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In vivo characterization of cortical bone using

guided waves measured by axial transmission
Quentin Vallet, Nicolas Bochud, Christine Chappard, Pascal Laugier, and Jean-Gabriel Minonzio

Abstract—Cortical bone loss is not fully assessed by current X-
ray methods, and there is an unmet need in identifying women at
risk of osteoporotic fracture who should receive a treatment. The
last decade has seen the emergence of ultrasound axial transmis-
sion techniques to assess cortical bone. Recent axial transmission
techniques exploit the multimode waveguide response of long
bones such as the radius. A recent ex vivo study by our group
evidenced that a multimode axial transmission approach can yield
simultaneous estimates of cortical thickness and stiffness. The aim

of the present work is to move one step forward to evaluate the

feasibility of measuring multimode guided waves in vivo and to

infer from it cortical thickness. Measurements were taken on the
forearm of 14 healthy subjects with the goal to test the accuracy of
the estimated thickness using the bidirectional axial transmission
method implemented on a dedicated 1-MHz linear ultrasound
array. This setup allows determining in vivo the dispersion curves
of guided waves transmitted in the cortical layer of the radius. An
inverse procedure based on the comparison between measured
and modeled dispersion curves predicted by a two-dimensional
transverse isotropic free plate waveguide model allowed an
estimation of cortical thickness, despite the presence of soft
tissue. The cortical thickness values were validated by comparison
with site-matched estimates derived from X-ray high-resolution
peripheral quantitative computed tomography. Results showed a
significant correlation between both measurements (r2

= 0.7,

p < 0.05, RMSE = 0.21 mm) . This pilot study demonstrates
the potential of bidirectional axial transmission for the in vivo

assessment of cortical thickness, a bone strength-related factor.

Index Terms—Quantitative ultrasound (QUS), cortical bone,
axial transmission, guided waves, cortical thickness.

I. INTRODUCTION

O
STEOPOROSIS is a medical threat with a consequent

increase in bone fragility and susceptibility to fracture.

There is an increasing awareness about osteoporosis, because

of the consequences of fractures on morbidity, quality of life

and mortality [1]. Fracture risk is currently estimated in vivo

by bone mineral density (BMD), measured by dual energy X-

ray absorptiometry (DXA). However, BMD does not identify

all individuals at risk of fracture [2], [3].

Cortical bone plays an important role on the skeletal

biomechanical stability [4]–[6]. Cortical loss, which results in

cortical thinning and porosity increase, is a key factor in non-

vertebral fracture risk [7]. The determination of the structural
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and material properties of cortical bone is thus essential to

understand the impact of bone loss on the skeleton [8], [9].

Such observations have triggered studies for alternative

diagnostic modalities showing capacity to reach a quantitative

assessment of cortical bone quality beyond BMD. Among

others, quantitative ultrasound (QUS) techniques have been

proposed as an alternative to DXA. Transverse transmission

techniques, in which ultrasound is transmitted transversally to

the long axis of the bone, have been applied to the forearm to

clinically estimate BMD at the 1/3 radius [10] or the cortical

thickness (Ct.Th) at the distal radius on the basis of the

principle of the Biot fast and slow waves phenomenon [11],

[12]. Altenatively, a pulse echo technique has been reported

enabling the in vivo assessment of Ct.Th of the tibia based on

power spectra of ultrasonic echoes containing reflections from

front and back surfaces [13], [14].

Ultrasound (US) axial transmission (AT) techniques exploit

the propagation of guided waves (GW) in the cortical layer

along the main axis of the bone [15]. Several implementations

of AT have been reported based on the measurement of the

velocity of the first arriving signal (FAS) [16]–[19], of the

fundamental flexural guided mode (equivalent to the Lamb A0-

mode for a plate) [20], [21] or of the dispersion spectrum of

multiple GW [22]–[27]. While multimode AT techniques have

been extensively tested in laboratory conditions on phantoms

or ex vivo [22], [23], only the methods based on FAS or on

the fundamental flexural guided mode have been tested in

vivo [28]. FAS was found to be a relevant factor in fracture

discrimination in several clinical studies [29]–[35].

An interesting feature of GW-based AT approaches is their

potential to yield estimates of waveguide properties such

as thickness and stiffness by fitting a physical model of

the waveguide to the measured dispersion curves. Numerous

phantom and ex vivo studies focused on such GW model-

based approaches. Among these, authors reported estimates

of Ct.Th using a fixed elasticity [25], [36], elastic properties

(e.g., Young modulus) assuming a fixed thickness [37] or si-

multaneous estimates of both geometric and elastic properties

of the cortical bone [27].

