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Abstract -The two-dimensional Fourier transform (2D-FT) analysis of multichannel signals is a 1 straightforward method to extract the dispersion curves of guided modes. Basically, the time signals 2 recorded at several positions along the waveguide are converted to the wavenumber-frequency space, so 3 that the dispersion curves (i.e., the frequency-dependent wavenumbers) of the guided modes can be 4 extracted by detecting peaks of energy trajectories. In order to improve the dispersion curves extraction of 5 low amplitude modes propagating in cortical bone, a multi-emitter and multi-receiver transducer array has 6 been developed together with an effective singular vector decomposition (SVD) based signal processing 7 method. However, in practice, the limited number of positions where these signals are recorded results in 8 a much lower resolution on the wavenumber axis than on the frequency axis. This prevents a clear 9 identification of overlapping dispersion curves. In this study, a sparse SVD (S-SVD) method, which 10 combines the SNR improvement of the SVD-based approach with the high wavenumber resolution 11 advantage of the sparse optimization, is presented to overcome the above mentioned limitation. Different 12 penalty constraints, i.e., 𝑙 1 -norm, Frobenius norm and revised Cauchy norm, are compared with the sparse 13 characteristics. The regularization parameters are investigated with respect to the convergence property and 14 wavenumber resolution. The proposed S-SVD method is investigated using synthetic wideband signals, 15 experimental data obtained from a bone-mimicking phantom and from an ex-vivo human radius. [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF] analysis of the results suggests that the S-SVD method has the potential to significantly enhance the 17 

I. INTRODUCTION 1

The dispersion characteristics of elastic guided waves have attracted considerable attention and brought out 2 many useful applications, such as seismic waves analysis [1-6], underwater acoustics [7-9], non-destructive 3 evaluation [10][11][12][13] and biomedical applications [14 -17]. Following the different implementations of signal 4 recording, the dispersion characteristics extraction methods can mainly be classified into two categories, 5 i.e., single-channel processing [7-9, 11, 14] and multichannel processing [4, 10,15,[18][19][20]. [START_REF] Minonzio Was Born In Dijon | [END_REF] Regarding the single-channel processing, the time-frequency representation (TFR) method enables the 7 computation of the dispersive energy simultaneously in time and frequency [21]. In 1999, Prosser et al. [11] 8 applied the TFR method to characterize Lamb modes dispersion. Several TFR-based dispersion curves 9 extraction strategies have been proposed. For example, aiming to overcome the TFR uncertainty principle 10 (which actually determines that there is an inherent trade-off between the time and frequency resolution in 11 the spectrogram) and to enhance the mode extraction capabilities, some improved TFR methods have been 12

proposed in which the signals are decomposed into TFR atoms whose group delays are nonlinearly 13 modulated in frequency and determined with respect to the local wave dispersion, such as the group delay 14 shift covariant quadratic TFR [7], warped TFR method [22], Chirplet transform [23], generalized warblet 15 transform based TFR method [24] shifting/compensating the mode energy distribution by considering that the dispersion characteristics can 1 be well determined by the modal theory. Since their performances rely on the a priori knowledge of the 2 waveguide characteristics, further improvements are still required. An iterative estimation method has been 3 designed with the dispersion-based TFR analysis whose tilling is determined with respect to the dispersion 4 curves extracted from the TFR ridges [25]. However, due to the limited information recorded by the single-5 channel measurement, the extraction of the dispersion characteristics of low-amplitude modes remains 6 challenging, especially for the accurate evaluation of complex medium, such as human long cortical bones 7 [19,29]. 8

Improvement of the separation of multiple propagation modes superimposed and interfered in the time 9 domain can be achieved using the multichannel recording method combined with some appropriate 10 multichannel data processing techniques [2-4, 20]. Among them, the most straightforward approach is to 11 map the data from time-distance to the frequency-wavenumber space using the spatio-temporal two-12 dimensional Fourier transform (2-D FT) [1, 2, 10]. In practice, whereas the relatively long duration of the 13 recorded time signals ensures a high frequency resolution, the limited number of positions where these 14 signals are recorded with a finite receiving aperture still results in a low resolution on the wavenumber axis. 15 Recently, Harley et al. [START_REF] Harley | Sparse recovery of the multimodal and dispersive characteristics of Lamb waves[END_REF] applied compressed sensing to process single-emitter multi-receiver ultrasonic 16 transform to achieve the sparse representation of the dispersion characteristics of Rayleigh waves. In a 6 continuous effort to improve the resolution of the extracted dispersion trajectories of guided waves in long 7 bone, the high resolution Radon transform has recently been introduced to bone community by Tran et al. 8 [15], which brought to our attention the use of optimization strategies to improve the SVD-based method. 9

Since amplitude and signal-to-noise-ratio (SNR) vary from one mode to another, measurability of modes 10 is variable and the single-emitter multi-receiver measurement configuration may not be optimal to retrieve 11 all dispersion curves. In order to improve the extraction of the dispersion curves, especially for the poorly 12 detected guided modes, a multi-emitter and multi-receiver transducer array has been developed in our group 13 [19] together with an effective singular vector decomposition (SVD) based signal processing method [19, 14 33]. The principle of such a multi-emitter and multi-receiver approach has been illustrated on isotropic or 15 transversely isotropic non-dissipative and dissipative materials, including copper plates [19], 16 polymethylacrylate and artificial composite bones [34]. Recently, it has also been applied to data acquired 17 ex vivo on human long cortical bone specimens [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF]. However, (i) bone is a highly absorbing material and 18 (ii) measurements are performed using a probe with a relatively small number of receivers [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF], which 19 results in a limited SNR and limited resolution of the dispersion curves [15]. 20 In the present study, we propose a sparse SVD (S-SVD) method, which combines the advantages of 1 SVD and sparse solution to achieve high-resolution extraction of the guided dispersion curves. Different 2 penalty constraints, i.e., 𝑙 1 -norm, Frobenius norm and revised Cauchy norm, are compared. The sparse 3 effectiveness and wavenumber resolution are discussed by processing wideband dispersion synthetic 4 signals corrupted with additive Gaussian noise. Finally, the performance of the proposed method is testified 5 using experimental data obtained from a bone-mimicking phantom and from an ex-vivo human radius. 6

