro, and E. Haacke, Computational haemodynamics in stenotic internal jugular veins, Journal of Mathematical Biology, vol.4, issue.3, pp.745-772, 2015.
DOI : 10.1007/s00285-014-0778-7

J. Cebral, M. Castro, S. Appanaboyina, C. Putman, D. Millan et al., Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity, IEEE Transactions on Medical Imaging, vol.24, issue.4, pp.457-467, 2005.
DOI : 10.1109/TMI.2005.844159

V. Chabannes, M. Ismail, C. Prud-'homme, and M. Szopos, Hemodynamic simulations in the cerebral venous network: A study on the influence of different modeling assumptions, Journal of Coupled Systems and Multiscale Dynamics, vol.3, issue.1, pp.23-37, 2015.
DOI : 10.1166/jcsmd.2015.1062

URL : https://hal.archives-ouvertes.fr/hal-01109767

C. Corsini, C. Baker, E. Kung, S. Schievano, G. Arbia et al., An integrated approach to patient-specific predictive modeling for single ventricle heart palliation, Computer Methods in Biomechanics and Biomedical Engineering, vol.84, issue.1, pp.1572-1589, 2014.
DOI : 10.1080/10255840903413565

URL : https://hal.archives-ouvertes.fr/hal-00918643

M. Ford, G. Stuhne, H. Nikolov, D. Habets, S. Lownie et al., Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics, IEEE Transactions on Medical Imaging, vol.24, issue.12, pp.1586-1592, 2005.
DOI : 10.1109/TMI.2005.859204

L. Formaggia, K. Perktold, and A. Quarteroni, Basic mathematical models and motivations, Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System, 2009.
DOI : 10.1007/978-88-470-1152-6_2

A. Fortin, E. Durand, and S. Salmon, Extension of an MRI Simulator Software for Phase Contrast Angiography Experiments, International Symposium on Biomedical Simulation (ISBMS) Lecture Notes in Computer Science, vol.8789, pp.150-154, 2014.
DOI : 10.1007/978-3-319-12057-7_17

G. Gadda, A. Taibi, F. Sisini, M. Gambaccini, P. Zamboni et al., A new hemodynamic model for the study of cerebral venous outflow, American Journal of Physiology - Heart and Circulatory Physiology, vol.308, issue.3, pp.217-231, 2015.
DOI : 10.1152/ajpheart.00469.2014

A. Gambaruto, J. J. Moura, A. Sequeira, and A. , Sensitivity of haemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology, Mathematical Biosciences and Engineering, vol.8, pp.409-423, 2011.

P. Gideon, C. Thomsen, F. Gjerris, P. S. Sørensen, F. Ståhlberg et al., Measurement of Blood Flow in the Superior Sagittal Sinus in Healthy Volunteers, and in Patients with Normal Pressure Hydrocephalus and Idiopathic Intracranial Hypertension with Phase-Contrast Cine MR Imaging, Acta Radiologica, vol.66, issue.1P1, pp.171-176, 1996.
DOI : 10.1177/02841851960371P135

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, 1986.
DOI : 10.1007/978-3-642-61623-5

J. Gisolf, J. Van-lieshout, K. Van-heusden, F. Pott, W. Stok et al., Human cerebral venous outflow pathway depends on posture and central venous pressure, The Journal of Physiology, vol.11, issue.Chapt. 52, pp.317-327, 2004.
DOI : 10.1113/jphysiol.2004.070409

L. Grinberg, E. Cheever, T. Anor, J. Madsen, and G. Karniadakis, Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study, Annals of Biomedical Engineering, vol.226, issue.2, pp.297-309, 2011.
DOI : 10.1007/s10439-010-0132-1

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.251-265, 2012.
DOI : 10.1515/jnum-2012-0013

H. Ho, K. Mithraratne, and P. Hunter, Numerical Simulation of Blood Flow in an Anatomically-Accurate Cerebral Venous Tree, IEEE Transactions on Medical Imaging, vol.32, issue.1, pp.85-91, 2013.
DOI : 10.1109/TMI.2012.2215963

K. Jurczuk, M. Kretowski, P. Eliat, J. Bellanger, H. Saint-jalmes et al., A new approach in combined modeling of MRI and blood flow: A preliminary study, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.812-815, 2012.
DOI : 10.1109/ISBI.2012.6235672

URL : https://hal.archives-ouvertes.fr/hal-00906611

T. Kiliç and A. Akakin, Anatomy of Cerebral Veins and Sinuses, Front Neurol Neurosci, vol.23, pp.4-15, 2008.
DOI : 10.1159/000111256

O. Miraucourt and S. Garnotel, Numerical Tour of Fluid Dynamics

O. Miraucourt, O. Génevaux, M. Szopos, M. Thiriet, H. Talbot et al., 3D CFD in Complex Vascular Systems: A Case Study, International Symposium on Biomedical Simulation (ISBMS) Lecture Notes in Computer Science, vol.8789, pp.86-94, 2014.
DOI : 10.1007/978-3-319-12057-7_10

