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Smooth model potentials with parameters selected to reproduce the spectrum of one-electron atoms are used to approximate the singular Coulomb potential. Even when the potentials do not mimic the Coulomb singularity, much of the spectrum is reproduced within the chemical accuracy. For the Hydrogen atom, the smooth approximations to the Coulomb potential are more accurate for higher angular momentum states. The transferability of the model potentials from an attractive interaction (Hydrogen atom) to a repulsive one (Harmonium and the uniform electron gas) is discussed.

I. PHILOSOPHY

How feasible is it to find a model for the Coulomb interaction that is easier to evaluate but still reproduces key properties of the physical interaction? A logical starting point is a system with no interaction, as in Kohn-Sham density functional theory (DFT) [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF]. The Kohn-Sham (KS) approximation starts from a non-interacting system, described as the sum of the individual electrons' contributions to the energy:

Ĥs = N i - 1 2 ∇ 2 i + v s (r i ) . (1) 
In order to ameliorate the effect of omitting the Coulomb repulsion between the electrons, an extra term, the exchange-correlation functional E xc [ρ], is introduced into the energy expression. For a given external potential v(r)

E v [ρ] = T s [ρ] + J[ρ] + E xc [ρ] + v(r)ρ(r)dr (2)
where T s [ρ] is the kinetic energy functional of the noninteracting system, J[ρ] is the classical repulsion, and E xc [ρ] is the exchange-correlation functional, which must be approximated [START_REF] Parr | Density-Functional Theory of Atoms and Molecules[END_REF]. The Euler-Lagrange equation associated with the stationary condition of E v [ρ] can be transformed into a self-consistent set of equations: In principle, the KS solutions are exact when E xc is exact, and the KS orbitals yield the exact density of the system with N electrons in the external potential v(r). The accuracy of KS density functional approximations (DFA) depends on the approximation one uses for E xc .The simplest approximation is the local density approximation (LDA) [START_REF] Ceperley | Ground State of the Electron Gas by a Stochastic Method[END_REF][START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF][START_REF] Perdew | Accurate and simple analytic representation of the electron-gas correlation energy[END_REF]. In LDA it is assumed that the exchange-correlation functional is local,

- 1 2 ∇ 2 + v(r) + ρ(r ) |r -r | dr + v xc (r) -j φ j (r) = 0 (3) ρ(r) 
E xc [ρ(r)] = xc (ρ(r))dr, (4) 
where the exchange-correlation energy density xc (ρ(r)) at r is taken from the uniform electron gas with density ρ(r).

To accurately recover the effect of omitting the interaction between the electrons, one constructs an adiabatic connection that links the KS non-interacting system with the physical interacting system. Traditionally, this adiabatic connection is written as a function of the strength of the interaction, using a simple multiplicative factor λ [START_REF] Harris | The surface energy of a bounded electron gas[END_REF][START_REF] Langreth | Solid State Commun., The exchange-correlation energy of a metallic surface[END_REF][START_REF] Gunnarsson | Exchange and correlation in atoms, molecules and solids by Spin-Density-Functional formalism[END_REF][START_REF] Yang | Generalized adiabatic connection in density functional theory[END_REF]:

Ĥλ = N i=0 - ∇ 2 i 2 + v λ (r i ) + 1 2 j =i λ r ij . ( 5 
)
Computational studies of the adiabatic connection have been performed for few-electron atomic systems, and provide significant insight into the structure of the exact exchange-correlation density functional [START_REF] Seidl | Density functional theory from the extreme limits of correlation[END_REF][START_REF] Mori-Sánchez | Selfinteraction-free exchange-correlation functional for thermochemistry and kinetics[END_REF][START_REF] Cohen | Assessment and formal properties of exchange-correlation functionals constructed from the adiabatic connection[END_REF][START_REF] Colonna | Correlation energies for some two-and four-electron systems along the adiabatic connection in density functional theory[END_REF][START_REF] Pollet | Exchange-correlation energies and correlation holes for some two-and four-electron atoms along a nonlinear adiabatic connection in density functional theory[END_REF][START_REF] Teale | The calculation of adiabatic-connection curves from full configurationinteraction densities:Two-electron systems[END_REF][START_REF] Teale | Rangedependent adiabatic connections[END_REF]. An alternative to the traditional adiabatic connection is to write the Coulomb interaction as the sum of a shortrange piece and a long-range piece. The long-range piece of the potential is usually chosen to be smooth (or at least nonsingular), so that it is relatively easy to approximate solutions to the Schrödinger equations when only the long-range piece is included. So far we have reviewed traditional strategies that add density-functional corrections to an "easy" system to approximate the real system. Can we use the real system to construct the model? For example, is it possible to select an interaction potential, different from the Coulomb one, that nonetheless reproduces a certain target property of the system? For example, one might wish to select an interaction potential that preserves the energy spectrum of an atom. This strategy is not new. Valance and Bergeron [START_REF] Valance | Model potentials or pseudopotentials: the connection via supersymmetry[END_REF] show how to construct analytically solvable pseudopotentials and model potentials, in the framework of supersymmetric quantum mechanics, that reproduce experimental spectra. Starting from a one-electron onedimensional Hamiltonian H 1 associated with the potential V 1 , they found a supersymmetric partner H 2 , characterized by a second potential V 2 , with almost the same spectrum as H 1 . H 2 is missing the ground-state of H 1 . A similar approach has been used by Lepage[18] in the field of elementary particle physics, where the Hamiltonian is constructed to reproduce low-energy features of a particular physical system.

In the next section we define an expression for the model potential. We then explain two different model potentials that accurately reproduce the lowest-energy eigenvalues of the Hydrogen atom. In section 4, we use the same models for the Coulomb potential to replace the Coulomb repulsion between the electrons in two-electron Harmonium. Finally, the exchange energy of the uniform electron gas that results from one of the models is compared to the standard approximation.

II. ANSATZ

Analogous to the inverse problem of finding the Kohn-Sham potential from a given density, where oscillatory potentials and/or shifted potentials can reproduce the exact density numerically [START_REF] Savin | Adiabatic connection approach to density functional theory of electronic systems[END_REF], finding the potential given the spectrum is not trivial because the solution is not unique. Therefore, we restrict the analytical form of the potential by imposing some constraints. We would like to eliminate the singularity of the Coulomb potential because solving the Schrödinger equation for a singular operator is computationally demanding. We also wish to preserve the long-range asymptotic form of the potential, so that the long-range electrostatics is correct. An interaction potential that satisfies these constraints is:

1 r → V µ (r) = c exp(-α 2 r 2 ) + erf(µr) r . (6) 
We prove in this article that despite the simplicity of this erfgau [START_REF] Toulouse | Short-Range exchange-correlation energy of a uniform electron gas with modified electron-electron interaction[END_REF] type of potential, it is flexible enough for our purposes.

III. H ATOM

A. Construction of Vµ(r)

To determine the parameters in the model potential we consider what happens when we replace the Coulomb interaction between the nucleus and the electron in the hydrogen atom by the model potential V µ (r) [START_REF] Harris | The surface energy of a bounded electron gas[END_REF]. Thus, we replace the Hamiltonian of the Hydrogen atom

Ĥ0 (r) = - 1 2 ∇ 2 - 1 r (7) 
by a modified Hamiltonian

Ĥµ (r) = - 1 2 ∇ 2 -V µ (r) (8) 
with V µ (r) defined in such a way that

lim µ→∞ Ĥµ = Ĥ0 , i.e. lim µ→∞ V µ = 1 r . (9) 
As we know, in the case of the long-range term erf(µ r) r

∼ µ→∞ 1 r .
Thus, condition (9) is fulfilled if [c exp(-α 2 r 2 )] → 0 when µ → ∞. Besides, we would like the spectrum of Ĥµ to be as close as possible to the spectrum of Ĥ0 . This can be achieved by properly choosing c = c(µ) and α = α(µ). Consider Ĥ0 as the unperturbed operator, and

w µ = Ĥµ -Ĥ0 (10) 
as a perturbation. First, we notice that for the bound states of the Hydrogen atom