II. THEORY AND METHODS 7

A. Ultrasonic Lamb waves dispersion 8

Despite the evidence that the geometry of cortical bone is closer to cylindrical shape than to flat plate, 9 there is no clear evidence that tube dispersion curves bring insight in experimentally measured dispersion 10 curves additionally to the plate model [35]. The plate model has already been reported in a few publications 11 to fit experimental data acquired in axial transmission on tubular phantoms [36], bovine bone [37] and 12 human radius [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF]. For the working frequency-thickness product (𝑓 • ℎ) range between 0.2 MHz•mm and 13 2 MHz•mm, the theoretical dispersion curves derived from the plate model were found to be in a good 14 agreement with the experimental data observed in tubular bone-mimicking phantoms [36]. Furthermore, 15 reasonable estimates of mechanical properties and cortical thickness of long bones were reported in two 16 ex-vivo studies using a plate model in the inversion process [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF]37] in the present study, the tube model might be more accurate to fit the experimental dispersion spectra [38]. 1

In the present study, the dispersion curves derived from the plate model are considered. 2

According to the vibration pattern, the Lamb modes in isotropic free plates are usually classified as 3 symmetric and anti-symmetric modes following the Rayleigh-Lamb equations [39]. The dispersion curves 4 can be expressed as wavenumber 𝑘 versus frequency 𝑓 = 𝜔 2𝜋 ⁄ or frequency-thickness product 𝑓 • ℎ. 5

Note that similar dispersion equation can be obtained for absorbing [34] and transversely isotropic free 6

plates [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF]. The 2-D FT provides a general relationship between the time and distance space (𝑥, 𝑡) and 7 wavenumber and frequency space (𝑘, 𝑓) [1, 10] 8

𝐺(𝑘, 𝑓) = ∬ 𝑔(𝑥, 𝑡)𝑒 -𝑗(2𝜋𝑓𝑡-𝑘𝑥) 𝑑𝑥𝑑𝑡 (1), +∞ -∞ 9 
where 𝑔(𝑥, 𝑡) is the signal matrix recorded at a series of different distances x. For the ultrasonic Lamb 10 signals, the mode trajectories of the energy distribution in (𝑘, 𝑓) domain are in accordance to the dispersion 11 curves, i.e., 𝑘(𝑓 ) obtained using Rayleigh-Lamb equations. 12 From the signal processing point of view, with a given dispersion curve and an excitation signal, 13 spectrum of the dispersive signal at any propagation distance 𝑥 can be computed by multiplying a phase-14 spectrum adjustment term 𝑒 𝑗𝑘(𝑓) 𝑥 to the spectrum of an excitation. For each mode, the excitation signal is 15 synthesized with a Gaussian spectrum, whose center frequency and bandwidth are selected according to 16 the corresponding (𝑘, 𝑓) range of interest. The temporal waveforms can thus be obtained by performing 17 the inverse Fourier transform of the phase-shifted spectrum of excitation. Such a procedure actually 18 provides us an efficient way to synthesize the temporal signal 𝑔(𝑥, 𝑡) for simulation analysis [26]. 19 

B. Extraction of the dispersion curves of guided waves 1

The problem of obtaining the dispersion curves can be expressed as the accurate estimation of the 2 wavenumbers from the signal matrix 𝑔(𝑡, 𝑥 ). Due to the sparsity of the dispersion curves in the (𝑘, 𝑓) 3 space, (sparsity means that at each frequency, there only exist a limited number of guided modes with a 4 limited number of loci on wavenumber axis), the basic idea of S-SVD approach is to optimize the data 5 fitting to the experimental observation with a sparse mode energy distribution in the (𝑘, 𝑓) space [32,[START_REF] Harley | Sparse recovery of the multimodal and dispersive characteristics of Lamb waves[END_REF]. 6

Before introducing the S-SVD strategy, we briefly explain the SVD-based extraction of the dispersion 7 curves and the least-squares SVD (LS-SVD)-based extraction of the dispersion curves with an inverse 8 scheme. 9

(

1). SVD-based extraction of the dispersion curves 10

Assuming that 𝑀(𝑅, 𝐸, 𝑡 ) is the three-dimensional (3-D) measurement matrix obtained using the 11 multi-emitter (E) and multi-receiver (R) probe, the modes dispersion relationships can be determined by 12 computing the 2-D FT of 𝑀(𝑅, 𝐸, 𝑡 ) on R and t axis, hereafter designated by 𝑊(𝑘, 𝐸, 𝑓) [10,[START_REF] Transforms | [END_REF]. At each 13 frequency point 𝑓 𝑝 ∈ 𝑓(1, 2, … , 𝑁 𝑓 ), The SVD decomposition applied to each response matrix 𝑊(𝑘, 𝐸, 𝑓 𝑝 ) 14 can be written as [19] 15

𝑊(𝑘, 𝐸, 𝑓 𝑝 ) = 𝑈𝑆𝑉 𝐻 (2), 16 
where 𝑈 and 𝑉 are 𝑁 𝑘 × 𝑁 𝑘 and 𝑁 𝐸 × 𝑁 𝐸 unitary matrices defining the orthogonal basis in the 17 wavenumber and emitter domains, respectively. () 𝐻 is the Hermitian complex conjugate transpose of the 18 matrix. 𝑁 𝐸 and 𝑁 𝑘 are the number of emitters and number of points on the wavenumber axis, respectively. 19