The latter study [27] was based on a dedicated 1-MHz

linear ultrasound array, consisting of one group of receivers

surrounded by two groups of emitters, allowing the deter-

mination of the frequency-dependent wave numbers (i.e., the

dispersion curves) of multiple guided modes [38], [39]. The

inverse procedure was based on the comparison between the

experimental dispersion curves and a two-dimensional (2-D)

transverse isotropic free plate waveguide model using a least-

square optimization criterion and a gradient-based method (i.e.
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(f) Statistical denoising over the 10 measurement repeti-
tions

Fig. 2. Signal processing steps (dilation and statistical denoising) for the extraction of the (f ,k)-pairs from the Norm function and the two directions of
propagation.

the inclination angle between the probe and the bone, which

could result from the presence of overlying soft tissue.

A wideband pulse with a central frequency of 1 MHz (-

6dB power spectrum spanning the frequency range from 0.2

to 1.8 MHz) is used to excite every emitters. A sampling

frequency of 20 MHz (1024 time samples, 12 bits) is chosen to

record temporal signals after 16 averages by hardware (Althaı̈s

Technologies, Tours, France). For in vivo measurements, a

particular attention has been given to the alignment between

the probe and the main axis of the radius using a custom-made

Human Machine Interface (HMI), which provides a real-time

feedback on the experimental dispersion curves to guide the

alignment.

Note that the measurement protocol consists of 4 acquisi-

tions with intermediate repositioning, whereas each acquisition

results from 10 measurement repetitions without moving the

probe. For each single measurement, the signals are recorded

for both directions, i.e., by firing sequentially each group of

emitters on both side of the group of receivers. In that way,

the resulting number of measurements on each subject was 2

directions × 10 measurements × 4 acquisitions.

C. Signal processing

In order to extract the experimental dispersion curves, repre-

sented by the frequency-dependent wave numbers (i.e., k(f)),
a SVD was applied to the multidimensional 2 × NE × NR

radio-frequency signals corresponding to all possible pairs of

emitter-receiver. The signal processing to obtain the dispersion

curves has been extensively described previously in [38]: (1)

the radio-frequency signals were Fourier transformed with
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variables of the model included the thickness of the waveguide,

the mass density and four stiffness coefficients. In this paper,

the material stiffness and mass density were assumed constant,

as in [24], [49]. Their values were taken from the literature

for the bone-mimicking samples [50] and cortical bone [51].

The properties are summarized in Table I.

TABLE I
PROPERTIES OF THE BONE-MIMICKING PLATE/TUBE AND CORTICAL BONE

Stiffness (GPa) Density (g/cm3)

c11 c33 c13 c55 ρ

Bone-mimicking
material [50] 15.0 23.1 8.4 4.3 1.64

Cortical bone [51] 21.5 29.6 11.5 6.0 1.85

The disadvantage of a transverse isotropic free plate waveg-

uide model is that it only approximates true characteristics

of long bone waveguides, neglecting bone curvature, the

overlying soft tissue layer and absorption. However, such a

model has previously demonstrated a high level of consistency

with the propagation of GW ex vivo in bone specimens [27]

and in bone-mimicking phantoms: (i) it has been shown that

the propagation of GW into a tubular-shaped sample could be

explained by a 2-D free plate model [44], (ii) the overlying soft

tissue layer introduces additional guided modes but its impact

mainly affects low phase velocities [41]. Thus, it is reasonable

to employ a 2-D free plate model to fit the experimental data

associated to phase velocities higher than 3 mm.µs−1.

Figure 4 shows the modeled dispersion curves for two

different thicknesses (2.5 mm and 3.5 mm). A thickness

variation yields a translation of the modes except for A0

mode, which reached its asymptotic regime for the frequency-

thickness product investigated here. In other words, an increase

of the Ct.Th leads to an increase of the Lamb modes number.

B. Inverse procedure

The comparison between the experimental dispersion curves

and Lamb modes is usually the most important part of the

cost function, in which the inverse procedure can be regarded

as curve fitting (i.e., euclidean distance in a least-square

sense). However, for in vivo multimode dispersion curves, it

is challenging to a priori determine to which Lamb mode

each data point of the experimental dispersion curves belongs

[27], particularly when considering (i) a wide thickness range

(see Figure 4) and (ii) noisy and incomplete data, where

experimental trajectories can be discontinuous, overlapp or

even miss (see Figure 2f).