ψ i |erfc(µ r)/r|ψ i ∼ µ→∞ µ -(2l+2) , (11) 
and

ψ i |c exp(-α 2 r 2 )|ψ i ∼ α→∞ c α -(2l+3) , ( 12 
)
where l is the angular momentum quantum number, a necessary condition for the spectra of Ĥµ and Ĥ0 to coincide is that these two expectation values have the same asymptotic form. (See Appendix A for more details about the µ-dependence of the wavefunction.) The simplest choice, adopted in this paper, is to take α as a linear function of µ. This implies that c also has to be linear in µ. Thus, we can set

c = γ µ, α = κ µ, (13) 
where γ and κ are µ-independent parameters. According to Eqs. ( 11), ( 12) and ( 13), the asymptotic expansion of the expectation value of w µ may be written as

ψ i |w µ |ψ i = j=2l+2 d j (γ, κ) µ -j , µ >> 1. ( 14 
)
We select γ and κ so that the two leading terms in expansion ( 14) vanish. The lowest order terms (j = 2 and j = 3) correspond to l = 0 states. For angular momenta l > 0 the leading terms in Eq. ( 14) are O(µ -4 ) or smaller. Then, the choice of c(µ) and α(µ) is dictated by the requirement that the eigenvalues of the S states are as correct as possible for µ → ∞. The explicit form of expansion ( 14) for l = 0 states reads (see Appendix B)

ψi|wµ|ψi = 1 - √ πγ κ 3 µ -2 + - 8 3 √ π + 4γ κ 4 µ -3 +O(µ -4 ). ( 15 
)
Solving equations d 2 = d 3 = 0 for γ and κ, we obtain:

c = 27 8 √ π µ = 1.904 µ, α = 3 2 µ = 1.500 µ. (16) 
In addition to the asymptotic behavior, for practical calculations we need the optimal parameters c and α at finite values of µ. Taking the linear forms

c = γ µ + c 0 , α = κ µ + α 0 ( 17 
)
with the parameter γ and κ from the previous step we can use c 0 and α 0 to further optimize the spectrum. The condition for the elimination of µ -2 term remains the same as before. The equations d 3 = 0 and d 4 = 0 are given in Appendix B. The behavior of the spectrum of the model potential versus c 0 and α 0 is shown in Figure 1, where for fixed µ = 1.0 energies of 1s, 2s and 2p states are displayed. As one can see, there is a range for which pairs of (c 0 , α 0 ) give reasonably small errors of the energy values. The dependence of the relative error on n and l is discussed in section III B 2.

To select the best linear forms of c and α we constructed a grid on the intervals c = [-0.5, 0.0] and α = [1.0, 3.0], and then we computed the error in the eigenvalues of the 1s, 2s, 2p, 3s, 3p, and 3d states for µ = [0.5, 2.0]. We defined the best choice for the parameters as the minimax choice: the c, α that minimized the maximum absolute deviation between the eigenvalues with the model potential and the exact result from the Coulomb interaction,

δ = min c(µ),α(µ) {max n,l |E Coulomb -E model |}. ( 18 
)
As seen in Figure 2, the best values of (c, α) can be FIG. 2. Linear regressions for the two parameters c(µ) and α(µ) of the simple fit in Eq. ( 19). Here, the dots are the optimal values of the parameters according to Eq. ( 18), the lines are the least-squares linear regressions, and r 2 are their corresponding coefficients of determination.

modeled by a linear function,

c = 0.923 + 1.568 µ α = 0.241 + 1.405 µ. (19) 
Note that the resulting fit is very similar to one the linear forms obtained from perturbation theory {c 0 = 0.943, γ = 1.904 µ} and {α 0 = 0.247, κ = 1.5 µ} (see equation (B7) of Appendix B). With this fitted form the interaction does not vanish when µ = 0, therefore the spectrum cannot be exact for small values of µ, in contrast to the asymptotic form [START_REF] Teale | Rangedependent adiabatic connections[END_REF], in which both c and α are proportional to µ.