The diagonal entries of the 𝑁 𝐸 × 𝑁 𝑘 rectangular matrix 𝑆 are known as the singular values of 𝑊(𝑘, 𝐸, 𝑓 𝑝 ). 20 The columns of 𝑈 form a set of 𝑁 𝑘 orthogonal vectors, i.e., the 𝑁 𝑘 singular vectors. Each singular vector 1 can be regarded as a function of 𝑘 , which indicates the dispersion information on 𝑘-axis at a given 2 frequency 𝑓 𝑝 . 3

The strategy of the SVD-based noise reduction technique is to discard those small singular values and 4 the corresponding singular vectors which mainly represent noise [19]. Here, the noise is the unwanted 5 signal energy that disturbs the dispersive information estimation, such as the electronic noise. The noise 6 level can be experimentally determined by computing the ratio between the signal amplitude measured 7 before the guided waves arrival and the maximum of the guided wave signal. 8

At each point (𝑘 𝑞 , 𝑓 𝑝 ), if only the 𝑁 𝑟 (𝑓 𝑝 ) first singular vectors are retained instead of the complete 𝑁 𝑘 9 singular vectors, then the so-called Norm function of the dispersion trajectories is defined as 10

𝑁𝑜𝑟𝑚(𝑘 𝑞 , 𝑓 𝑝 ) = ∑ |𝑈 𝑗 (𝑘 𝑞 )| 2 𝑁 𝑟 (𝑓 𝑝 ) 𝑗=1 (3) , 11
where the scalar 𝑈 𝑗 (𝑘 𝑞 ) is 𝑞 𝑡ℎ element of the 𝑗 𝑡ℎ singular vector 𝑈 𝑗 and the notation |•| corresponds to the 12 absolute value or modulus of a scalar. Considering the 𝑁 𝑓 frequencies and 𝑁 𝑘 wavenumbers, the dispersion 13 trajectory distribution is obtained as an 𝑁 𝑘 × 𝑁 𝑓 matrix 𝑁𝑜𝑟𝑚(𝑘, 𝑓). 14 Due to the normalized characteristics of the orthogonal basis, the values of Norm function range from 15 0 to 1. This value can be interpreted as follows: if a guided mode exists in the signal, the corresponding 16 However, there are still two limits of such a direct singular value filtering-based method. First, SVD-1 based method cannot overcome the finite aperture problem [15,32,34], which means that the wavenumber 2 resolution of the SVD results is identical to that of the 2-D FT results, so that identification of highly 3 overlapping peaks on the wavenumber axis remains challenging. On the other hand, the classical SVD-4 based strategy, by adjusting the filtering threshold of the singular values, may fail to separate the weak 5 modes from the noise, particularly for modes whose amplitude is close to the noise amplitude. The least-6 squares SVD method and S-SVD method may provide new solutions to improve noise filtering and to 7 enhance wavenumber resolution. 8

(

2). Least-squares SVD (LS-SVD)-based extraction of the dispersion curves 9

The noise suppression achieved by SVD-based method is fulfilled in the (𝑘, 𝐸) domain. Similarly, to 10 further suppress the additive noise on the wavenumber axis, at each frequency point 𝑓 𝑝 , Eq. ( 2) is modified 11 to account for an additive noise in the (𝑘, 𝐸) domain, i.e., 𝑁 𝑘 × 𝑁 𝐸 matrix 𝑛(𝑘, 𝐸), as follows [42], 12

𝑆𝑉 𝐻 = 𝑈 𝑅 -1 𝑊(𝑘, 𝐸, 𝑓 𝑝 ) + 𝑛(𝑘, 𝐸) (4), 13
where 𝑁 𝑘 × 𝑁 𝑘 matrix 𝑈 𝑅 = [𝑈 1 𝑈 2 ⋯ 𝑈 𝑁𝑟 0] which only keeps the 𝑁 𝑟 (𝑓 𝑝 ) first singular vectors 14 of 𝑈 associated to the 𝑁 𝑟 (𝑓 𝑝 ) highest singular values. 𝑈 𝑅 -1 is the pseudo-inverse matrix of 𝑈 𝑅 . This model 15 aims to accumulating the similar wavenumber characteristics and simultaneously removing the 16 uncorrelated information, i.e., noise, by individual measurement provided by different emitters. 17

The LS-SVD solution of wavenumber dispersion can be solved by minimizing the following cost 18 function, 19

𝐽 = ‖𝑈 𝑅 -1 𝑊(𝑘, 𝐸, 𝑓 𝑝 ) -𝑆𝑉 𝐻 ‖ 𝐹 2 + 𝜇𝑅 (5), 20 F o r R e v i e w O n l y
Sparse SVD Method for High Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves 11 ‖•‖ 𝐹 2 represents Frobenius norm of the matrix. 𝑅 is a penalty term. The Lagrange multiplier 𝜇, also named 1 regularization factor, determines the trade-off between the least-squares fit and the penalty. The 2 wavenumber information is actually contained in both response matrix 𝑊 and wavenumber basis 𝑈, so that 3 the cost function is designed with two terms of 𝑈 𝑅 -1 𝑊(𝑘, 𝐸, 𝑓 𝑝 ) and 𝑆𝑉 𝐻 . 4

Considering that the penalty term should be able to suppress the noise existed in the 𝑊(𝑘, 𝐸, 𝑓 𝑝 ), the 5 quadratic norm 𝑊(𝑘, 𝐸, 𝑓 𝑝 ), i.e., the Frobenius norm 𝑅 1 = ‖𝑊(𝑘, 𝐸, 𝑓 𝑝 )‖ 𝐹 2 , is chosen for the penalty term. 6

Substituting 𝑅 1 into Eq. ( 5), we obtain the solution in the sense of quadratic norm penalty of 𝑊(𝑘, 𝐸, 𝑓 𝑝 ) 7 by 8