M. Miyazaki and V. Lee, Nonenhanced MR Angiography, Radiology, vol.248, issue.1, pp.20-43, 2008.
DOI : 10.1148/radiol.2481071497

H. Morales, I. Larrabide, A. Geers, L. San-román, J. Blasco et al., A Virtual Coiling Technique for Image-Based Aneurysm Models by Dynamic Path Planning, IEEE Transactions on Medical Imaging, vol.32, issue.1, pp.119-129, 2013.
DOI : 10.1109/TMI.2012.2219626

L. Müller and E. Toro, A global multiscale mathematical model for the human circulation with emphasis on the venous system, International Journal for Numerical Methods in Biomedical Engineering, vol.59, issue.4, pp.681-725, 2014.
DOI : 10.1002/cnm.2622

L. Müller and E. Toro, Enhanced global mathematical model for studying cerebral venous blood flow, Journal of Biomechanics, vol.47, issue.13, pp.3361-3372, 2014.
DOI : 10.1016/j.jbiomech.2014.08.005

S. Ogoh, K. Sato, J. Fisher, T. Seifert, M. Overgaard et al., The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects, Clinical Physiology and Functional Imaging, vol.18, issue.Suppl. 1, pp.445-451, 2011.
DOI : 10.1111/j.1475-097X.2011.01040.x

O. Ozsarlak, V. Goethem, J. Maes, M. Parizel, and P. , MR angiography of the intracranial vessels: technical aspects and clinical applications, Neuroradiology, vol.33, issue.Suppl, pp.955-972, 2004.
DOI : 10.1007/s00234-004-1297-9

T. Passerini, D. Luca, M. Formaggia, L. Quarteroni, A. Veneziani et al., A 3D/1D geometrical multiscale model of cerebral vasculature, Journal of Engineering Mathematics, vol.38, issue.4, pp.319-330, 2009.
DOI : 10.1007/s10665-009-9281-3

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numerische Mathematik, vol.March, issue.3, pp.309-332, 1982.
DOI : 10.1007/BF01396435

R. Retarekar, M. Ramachandran, B. Berkowitz, R. Harbaugh, D. Hasan et al., Stratification of a population of intracranial aneurysms using blood flow metrics, Computer Methods in Biomechanics and Biomedical Engineering, vol.2010, issue.10, pp.1072-1082, 2015.
DOI : 10.1161/STROKEAHA.110.592923

P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos, Validation of a one-dimensional model of the systemic arterial tree, AJP: Heart and Circulatory Physiology, vol.297, issue.1, pp.208-222, 2009.
DOI : 10.1152/ajpheart.00037.2009

B. Schaller, Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans, Brain Research Reviews, vol.46, issue.3, pp.243-260, 2004.
DOI : 10.1016/j.brainresrev.2004.04.005

D. Sforza, R. Löhner, C. Putman, and J. Cebral, Hemodynamic analysis of intracranial aneurysms with moving parent arteries: Basilar tip aneurysms, International Journal for Numerical Methods in Biomedical Engineering, vol.26, issue.10, pp.1219-1227, 2010.
DOI : 10.1002/cnm.1385

M. Shojima, A. Morita, T. Kimura, M. Oshima, T. Kin et al., Computational Fluid Dynamic Simulation of a Giant Basilar Tip Aneurysm with Eventual Rupture After Hunterian Ligation, World Neurosurgery, vol.82, issue.3-4, pp.535-540, 2014.
DOI : 10.1016/j.wneu.2013.09.034

S. Stoquart-elsankari, P. Lehmann, A. Villette, M. Czosnyka, M. Meyer et al., A Phase-Contrast MRI Study of Physiologic Cerebral Venous Flow, Journal of Cerebral Blood Flow & Metabolism, vol.250, issue.6, pp.1208-1215, 2009.
DOI : 10.1113/jphysiol.2004.070409

M. Thiriet, Biology and Mechanics of Blood Flows, part I: Biology of Blood Flows, part II: Mechanics and Medical Aspects of Blood Flows, CRM Series in Mathematical Physics, 2008.

M. Thiriet, Cell and Tissue Organization in the Circulatory and Ventilatory Systems Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems 1, 2011.

M. Ursino and C. Lodi, A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics, Journal of Applied Physiology, vol.82, pp.1256-1269, 1997.

S. Wang, G. Ding, Y. Zhang, and X. Yang, Computational haemodynamics in two idealised cerebral wide-necked aneurysms after stent placement, Computer Methods in Biomechanics and Biomedical Engineering, vol.30, issue.11, pp.927-937, 2011.
DOI : 10.1007/s00234-008-0460-0

N. Xiao, J. Humphrey, and C. Figueroa, Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network, Journal of Computational Physics, vol.244, pp.22-40, 2013.
DOI : 10.1016/j.jcp.2012.09.016

N. Xiao, J. Alastruey, and C. Figueroa, A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models, International Journal for Numerical Methods in Biomedical Engineering, vol.168, issue.2, pp.204-231, 2014.
DOI : 10.1002/cnm.2598