The optimum parameters for a Hydrogen-like atom with the nuclear charge Z may be obtained from the ones determined for the case of Z = 1 by a simple scaling procedure. Eq. ( 6) becomes

Z r → V Z µ (r) = Z c Z exp(-α 2 Z r 2 ) + erf(µ Z r) r (20) 
and

ĤZ µ (r r r) = - 1 2 ∇ 2 -V Z µ (r) = Z 2 Ĥµ (ρ ρ ρ), (21) 
where ρ ρ ρ = Z r r r and

c Z = Z c, α Z = Z α, µ Z = Z µ. (22) 
B. Results

Potentials

The model potentials we consider in this paper [erf(µr)/r, asymptotic (Eq. ( 16)), and fitted (Eq. ( 19)] corresponding to µ = 1 are compared with the Coulomb potential and with a modified long-range potential, erf(3r)/r, in Figure 3. One might suspect that adding an optimized Gaussian term to erf(µr)/r would give a potential that mimics the effect of increasing µ in the long-range term. This is not the case for the potentials we consider in this paper. At first glance the potential erf(3r)/r (dashed line) seems similar to the asymptotic and to the fitted potentials. But the erf(3r)/r potential is always weaker than the Coulomb potential, while the latter potentials, though in some intervals of r they are also weaker, in other intervals they are stronger than the Coulomb potential. This may explain why the asymptotic and fitted potentials reproduce the spectrum much better than the modified long-range potential: the effects of too strong and too weak regions of the model potentials cancel each other, leaving the eigenvalues rel-atively unchanged.

Eigenvalues

The percentage errors in the eigenvalues of Hydrogen with long-range, asymptotic, and fitted potentials are presented in Figure 4. As the quantum number increases, the amplitude of the eigenfunctions near the nucleus decreases, the long-range part of the potential dominates, and the eigenvalues approach the exact ones. A clear improvement is found in the asymptotic and fitted potentials compared with the traditional long-range potential.

As expected, the fitted potential produced the smallest errors. However, for µ > 1.5, the difference between the asymptotic and the fitted models is rather small; see Figure 5.

The advantage of adding a Gaussian term is clear when we compare against a modified long-range potential, such as erf(3µr)/r, Figure 6 . The Gaussian term lets us "get away with" a much smaller value of µ, and seems to work better for s-type orbitals than the erf-based potential.

As expected from the asymptotic analysis, better results are obtained for higher angular momentum because the centrifugal barrier, l(l + 1)/2r 2 , pushes the electron away from the nucleus, into a region where the difference between the model potential and the Coulomb potential is negligible (see Figures 7 and8). On the other hand, when µ is close to zero, the eigenvalues from the model potential are very poor, because the short-range Gaussian term cannot bind an electron when the angular momentum is too high. When we look at the wavefuntion, for example, the 1s and 2s orbitals (Fig. 9), we see that even though the eigenvalues are very similar, the eigenfunctions can be quite different.

How important is this difference? Is the perturbation still small if spectrum is nearly reproduced? Moreover, can we use the same approach for other types of interactions, e.g. a repulsive potential? There are several ways to assess the transferability of our model potentials. Below we use the same replacement for the electron-electron repulsion in two model systems, Harmonium and the uniform electron gas.