∇𝐽 ∇𝑊 ⁄ = (𝑈 𝑅 -1 ) 𝐻 𝑈 𝑅 -1 𝑊 -(𝑈 𝑅 -1
) 𝐻 𝑆𝑉 𝐻 + 𝜇𝑊 = 0 (6) . 9

Thus the LS-SVD solution of Eq. ( 6) is 10 𝑊 ̃(𝑘, 𝐸, 𝑓 𝑝 ) = [(𝑈 𝑅 -1 ) 𝐻 𝑈 𝑅 -1 + 𝜇𝐼] -1 (𝑈 𝑅 -1 ) 𝐻 𝑆𝑉 𝐻 (7), 11

where 𝐼 denotes the identity matrix. Comparing Eq. (7) with Eq. (2), we actually obtain the least-squares 12 solution of 𝑈 as 13

𝑈 ̃= [(𝑈 𝑅 -1 ) 𝐻 𝑈 𝑅 -1 + 𝜇𝐼] -1 (𝑈 𝑅 -1 ) 𝐻 (8). 14 
If 𝑈 𝑅 is the complete orthogonal basis, then 𝑈 𝑅 -1 (𝑈 𝑅 -1 ) 𝐻 = 𝐼. Eq. ( 8) is useful, only when 𝑈 𝑅 -1 is 15 not a complete orthogonal basis, i.e., the modified 𝑈 𝑅 which only consists of the 𝑁 𝑟 singular vectors. [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF] However, without sparse constraints, such a damped least-squares solution is quite limited, which cannot 17 achieve a high resolution [32]. The optimization method for the regularization factor 𝜇 will be discussed 18 later with the sparse strategy. 

3). High-resolution sparse SVD based extraction of the dispersion curves 1

The LS-SVD method describes the optimization scheme that could filter the additive noise. However, 2 in many situations, we may wish to reconstruct a high-resolution sparse result consisting of a few non-zero 3 wavenumber values with the minimal misfit to the experiments. A common approach for obtaining the 4 high-resolution solution is to modify the cost function using the non-quadratic penalty terms. In seismic 5 signal processing, two typical non-quadratic penalty terms, e.g. 𝑙 1 -norm and Cauchy norm, have been 6

adapted for the high resolution Radon transform [15,32,[43][START_REF] Park | Multichannel analysis of surface waves[END_REF][45]. As the sparse characteristics of the guided 7 waves dispersion are on the wavenumber axis, the sparse penalty term should also be designed in (𝑘, 𝐸) 8 domain. The 𝑙 1 -norm and Cauchy norm for the 2-D matrix 𝑊(𝑘, 𝐸, 𝑓 𝑝 ) can be defined as 9

𝑙 1 -norm: 𝑅 2 = ∑ ∑|𝑊(𝑖, 𝑗, 𝑓 𝑝 )| 𝑁 𝐸 𝑗=1 𝑁 𝑘 𝑖=1 (9a), 10 
Cauchy norm: 𝑅 3 = ∑ 𝑙𝑛 (1 + ∑ |𝑊(𝑖, 𝑗, 𝑓 𝑝 )| 2 𝑁 𝐸 𝑗=1 𝜎 2 ) 𝑁 𝑘 𝑖=1 (9b), 11
where 𝜎 is the scale factor of the Cauchy distribution. Substituting the 𝑙 1 -norm and the Cauchy norm into 12 Eq. ( 5), the analytical solution cannot be obtained as with LS-SVD method anymore. Some optimization 13 schemes can be considered, for example using the conjugate gradient technique with the forward and 14 adjoint operators [46]. We use the reweighting strategy introduced by Sacchi [43] and also used by Tran et 15 al. for bone signal processing [15,[START_REF] Park | Multichannel analysis of surface waves[END_REF]45]. [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF] At each frequency point 𝑓 𝑝 , the iterative reweighting steps in applying S-SVD are as follows, 17 1) LS-SVD based initialization of 𝑈 ̃(0) and 𝑊 ̃(0) according to Eqs. (7-8); 18 2) For the 𝑛 𝑡ℎ iteration, computing the 𝑁 𝑘 × 𝑁 𝑘 reweighting matrix 𝑄 using the 𝑙 1 -norm and Cauchy 1 norm 2 𝑙 1 -norm: 3

𝑄 ′ = ( [∑ (|𝑊 ̃(𝑛) (1, 𝑗, 𝑓 𝑝 )| + 𝜎 2 ) 𝑁 𝐸 𝑗=1 ] -1 … 0 … ⋱ … 0 … [∑ (|𝑊 ̃(𝑛) (𝑁 𝑘 , 𝑗, 𝑓 𝑝 )| + 𝜎 2 ) 𝑁 𝐸 𝑗=1 ] -1 ) (10a), 4 
Cauchy norm: 5

𝑄 ′′ = ( [∑ (|𝑊 ̃(𝑛) (1, 𝑗, 𝑓 𝑝 )| 2 + 𝜎 2 ) 𝑁 𝐸 𝑗=1 ] -1 … 0 … ⋱ … 0 … [∑ (|𝑊 ̃(𝑛) (𝑁 𝑘 , 𝑗, 𝑓 𝑝 )| 2 + 𝜎 2 ) 𝑁 𝐸 𝑗=1 ] -1 ) (10b). 6 
3) Updating the estimated Norm function, 7 𝑈 ̃(𝑛+1) = [(𝑈 ̃(𝑛) -1 ) 𝐻 𝑈 ̃(𝑛) -1 + 𝜇𝑄] -1 (𝑈 ̃(𝑛) -1 ) 𝐻 (11), 8 𝑊 ̃(𝑛+1) (𝑘, 𝐸, 𝑓 𝑝 ) = 𝑈 ̃(𝑛+1) 𝑆𝑉 𝐻 (12), 9 where the n is the iteration number. 10 4) Iteratively solve Eq. ( 5) by repeating steps (2) and (3); 11

For the 𝑛 𝑡ℎ iteration, the convergence can be judged by the relative variation of the cost function: 12