Consequently, a typical approach based on curve fitting [52]

does not provide a correct Ct.Th estimate, as a criterion based

on the minimal distance is likely to favour a model with a high

number of branches (i.e., large thickness) to fit a maximum

of experimental data. An accurate fit should therefore result

from the balance between a minimal distance and data that

are coherent with the model (i.e., enough data must lay on a

Lamb mode to be considered as a trajectory).
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Fig. 4. Example of 2-D free plate models for 2.5 mm (a) and 3.5 mm (b)
plate thickness. An and Sn denote the nth anti-symmetric and symmetric
Lamb modes, respectively.

To avoid any user-dependent process, an additional model

parameter is introduced in terms of a pairing vector M

that represents the combination (i.e., number and position) of

Lamb modes that are needed to explain the experimental data.

The discret bank of pairing vectors M is built following a

combinatorial analysis based on three conditions: (1) there is

at most Mmax Lamb modes; (2) at most three modes can miss

between two consecutive modes; and (3) within each pairing

vector, the modes are sorted in ascending order according to

the value of their cut-off frequency.

An inverse procedure was developed to automatically es-

timate the model parameters θ = [Ct.ThUS M ], where

Ct.ThUS denotes the US-based cortical thickness estimate. This

estimation is based on the joint optimization of two functions.

The first function, F1, is based on a distance criterion

defined as the sum of the 2-D euclidean distances in the f -k
plane between each experimental data and the Lamb modes. To

solve the inversion in terms of a maximization, F1 is defined

as the inverse of the distances sum as follows:

F1(θ) =
1

N
∑

j=1

√

(fj − f(θ))2

fmax

+
(kj − k(θ))2

kmax

, (2)

where N is the total number of experimental data.

The second function, F2, consists of maximizing the occu-

pancy rate of the Lamb modes:

F2(θ) =
1

N

Mmax

∑

i=1

N exp
i

N th
i (θ)

, (θinf < θ < θsup), (3)
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(a) Plate: Ct.ThUS = 2.30 mm,
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(b) Tube: Ct.ThUS = 2.40 mm,
M = [A0, S0, A1, S1, S2, A2, A3, S3]
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(c) Plate + soft tissue: Ct.ThUS = 2.30 mm,
M = [A0, S0, A1, S1, S2, A2, A3, S3]

0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

Frequency, f [MHz]

W
a
v
e
n
u
m
b
er
,
k
[r
a
d
/
m
m
]

 

 

A0

S0

A1

S1

S2 A2
A3 S3

Model
Inliers
Outliers
cφ < 3 mm/µs

(d) Tube + soft tissue: Ct.ThUS = 2.50 mm,
M = [A0, S0, A1, S1, S2, A2, A3, S3]

Fig. 5. Comparison of the experimental dispersion curves (dots) and the optimal models (continuous lines) for bone-mimicking plate and tube without (a,b)
and with (c,d) a 5-mm thick soft tissue-mimicking layer. Inliers and outliers are dispalyed in black and gray dots, respectively. The removed experimental data
(light gray points, cφ < 3 mm.µs−1) are represented for illustration. Modes that are missing in the optimal pairing vector M are displayed in discontinuous
lines and in light gray in the subcaptions. The reference thicknesses were 2.34 and 2.44 mm for the plate and the tube, respectively.

resticted to:

N exp
i =







N in
i if N exp

i > 0.1 · N̄ exp

0 otherwise,

(4)

where N exp
i and N th

i (θ) denote the number of experimental

and theoretical data of a mode i, respectively; N̄ exp is the

mean of the N exp
i ; and N in

i is the number of inliers of a

mode i. Basically, Equations (3)-(4) mean that experimental

data can only form an experimental trajectory if a sufficiently

large amount of them belong to a Lamb mode. Note that an

experimental data is considered as an inlier of a mode i if

its euclidean distance d to that mode satisfies the following

condition:

d =

√

(

f − f(θ)

fmax

)2

+

(

k − k(θ)

kmax

)2

≤ d0, (5)

where d0 = 0.025 is a user-defined dimensionless threshold,

which approximately corresponds to the resolution in k divided

by kmax (equal to (π/L)/kmax with L being the length of the

receivers array) [38], [39].

Finally, the optimal solution θ̂ is the one that maximizes

the cost function, F , defined as the harmonic mean between

F1 and F2. Hence,

F (θ) =
F1(θ) · F2(θ)

F1(θ) + F2(θ)
, (θinf < θ < θsup), (6)

where θinf and θsup denote the lower and upper bounds of the

model parameters θ.