IV. HARMONIUM

To explore whether the model potentials can be used to describe repulsive interactions, we consider a system of two interacting electrons confined in a harmonic oscillator potential, called Harmonium [START_REF] Taut | Two electrons in an external oscillator potential: Particular analytic solutions of a Coulomb correlation problem[END_REF][START_REF] Karwowski | Two interacting particles in a parabolic well:harmonium and related systems[END_REF]. The Hamiltonian of Harmonium is:

Ĥh (r 1 , r 2 ) = - 1 2 ∇ 2 1 + ω 2 r 2 1 2 - 1 2 ∇ 2 2 + ω 2 r 2 2 2 + 1 |r 1 -r 2 | , (23) 
where the superscript h stands for harmonium. This Hamiltonian is separable if one rewrites it in terms of 16)], and c)fitted [Eq. ( 19)] potentials.

the center of mass and the relative coordinates

R = 1 2 (r 1 + r 2 ), r = r 1 -r 2 . (24) 
In the new coordinates where Ĥh

Ĥh (r 1 , r 2 ) = Ĥh r (r) + Ĥh R (R), (25) 
r (r) = -∇ 2 r + ω 2 r 2 4 + 1 r , ( 26 
) Ĥh R (R) = - 1 4 ∇ 2 R + ω 2 R 2 (27) 
and the Schrödinger equation separates into two equations: and

Ĥh r (r) Φ nlm (r) = nl Φ nlm (r) (28) 
Ĥh R (R) ξ νλµ (R) = η νλ ξ νλµ (R), (29) 
where n, l, m and ν, λ, µ are quantum numbers and the total energy is equal to E νλ;nl = η νλ + nl .

In the case of Harmonium we can use the same approximation for the Coulomb potential as we did for the Hydrogen atom but now, instead of the attractive Coulomb interaction we have the repulsive one. Thus, the modified Hamiltonian for the relative motion of two electrons reads Ĥh

r;µ (r) = -∇ 2 r + ω 2 r 2 4 + V µ (r). ( 30 
)
Due to the spherical symmetry, it is convenient to express the solutions of Eqs. ( 28) and ( 29) in spherical coordinates. In particular, if we set

Φ nlm (r) = 1 r φ nl (r) Y lm (r), (31) 
FIG. 8. The effect of the centrifugal term on the radial potential in the µ → 0 limit for the fitted erfgau interaction [Eq. ( 19)].

where Y lm (r) are spherical harmonics, then in the case of Eq. ( 28) with the modified Hamiltonian (30) we have

- d 2 dr 2 + l(l + 1) r 2 + ω 2 r 2 4 + V µ (r) φ nl (r) = nl φ nl (r). (32) 
A. How Harmonium is computed

In order to assess the model potentials for Harmonium we solved Eq. ( 32) numerically. To this end we discretized this equation on a grid of N equidistant points for r ∈ [0, a] with the boundary conditions φ nl (0) = φ nl (a) = 0 and the approximation

d 2 dr 2 φ nl (r) ≈ 1 h 2 [φ nl (r -h) -2φ nl (r) + φ nl (r + h)] ,
where h = a/N . The discretized equation may be written as

N j=0 (A ij -nl δ ij ) φ nl (r j ) = 0,
where r j = j h, j = 0, 1, . . . , N and

A ij = 2 h 2 + l(l + 1) r 2 j + ω 2 r 2 j 4 + V µ (r j ) δ ij - δ i,j+1 + δ i,j-1 h 2
It has been solved using standard LAPACK subroutines.

In the calculations we set N = 10 000 and a = 10/ω. In order to discard errors due to the numerical procedure, we computed and compared the eigenvalues of two states for which we know the analytic solution: and

φ 2 ∼ r l+1 1 + r (1 + ω r) 2(l + 1) e -ω r 2 /4 , (34) 
ω = 1 2(4l + 5) , E 2 = ω l + 7 2 .
For l = 0, the percentage errors in the eigenvalues obtained with the numerical integration are 5.76 × 10 -6 % and 6.52 × 10 -6 % , respectively.