∆𝐽 𝑛 = |𝐽 (𝑛+1) -𝐽 (𝑛) | (𝐽 (𝑛+1) + 𝐽 (𝑛) )/2
< 𝜉 (13). 13 ξ is the tolerance of ∆𝐽, which also depends on the regularization criterion. We use an heuristic value 14 𝜉 = 0.02 for both the 𝑙 1 -norm and the Cauchy norm S-SVD computation. 15 After the iterative reweighting step, the 𝑈 ̃ presents the sparse characteristics on the wavenumber axis. 1 Similar to Eq. (3), the sparse wavenumber estimation can thus be obtained by summing the 𝑁 𝑟 first vectors 2 in 𝑈 ̃. Details of the algorithm can be learned from the appendix. The characteristics of the hyperparameter 3 𝜎 will be discussed in Section IV (2). 4

III. EXPERIMENTS SETUP 5

Experiments were performed using an array transducer (Vermon, Tours, France) consisting of 5 6 emitters and 24 receivers associated with a specific electronic device (Althaï s, Tours, France). The pitch of 7 the element is 0.8 mm. The central frequency is 1 MHz and the -6dB frequency bandwidth is from 0.5 to 8 1. [START_REF] Minonzio Was Born In Dijon | [END_REF] MHz. An ultrasound gel (Aquasonic, Parker Labs, Inc, Fairfield, NJ) is used to ensure the coupling 9 between the probe and the measured specimen. 10 A bone-mimicking plate (Sawbones, Pacific Research Laboratory Inc, Vashon, WA) was first used to 11 record experimental signals. The bone-mimicking material is a transversely isotropic composite made of 12 short glass fibers embedded in an epoxy matrix. One human radius was also tested ex vivo. For result 13 comparisons, the theoretical Lamb modes dispersion curves were computed using a transversely isotropic 14 free plate model [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF]. 15 Values of mass density, shear and longitudinal velocities, and thickness utilized to compute the 16 theoretical dispersion curves are listed in table I for both the bone-mimicking material and the human bone. 17

For the bone specimen, we used representative values derived from literature, while for the bone-mimicking 18 plate the values are derived from a previous report by our group [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF]. 𝐶 𝑇 is the shear velocity, and 𝐶 𝐿‖ ,and 19 𝐶 𝐿⊥ are the compression bulk wave velocities in the directions parallel and normal to the fiber-direction, 20 respectively. The mass density and thickness are denoted by ρ and Th. The average thickness of the human 1 radius specimen was obtained by X-ray high resolution peripheral computed tomography (XtremCT, 2 Scanco Medical, Bruttisellen, Switzerland) [START_REF] Wang Was Born In | He graduated from the Physics 17[END_REF]. 

IV. RESULTS 5

A. Synthetic wideband signals 6 (1). 2-D FT and SVD results 7

The method was first assessed on synthetic signals representing an idealized experiment on a 2 mm-8 thick bone-mimicking plate with our array transducer. As shown in Fig. 1a, the 24 channel synthetic 9 wideband signals excited by first emitter are plotted in a time-distance (r-t) diagram. Signals corresponding 10 to six fundamental wide k-band (0<k<4 rad/mm) Lamb modes A0, S0, A1, S1, A2 and S2 were synthesized 11 according to [26], with peak-to-peak amplitudes of 1, 0.3, 1, 0.3, 1, and 0.3, respectively. A Gaussian noise 12 was added into each channel of the signal array with a fixed SNR of 15dB. The 2-D FT result of the received 13 signal after the first emission is presented in Fig. 1b, where the low-amplitude modes (S0, S1 and S2) are 14 too low to be identified. Fig. 1c depicts the first partial Norm function obtained using only the first singular 15

vector 𝑈 1 (corresponding to the highest singular value) at each frequency. Fig. 1d shows the second partial 16 method, the SVD-based method enables to detect the dispersion trajectories for the weak modes. For 7 example, the low-amplitude S0 mode obtained by 2D-FT (see Fig. 1b) is significantly enhanced by using 8 SVD-based method (see Figs. 1e), which can also be confirmed in Fig. 1f by comparing the dash and solid 9 lines obtained by using two different methods. 10 According to Eq. ( 10), if the value of hyperparameter 𝜎 is too large compared to that of |𝑊 (𝑘, 𝐸, 𝑓 𝑝 )|, 1 the reweighting matrix 𝑄 will be only determined by the value of 𝜎. The value of 𝜎 should be much smaller 2 than the magnitude of |𝑊 (𝑘, 𝐸, 𝑓 𝑝 )|. An heuristic value of 0.02 was adopted for 𝜎 in the present study. 3

Commonly, a relatively small value of regulation parameter 𝜇 leads to solutions with the best fit and 4 insignificant estimation error, while large 𝜇 can enhance the penalty effects with high-resolution sparsity 5 [15,[START_REF] Park | Multichannel analysis of surface waves[END_REF]45,[START_REF] Hansen | The use of the L-curve in the regularization of discrete ill-posed problems[END_REF]. However, due to the use of the inverse matrix 𝑈 -1 in our model in Eq. ( 4), an opposite 6 relationship is observed between the sparsity and the regularization parameter. As shown in Fig. 2, a small 7 value of 𝜇 can guarantee the sparse convergence of the S-SVD method, while the use of a large 𝜇 value 8 actually is corresponding to no sparse results as similar as the LS-SVD method. Furthermore, 𝜇 = 0 cannot 9 achieve the correct reweighting either. Those statuses between the first and second turning points can be 10 used to tune the sparsity with different resolutions. 11