The first step of the procedure consists of computing an

exhaustive databank of models. The Ct.Th ranges from 0.5

to 4 mm with a 0.1 mm step and Mmax is set to 10. To

the authors’ best knowledge, the selected parameter range

corresponds to those found in the literature for human cortical

bone of appendicular skeletal sites such as the radius and tibia

[14]. For each subject, four inverse problem solutions θ̂ were

obtained, corresponding to the four acquisitions. The optimal

solution among the four acquisitions was then considered as

the one that provides a maximal cost function value.

IV. RESULTS

A. Bone-mimicking samples

Figure 5 presents the optimal matching between measured

and modeled dispersion curves for the bone-mimicking plate

and tube, with and without the soft tissue-mimicking layer.

The reference thicknesses were 2.34 and 2.44 mm for the

plate and the tube, respectively. For the plate, the Ct.ThUS

estimates were 2.30 mm with and without the soft tissue-

mimicking layer. For the tube, the Ct.ThUS estimates were

2.50 and 2.40 mm with and without the soft tissue-mimicking

layer, respectively. The agreement between the experimental

dispersion curves and the model output is good for both the
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(b) Ct.ThUS = 3.2 mm, Ct.ThXR = 3.3 mm
M = [A0, S0, A1, S1, S2, A2, A3, S3, A4]
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(c) Ct.ThUS = 3.7 mm, Ct.ThXR = 3.5 mm
M = [A0, S0, A1, S1, S2, A2, A3, S3, A4, S4]
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(d) Ct.ThUS = 3.9 mm, Ct.ThXR = 3.7 mm
M = [A0, S0, A1, S1, S2, A2, A3, S3, A4, S4]

Fig. 6. Comparison of the experimental dispersion curves (dots) and the optimal models (continuous lines) for four subjects. Inliers and outliers are dispalyed
in black and gray dots, respectively. The removed experimental data (light gray points, cφ < 3 mm.µs−1) are represented for illustration. Modes that are
missing in the optimal pairing vector M are displayed in discontinuous lines and in light gray in the subcaptions. The four examples correspond to the same
examples depicted in Figure 3.

plate and the tube, even in the presence of the soft tissue-

mimicking layer. In addition, the estimated thickness, using the

free plate model, is in excellent agreement with the reference

values. Tests on additional bilayer phantoms (not displayed

here) with different thickness ratios between the solid phase

and the coating confirmed that the plate model was accurate

enough to provide reliable thickness estimates of the bone-

mimicking waveguide in all cases.

B. In vivo forearms

The Ct.Th was estimated on thirteen subjects among the

fourteen. Figure 6 presents examples of typical experimental

dispersion curves along with the optimal model for four sub-

jects. A good agreement was found between the experimental

data and the model output. Reference Ct.ThXR values were

2.5, 3.3, 3.5 and 3.7 mm, while the Ct.ThUS estimates were

2.6, 3.2, 3.7 and 3.9 mm, respectively (see Figures 3 and 6).

Results of Ct.Th estimates on the whole cohort are depicted

in Figure 7. There was a significant correlation (r2 = 0.7,

p < 0.05, RMSE = 0.21 mm) between Ct.ThXR and Ct.ThUS,

as depicted in Figure 7a. Nonetheless, for one subject, the

inverse procedure failed to estimate the correct Ct.Th, as

the inverse problem solution reached the upper bound of the

allowed thickness range (i.e., 4 mm). This case will be further

discussed in Section V.

The Bland & Altman plot represents the difference between

Ct.ThXR and Ct.ThUS as a function of the mean of the two

values (see Figure 7b). The parameter d = 0 mm, defined

as the mean of the differences between Ct.ThXR and Ct.ThUS,

shows that there is no bias between both methods, considering

that a maximum difference around 0.4 mm between the two

estimates could be expected given the precision of X-ray (±0.2
mm) and AT technique (±0.2 mm). The limits of agreement

([−0.43 : 0.43] mm), defined as d ±1.96×sdd (i.e., standard

deviation of the differences), are close to the precision range

(±0.4 mm).