B. Results

In figure 10, the eigenvalues of Harmonium with n = 1 and l = 0 are shown for the long-range, asymptotic, and fitted potentials. Similar to the Hydrogen atom, a deterioration at small µ is observed, but now the asymptotic potential is slightly better than the fit to the hydrogenic spectrum, and both are much better than the uncorrected erf(µr)/r potential. As the harmonic confinement weakens (ω → 0), the average distance between electrons increases, and the models become more accurate because of their correct 1/r asymptotics. For strongly confined electrons (ω >> 1), however, the Gaussian correction factors that were adapted to the hydrogenic spectrum do not seem appropriate for modelling the short-range 1/r interaction. In Table I we collected the smallest value of µ such that the error is always less than 1%, for the different values of ω. It is clear that as the range of the average distance between the electrons decreases (ω → ∞), we also need to scale the range-separation parameter (µ → 0).

FIG. 11. Errors (in %) of the Harmonium eigenvalues as function of

√ ωµ, for different ω using the scaled asymptotic [Eq. ( 16)] potential. FIG. 12. Errors (in %) of the excitation energy to the first excited l = 0 state of Harmonium, as function of µ, for ω = 1. Long-range erf(µr)/r (diamonds), erf(3µr)/r (squares), asymptotic [Eq. ( 16)] (triangles), and fitted [Eq. ( 19)] (stars) potentials.

In order to investigate the interplay between the strength of confinement and the parameters of the model potential let us scale the variable in Eq. ( 28) with Hamiltonian (30) to reduce the confinement parameter to ω = 1. After the substitution ρ = √ ω r. We get

-∇ 2 ρ + ρ 2 4 + 1 √ ω erf(μρ) ρ + c e -α2 ρ 2 φ nl (ρ) = ˜ nl φ nl (ρ), (35) 
where

c = c/ √ ω, α = α/ √ ω, μ = µ/ √ ω, ˜ nl = nl /ω.
(36) Thus, to compensate for changing ω we have to properly scale parameters and multiply the potential by √ ω. In Fig. 11 we can see that by appropriately scaling the parameters of the model potential we get, for all values of ω, exactly the same energies.

To show that the same method can be used for ex- cited states, we computed the excitation energy from the ground state to the first excited l = 0 state, using the long-range, erf(3µr)/r, asymptotic, and fitted potentials (see Figure 12). There is some cancellation of errors (i.e., the energy spacing is better than the absolute energy), but the results are still poor for small values of µ, confirming that the parameters in the model potential should be ω-dependent. We should note, however, that the erfgau potential with fixed parameters is still much better than the raw erf(µr)/r potential.

V. UNIFORM ELECTRON GAS

We now examine the effect of using a modified potential on the energy of the uniform electron gas. Consider the Hartree-Fock energy of the N -particle spinunpolarized uniform electron gas confined in the volume Ω with density ρ = N/Ω, in the limit where N and Ω go to infinity at constant ρ. The one-electron reduced density matrix has the well-known form [START_REF] Jones | Theoretical Solid State Physics[END_REF] γ(r, r ) = 3ρ sin(x) -x cos(x)

x 3 , with x = k F |r -r |,
(37) which is not affected when we replace the Coulomb interaction, both attractive and repulsive, with the modified interaction (Eq.( 6)), because it depends only on the Fermi wavenumber k F = (3π 2 ρ) 1/3 . Furthermore, the compensation of the electrostatic terms is maintained (i.e. the electrostatic contribution sums up to zero, just as in the standard case). However, the exchange energy is modified to

E x = - 1 2 dr dr γ(r, r ) 2 V µ (|r -r |). (38) 
Using ρ dr = N and transforming the variables of integration, one obtains

E x = - 6 π 2 N ∞ 0 x 2 sin(x) -x cos(x) x 3 2 V µ x k F dx.
(39) Replacing V µ with the erfgau form of interest to us, Eq. ( 6), we can then separate the integral into two terms, the Gaussian function term and the error function term

∞ 0 x 2 sin(x) -x cos(x) x 3 2 V µ x k F dx = (40) ∞ 0 x 2 sin(x) -x cos(x) x 3 2 c e -α 2 ( x k F ) 2 dx + ∞ 0 x 2 sin(x) -x cos(x) x 3 2 erf(µ x k F ) x k F dx.
Both integrals can be easily evaluated using standard tools for numerical computations such as Mathematica [START_REF][END_REF].