(3). LS-SVD and high-resolution sparse SVD results of the synthetic data 12

Figure 3 shows the Norm functions obtained by applying SVD, LS-SVD, and S-SVD (𝑙 1 -norm and 13 Cauchy norm) to the synthetic signals. Compared with the 2-D FT results (in Fig. 1), the low amplitude 14 modes (S0, S1 and S2) are successfully enhanced by the SVD-based processing in Fig. 3a. As shown in 15 Fig. 3b, there is no improvement of the wavenumber resolution using the LS-SVD method ( also see Fig. 16 4). Figs. 3(c-f) present the S-SVD results with different resolution, two group of different regularization 17 parameters, i.e., 𝜇 = 0.5, 1000 and 𝜇 = 0.01, 1, are used for S-SVD (𝑙 1 -norm) and S-SVD (Cauchy norm), 18 respectively. It can be observed that the small 𝜇 selected around the first turning point of Fig. 2 

yields high-19

sparse estimates of the dispersion curves (Figs. 3c and3e). Furthermore, choosing the suitable 𝜇 values, 20 the S-SVD method can converge to different sparse levels (Figs. 3d and3f) with different resolutions (also 1 see Fig. 4). The convergence characteristics actually change with the frequencies, but Fig. 3 3 Figure 4 compares the Norm function obtained at 1 MHz (indicated as red dot lines in Fig. 3) using 4 different methods and different parameters. The SVD and LS-SVD provide comparable results with the 5 same resolution as that of the 2-D FT. In this study, the wavenumber resolution corresponding to the probe 6 employed can be computed by 2 * 2𝜋 (24 * 0.8) ⁄ = 0.65 rad/mm, where the 24 and 0.8 mm are number 7 of the elements and pitch size, respectively. For example, the main lobe width of S2 mode, extracted by the 8 SVD and LS-SVD method, is equal to 0.65 rad/mm locating between 0.54 and 1.19 rad/mm in Fig. 4. An 9 improved resolution is reached using the S-SVD method. For instance, the main lobe of the S2 mode 10 extracted from the amplitude curves of S-SVD (Cauchy, 𝜇 = 0.01) has a width of 0.11 rad/mm, i.e., 6 11 times improvement compared to the classical 2-D FT resolution, approximately. As shown in Fig. 2, such 12 a 𝜇 value is adopted according the first turning point. It also illustrates that using the S-SVD method, only 13 3 sharp peaks are observed and the mode energy leakage is completely suppressed. However, with such a 14 wavenumber resolution obtained by S-SVD, it is still not high enough to resolve those severely overlapped 15 modes, such as A1 and S1 modes in range of 0.7 to 1 rad/mm. 16 The main lobes of the S0 and A1 mode illustrated from the amplitude curves of the S-SVD (Cauchy 6 norm) with (𝜇, 𝜎) = (0.0015, 0.02) and S-SVD (𝑙 1 -norm) with (𝜇, 𝜎) = (10, 0.02) are in widths of 0.28 7 rad/mm and 0.18 rad/mm, respectively. In particular, the Norm function extracted at 1 MHz in the range of 8 1 to 2 rad/mm shows that the sparse SVD (Cauchy norm) enables to separate two wavenumber peaks, and 9 the sparse SVD (𝑙 1 -norm) finds three wavenumber peaks, when the SVD finds a single large peak (see Fig. 10 5d). Actually, in this wavenumber range, the plate model predicts the presence of two pairs of close modes 11 A2, S2 and A3, S3, respectively. The wavenumber resolution enhancement achieved with S-SVD, in 12 contrast to SVD, allows separation of the two pairs of close modes. The finest resolution of S-SVD (𝑙 1 -13 norm) even enables recovering A2 and S2 from the data, the third peak corresponding to the overlapping 14 A3 and S3 modes. Similar case can also be observed in the range of 2 to 4 rad/mm, where the S-SVD (𝑙 1 -15 norm and Cauchy norm) method is able to retrieve the relatively weak peaks of A1, S0 and S1 modes which 16 are highly overlapped together. 17 

C. Ex-vivo experiments 4

Results presented in Fig. 6 refer to the signals measured in a 2.5 mm-thick human radius ex vivo. Due 5 to low SNR, the Norm function illustrated in the Fig. 6a is corrupted by the noise. Meanwhile the aperture 6 limit in clinical measurement still induces strong mode aliasing, which is challenging for mode 7 identification. As shown in Figs. 6b and6c, in agreement with the simulation and phantom studies, the S-8 SVD method can filter most of the noise and yields energy concentrated trajectories. Because at 1 MHz, 9 some modes, like S0, S1 and A1 are poorly excited, the amplitude curves at 0.5 MHz are plotted in Fig. 6d, 10 which also confirms the high wavenumber resolution of the S-SVD method. The main lobes of the A0 11 Sparse SVD Method for High Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves 24 mode illustrated from the amplitude curves of the S-SVD (𝑙 1 -norm) with (𝜇, 𝜎) = (500, 0.02) and S-SVD 1 (Cauchy norm) with (𝜇, 𝜎) = (0.2, 0.02) are in widths of 0.22 rad/mm and 0.20 rad/mm, respectively. 2 3 Fig. 6. Multimode dispersion curves measured in a 2.5 mm-thick human radius (ex vivo), SVD and S-SVD (𝑙 1 -norm, 4 and Cauchy norm) results, comparison of wavenumber resolution at 0.5 MHz.

5

V. DISCUSSION 6 The main motivation of this study comes from the limitation encountered in extraction of the 7 dispersion curves when the time signals are recorded using receiving array of limited aperture with a 8 measurable length of several centimeters where only tense of transducer elements can actually be arranged. 9

The limitation is due to accessibility of clinical sites such as forearm. Currently, a SVD-based signal 10 processing approach allows efficient noise filtering and weak modes amplitude enhancement. However, 1 the relatively poor spatial sampling results in poor resolution on the wavenumber k-axis, which still 2 prevents a clear identification of the dispersion curves of overlapping modes. The sparse strategy continues 3 to attract considerable attention with capability of resolution improvement beyond the classical resolution 4 limit. In this paper, a S-SVD method for sparse characterization of the dispersion curves is proposed to 5 overcome the limited wavenumber resolution of ultrasonic guided waves measurement. The method is 6 proposed, assuming that the additional noise, which is weakly correlated to the singular vectors of the SVD 7 decomposition, can be optimally removed to promote a sparse result. 8