V. DISCUSSION

The present study is the first, to our knowledge, to measure

an in vivo multimode GW response on human radius and to

perform a consistent estimation of the Ct.Th using the AT

technique. The entire procedure allowing the extraction of the

dispersion curves and the estimation of the cortical thickness

is fully automatic unlike our former studies [27], [44], where

strong prior knowledge was necessary to fit the experimental

trajectories to the Lamb modes. Full automation of data pro-

cessing markers represents a significant step towards routine

in vivo application. An additional parameter was introduced

as a pairing vector in the inverse procedure. This parameter

allowed avoiding any prior heuristic assignment of the Lamb
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Fig. 7. Linear regression (a) and Bland & Altman plot (b) between Ct.ThUS

and Ct.ThXR.

modes to the experimental data. Because the experimental

dispersion curves are incomplete (i.e., several experimental

modes are missing), this parameter allowed the conditionning

of the cost function, providing a balance to a simple distance-

based criterion.

In this study, we show that correct thickness estimates can

be recovered in vivo using a 2-D transverse isotropic free plate

model by taking into account only experimental higher-order

modes to solve the inverse procedure. This hypothesis was

first tested on laboratory-controlled measurements performed

on bone-mimicking plate and tube, coated with a soft-tissue

mimicking layer. These phantoms allowed investigating the

impact of soft tissue on the thickness estimates. It resulted

that the presence of the soft tissue layer did not introduce any

significant bias in the thickness estimates, at least over the

range of frequency-thickness product tested here. As observed

in earlier studies [40], [41], [43], [44], the present work shows

that the presence of the overlying soft tissue-mimicking layer

increases the number of modes. It is worth to notice that these

additional modes are mainly associated to phase velocities

lower than 3 mm.µs−1, as it has been observed in [41] for

different kind of soft tissue phantoms. This result suggests

that experimental data, associated to phase velocities higher

than 3 mm.µs−1, are only slightly affected by the soft tissue

layer. Nevertheless, further studies are warranted to determine

if the whole spectrum could be exploited to recover additional

waveguide properties (e.g., stiffness). A study is currently

ongoing to this goal.

Furthermore, the inverse procedure was successfully applied

on in vivo measurements, as a good agreement was found

between X-ray and US-based estimates of Ct.Th, except for

one subject, for which the Ct.ThUS estimate reached the upper

bound of the allowed thickness domain. For this subject,

rather than a misidentification of the inverse procedure, the

failure was due to the poor quality of the measurements (i.e.,

almost no information above 3 mm.µs−1). It was expected,

given the soft tissue thickness of the subject (BMI = 30).

Indeed, the difficulty of measuring biomarkers in vivo using

the AT technique on subjects with high body mass index was

previously reported in [32] for the FAS measurements and in

[40] for the mesasurement of A0 mode.

As a limitation, the technique was only tested on a cohort

mainly composed of young healthy men. The thickness of their

cortical bone, ranging from 2.5 to 3.7 mm, likely differs from

that of an elderly population, in which cortical thickness values

of about 1 mm have been reported [14], [33]. Furthermore,

the cortical loss, associated with aging and disease, is pre-

dominant in the inner cortex adjacent to the medullary canal

[53]. Such an erosion sometimes results in cavities that may

coalesce locally producing giant irregular canals and irregular

inner cortical boundaries. The phenomenon could affect the

waveguide behavior of thin cortical shell. Further studies are

warranted to assess the reliability of thickness estimate by

including more categories of subjects, such as perimenopausal

or postmenopausal women and fractured patients.

As a further limitation, it should be noted that stiffness and

mass density were considered as constant in the waveguide

model. Consequently, by estimating only the cortical thickness,

we do not surpass current works that shown that the cortical

thickness at the radius can be estimated using simple pulse-

echo measurements [14]. Nonetheless, in contrast to this

technique, multimode AT measurements have the potential to

provide further cortical bone properties (e.g., stiffness and

porosity). To this end, more sophisticated multiparametric

inverse problems must be implemented to account for the

interindividual variations in elasticity and mass density [54],

[55]. Reference measurements of bone stiffness, such as reso-

nant ultrasound spectroscopy or micro-computed tomography,

cannot be achieved in vivo. An ex vivo study is currently

ongoing to validate such multiparametric inverse problems.

VI. CONCLUSION

Healthy subjects underwent ultrasound AT measurements.

In the present study, in vivo multimode GW response of human

radius has been measured for the first time using AT technique

and a consistent estimation of Ct.Th has been performed

by making use of a fully automatic inverse procedure. A

significant correlation has been found between Ct.ThXR and

Ct.ThUS (r2 = 0.7, p < 0.05, RMSE = 0.21 mm) and no

significant bias has been noticed between US-based estimates

and reference values derived from site-matched HR-pQCT.
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