In Figure 13 we show the exchange energy per particle

x = E x /N , as function of µ and the density parameter r s = (3/4π ρ)

3 , using the asymptotic potential (Eq.( 16)). We observe that the model works well for large µ r s , but it does not seem possible to correct the interaction at short range. Here, it is important to notice the similarity with Harmonium. As ω controls the distance between the electrons, r s describes the electron density distribution. A small value of ω translates to short interparticle distances, making the gas "denser", and as consequence, difficult to describe with the smooth potentials. This indicates that the optimal value of µ, just as in Harmonium, depends on the range of the interaction, r s , so µ should be system-dependent.

VI. SUMMARY

Is it possible to replace the Coulomb potential with another potential that is computationally more convenient and, if so, how should the approximate potential be constructed? In this work we examine if adding a Gaussian function improves the performance of the traditional erf(µr)/r potential used in range-separated DFT. As the measure of the correctness of the model potential we have chosen the difference between the spectra of the Hydrogen atom calculated using the Coulomb potential and the modified one. It appears that for a reasonable range of parameters defining the new potential not only can the spectrum of the Hydrogen atom be accurately reproduced, but using the same potential to replace the repulsive Coulomb potential in the Harmonium atom gives a significant improvement over the uncorrected erf(µr)/r potential.

The remaining question is whether one could somehow correct the residual error in the new potential. One way to do this would be to, as in range-separated DFT, use a correction functional for the neglected short-range contributions to the exchange-correlation energy. However, this biases one's treatment towards the ground-state energy and electron density: a different (and certainly much harder to construct) functional would be needed to correct other properties (e.g., excited-state properties) of the system. There is another way, however: the results of a few calculations at sufficiently large values of µ can FIG. 13. Error (in %) in x(rs, µ), for the uniform electron gas using the model asymptotic potential (Eq. 16).

be extrapolated to the physical µ → ∞ limit. This approach is applicable to any property, not just those that are readily accessible from KS DFT. Furthermore, replacing the electron-electron repulsion potential with a smooth function has major computational advantages, as it allows one to use smaller basis sets, with fewer polarization functions.

There are also cases where it may be favorable to replace the Coulombic electron-nuclear interaction with a model potential like those considered in this paper. For example, these smoothed Coulomb potentials could be used, instead of pseudopotentials, for diffusion quantum Monte Carlo and plane-wave DFT calculations. In those cases, the procedure would be the same: the system would be solved for several choices of the smoothed electron-nuclear interaction, and the results then extrapolated to the physical µ → ∞ limit.

Solving equations d 3 = d 4 = 0 for c 0 and α 0 we obtain:

c 0 = 27 α 0 4 √ π , α 0 = 8 ± √ 64 -18π 12 √ π . (B7)
This gives two possible solutions: {c 0 = 0.94364, α 0 = 0.24778} and {c 0 = 1.92115, α 0 = 0.50446}. When we use either of these sets of parameters and expand the first-order correction to fourth order in 1/µ, we have: 1s : 0, 2s : -1 48µ 4 , 3s : -2 81µ 4 , 2p : 1 6µ 4 , 3p :

1 9µ 4 , 3d : 0.

Thus the error of the first-order correction to the eigenvalues is proportional to µ -4 .

2 v

 2 xc (r) = δE xc [ρ(r)]δρ(r) .

FIG. 1 .

 1 FIG. 1. The accuracy of the model potential spectrum with respect to the parameters c0 and α0. Energy errors (in %), for µ = 1.

FIG. 3 .

 3 FIG. 3. Comparison between the Coulomb potential (solid line) and the model potentials: long-range(squares), asymptotic (diamonds), fitted (stars) and modified long-range potential (dashed line).

FIG. 4 .

 4 FIG. 4. Percentage errors in the eigenvalues of Hydrogen. From top to bottom: a)long-range erf(µr)/r, b) asymptotic [Eq. (16)], and c)fitted [Eq. (19)] potentials.