In agreement with previous studies [15,[START_REF] Harley | Sparse recovery of the multimodal and dispersive characteristics of Lamb waves[END_REF][START_REF] Park | Multichannel analysis of surface waves[END_REF]45], our results also illustrate that the choice of the 9 penalty term is important for the sparse optimization. The use of the 𝑙 2 -norm penalty in our cost function 10 basically leads to the least-squares solution, without obvious improvement of the wavenumber resolution. 11 Furthermore, it seems that the proposed LS-SVD method cannot effectively remove the additive noise 12 either. In contrast, the use of 𝑙 1 -norm and Cauchy norm can enhance the extraction of the dispersion curves 13 with a high wavenumber resolution, i.e., sparse characteristics [15,[START_REF] Park | Multichannel analysis of surface waves[END_REF]45]. As illustrated in the synthetic 14 and experimental results, both 𝑙 1 -norm and Cauchy penalty terms can provide good results with significant 15 resolution enhancement, so that it is difficult to directly conclude which of them can provide the finest 16

Norm function with the best wavenumber resolution. Certainly, other penalty terms are also worth to be 17 investigated, for instance the 𝑙 𝑝 -norm or even some polynomial terms (the sum of different norms). The 18 trade-off could be that the complicated design of the cost function will also raise other challenges, such as 19 the optimization of the regularization factors and the convergence criteria. 20 Regularization schemes are commonly accepted to solve ill-posed problems. The performance of S-1 SVD method highly relies on the choice of a suitable regularization parameter. Unsuitable regularization 2 will either enforce the over-sparse effectiveness to the all-zero solution or provide an insufficient sparse 3 solution without enough enhancement. We used an heuristic method to optimize the regularization 4 parameter. As shown in Fig. 2, when the regularization parameter increases, the norm ‖𝑊 ̃(𝑘, 𝐸, 𝑓 𝑝 )‖ 𝐹 2 5 convergence curves present two turning points with the left-right-flipped-Z-shape trends. The first and 6 second turning points of the ‖𝑊 ̃(𝑘, 𝐸, 𝑓 𝑝 )‖ 𝐹 2 curve are on the boundaries of the sparsity, high-resolution 7 and no-sparsity, respectively. The results suggest that the first turning point can be chosen as the suitable 8 value of the regularization parameter with sparsity optimization. Furthermore, the values of the 9 regularization parameter between the two turning points enable to tune the sparse level with different 10 resolutions. A second hyperparameter 𝜎 is imposed on the penalty function. It can be understood as a small 11 additive perturbation that represents the default power in absence of hyperbolic events [32]. A 1-D search 12 based on Brent parabolic interpolation could be used to optimize 𝜎 [43,48]. However, it should be noted 13 that the convergence characteristics also vary with frequencies. Strictly speaking, the regularization 14 parameter and hyperparameter must be optimized at each frequency. In our study, we find that they are 15 stable enough to allow us to choose identical values for different frequencies. Furthermore, there is also a 16 trade-off between the sparsity/resolution and capability of mode retrieve, since the very high resolution also 17 enhances the over-sparse effectiveness with drawback of removing some of the useful information. To 18 maximize the dispersion information, a suitable sparse level should be chosen with balance between the 19 misfit and resolution, allowing to remaining the weak modes together with sufficient separation of the 20 overlap dispersion curves. 21 Other signal processing methods, such as the spectrum estimation and high-resolution Radon method 1 [15,[START_REF] Park | Multichannel analysis of surface waves[END_REF]45] can also be considered to achieve a high-resolution wavenumber distribution. However, to the 2 best authors' knowledge, currently, most of the proposed methods have been designed for single-emitter 3 multi-receiver processing. In contrast, our SVD-based approach takes advantage of both the multichannel 4 transmission and reception. Specifically, the proposed S-SVD method combines the advantages of the 5 SVD-based enhancement of low-amplitude modes and also of the sparse penalty scheme to filter the noise 6 with high wavenumber resolution. Such a method may be more robust for detecting those weak modes 7 severely corrupted by noise, especially when measuring highly damping materials, such as bone. 8

The S-SVD method developed in the study involves matrix inversion in the SVD iteration with a 9 relatively expensive computation. However, in general, 10 to 20 times iterations are sufficient to converge 10 to the sparse solution, which suggests that the S-SVD method is capable for the real-time multi-emitter and 11 multi-receiver data processing. 12

VI. CONCLUSION 13

This original S-SVD approach discussed in this study combines the SVD-based SNR improvement 14 and the advantage of sparse regularization strategy to successfully achieve high resolution extraction of the 15 dispersion curves of ultrasonic guided waves. The analysis of the synthetic signals and experimental data 16 illustrates that the S-SVD method may provide significant advantages when trying to retrieve the 17 characteristics of the waveguide using model-based inverse procedures for three reasons: 18 i)

The sparse strategy can overcome the practical problem of the finite aperture caused by the 19 limit size and small number of elements of the probe. The S-SVD method allows retrieving 20 the dispersion curves with high wavenumber resolution, so that some severely overlapping 1 guided modes can be separated; 2

ii)

The merits of the SVD-based method and the high resolution optimization are preserved, 3 which allows extraction of some weak modes severely corrupted by noise; 4

iii)

The robust convergence characteristics of the regularization parameters allow the convenient 5 implementation of the S-SVD method. Furthermore, the left-right-flipped-Z-shape trend of the 6

sparse Norm function provides a flexible way for tuning the sparsity of the dispersion 7 trajectories for different applications. 8

The existence of surrounding soft tissues is expected to affect the SNR and signal coherence. Future 9 work will focus on adapting the S-SVD method on processing the in vivo guided waves data. 10
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4

-𝑁 𝑘 , 𝑁 𝑓 : number of points on the wavenumber and frequency axes.

5

-𝑁 𝑟 : number of highest singular values associate to the signal space, it will be used to obtain the 𝑈 𝑅 consisting of 6 𝑁 𝑟 singular vectors. A flexible rank strategy can be employed by using a threshold to select the highest singular 7 values and corresponding singular vectors.