FIG. 5 .

 5 FIG.5. Close-up of the percentage error of the eigenvalues of Hydrogen. As in Figure4, the curves are, from top to bottom: a)long-range erf(µr)/r, b) asymptotic [Eq. (16)], and c)fitted [Eq. (19)] potentials.

FIG. 6 .FIG. 7 .

 67 FIG.6. Comparison of the percent error in the first three eigenvalues of the Hydrogen atom between the asympotic potential, (thick lines) and erf(3µ)/r (dashed lines).

φ1 ∼ r l+1 ( 1 +

 1 FIG. 9. The orbital densities |ψ1s(r)| 2 (top) and |ψ2s(r)| 2 (bottom) derived from the model Hamiltonian of Hydrogen, Eq. (8) with c = 0.923 + 1.568 µ, α = 0.241 + 1.405 µ, using different values of µ.

FIG. 10 .

 10 FIG. 10. Errors (in %) of the Harmonium eigenvalues as function of µ, for different ω. From top to bottom:a)longrange erf(µr)/r, b) asymptotic (Eq. 16), and c)fitted (Eq. 19) potentials.

TABLE I .

 I Smallest value of the range-parameter µ needed to obtain a percentage error less than 1% with the model potentials for Harmonium, for a given value of ω.
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Appendix A: Hydrogenic atoms: µ dependence and integrals' scaling.

The leading term in the hydrogenic radial function is R nl (r) 2 ∼ Z 3 (Zr) 2l e -2Zr/n , (A1) therefore R nl (r) 2 r 2 dr ∼ ρ 2l+2 e -2ρ/n dρ (A2)

where ρ = Zr. Now, let

where x = µρ/Z and

For f (µ r/Z) = erf(µ r)/Zr, f (x) = (µ/Z)erf(x)/x and the power of the asymptotic term is (2l + 2).

Appendix B: Model Hamiltonian from first-order perturbation theory.

We define the model Hamiltonian as

where the parameters c and α should be chosen so that the eigenvalues of this operator are as close as possible to the ones of the physical operator,

The difference between the two operators

is treated as a perturbation. We want the perturbation to vanish as µ → ∞. Moreover, we would like to keep a single parameter, µ, and make c and α functions of µ. As we mentioned in section 3.1, one way to produce ψ i |w µ |ψ i = 0 is to choose α increasing with µ. When we expand the expectation value of w µ for large values of α and µ we obtain, for l = 0 states, the integrals of the hydrogenic functions ψ n0 = {4e -r , (2-r)e -r/2 , 4 729 (27-18r + 2r 2 )e -r/3 } are

where

comes from ψ n0 |c exp(-α 2 r 2 )|ψ n0 and

from ψ n0 |erfc(µr)/r|ψ n0 . Note that we used arbitrary multiplicative factors (4, 1 and 4 729 respectively) to simplify the expressions. We can use this trick because we want to equate all expressions to 0.

In order to eliminate terms of order µ -2 , we set √ π c α -3 = µ -2 . This means that c = γ µ, α = κ µ and γ = κ 3 / √ π. Substituting these values into the expansion (B4) corresponding to n = 1 we see that the coefficient of µ -3 vanishes if γ = (2 κ 4 )/(3 √ π). From the last two equations we get

for which the energy of the S states is correct up to µ -4 .

To eliminate the error for µ -4 , we would need to consider corrections from second-order perturbation theory. For l = 1 the expansion of the expectation value of w µ starts with terms proportional to µ -4 and, in general, for an arbitrary l, the leading term of the expansion is proportional to µ -(2l+2) . Now let us consider the expansion of the expectation values of w µ for the linear forms α = κµ + α 0 and c = γµ + c 0 with the parameter γ and κ from the previous step. The condition for the elimination of the µ -2 term remains the same as above. The coefficient of µ -3 is equal to

and is the same for all l = 0 states. The coefficient of µ -4 for l = 0 states is n-dependent. For n = 1 it is equal to