8

-𝑛 𝑚𝑎𝑥 : maximum iteration times, an heuristic value is 20. 9 -𝜎: hyperparameter, an heuristic value is in the range of 0.01~0.1.

10

-𝜇: Lagrange factor, also named as regularization parameter or damping parameter.

11

-𝐽: cost function.

12

-𝜉: threshold of the relatively convergence difference of the cost function. An heuristic value is 0.02. 
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  Sparse SVD Method for High Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves 16 according to Eq. (3) by summing these two partial functions, i.e., |𝑈 1 | 2 + |𝑈 2 | 2 . Fig.1fcompares the 1 partial Norm functions with the wavenumber spectrum obtained using 2-D FT method at a fixed frequency 2 of 0.5 MHz. This particular frequency is indicated by red dot vertical lines in Figs.1(b-e). The |𝑈 1 | 2 and 3 |𝑈 2 | 2 are shown with symbols (△ and ◇), respectively. The Norm function reconstructed by summing 4 amplitude-squares of two first singular vectors, i.e., |𝑈 1 | 2 + |𝑈 2 | 2 , is shown in red solid line. The 5 normalized 2-D FT results of the first emission is shown with black dash line. Compared with the 2D-FT 6

Fig. 1 .

 1 Fig. 1. The synthetic signals, (a) distance-time (r-t) diagram, (b) dispersion energy in (𝑘, 𝑓) space using 2-D FT method,

  Fig.2. The ‖𝑊(𝑘, 𝐸, 𝑓 𝑝 )‖ 𝐹 2 variation versus 𝑙𝑜𝑔 10 (𝜇) using different penalty functions, for the multimodal synthetic 13
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 43 Fig. 3. Norm functions obtained using SVD, LS-SVD, S-SVD (𝑙 1 -norm, and Cauchy norm) applied to the synthetic
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Fig. 4 .

 4 Fig. 4. Comparison of wavenumber resolution at 1 MHz of the synthetic signals corresponding to a 2 mm-thick bone-

Figure 5

 5 Figure 5 displays the SVD and S-SVD results of the experiment signal measured in the 4 mm-thick 2

Fig. 5 .

 5 Fig. 5. Multimode dispersion curves measured in a 4 mm-thick bone-mimicking plate, SVD and S-SVD (𝑙 1 -norm and
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  𝑈 ̃: a 𝑁 𝑘 × 𝑁 𝑘 matrix remains the adjusted singular vectors.

15 -

 15 𝑁𝑜𝑟𝑚(𝑘, 𝑓): estimated Norm function.

16  17 2 10  15 𝐽𝑄13+

 16171015 Algorithm -D FT projecting the 𝑀(𝑅, 𝐸, 𝑡 ) into the 𝑊(𝑘, 𝐸, 𝑓 ) space; Sparse SVD Method for High Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves 37 for each 𝑓 𝑝 ∈ 𝑓(1, 2, … , 𝑁 𝑓 ) 1 a) SVD decomposition, [𝑈, 𝑆, 𝑉] = 𝑆𝑉𝐷[𝑊(𝑘, 𝐸, 𝑓 𝑝 )]; 2 b) Obtaining the modified 𝑈 𝑅 by discarding the insignificant singular vectors and normalizing the 𝑁 𝑟 highest 3 singular values to enhance the weak modes; 4 c) LS-SVD Initialization: 5 According to Eq. (8), the LS-SVD estimation is following 6𝜇 𝑡 = 𝜇 𝑡𝑟𝑎𝑐𝑒[(𝑈 𝑅 -1 ) 𝐻 𝑈 𝑅 -1 ]; 7 𝑈 ̃(0) = [(𝑈 𝑅 -1 ) 𝐻 𝑈 𝑅 -1 + 𝜇 𝑡 𝐼] -1 (𝑈 𝑅 -1 ) 𝐻 ; 8 𝑊 ̃(0) (𝑘, 𝐸, 𝑓 𝑝 ) = 𝑈 ̃(0) 𝑆𝑉 𝐻 ;9 d) S-SVD procedure: Initialization with the 𝑁 𝑘 × 𝑁 𝑘 Toeplitz matrix Q: 11 If using the 𝑙 1 -norm, then 12 𝑄 ′ = ( [∑ (|𝑊 ̃(0) (1, 𝑗, 𝑓 𝑝 )| + 𝜎 2 ) (0) = 𝜇‖𝑊(𝑘, 𝐸, 𝑓 𝑝 )‖ 𝐹 2 ; Sparse SVD Method for High Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves 38 Let ∆𝐽 = ∞ to ensure of the first iteration; 1 Reweighting iteration: 2 While (𝑛 < 𝑛 𝑚𝑎𝑥 ) & (∆𝐽 > 𝜉) 3 1. Updating the estimated 𝑈 ̃ and 𝑊 ̃ 4 𝜇 𝑡 = 𝜇 𝑡𝑟𝑎𝑐𝑒[(𝑈 (𝑛) -1 ) 𝐻 𝑈 (𝑛) -1 ]; 5 𝑈 ̃(𝑛+1) = [(𝑈 (𝑛) -1 ) 𝐻 𝑈 (𝑛) -1 + 𝜇 𝑡 𝑄] -1 (𝑈 (𝑛) -1 ) 𝐻 ; 6 𝑊 ̃(𝑛+1) (𝑘, 𝐸, 𝑓 𝑝 ) = 𝑈 ̃(𝑛+1) 𝑆𝑉 𝐻 ; 7 2. Updating the reweighting matrix 𝑁 𝑘 × 𝑁 𝑘 𝑄 8 If using the 𝑙 1 -norm, then 9 (|𝑊 ̃(𝑛+1) (𝑁 𝑘 , 𝑗, 𝑓 𝑝 )| + 𝜎 2 ) If using the 𝑙 1 -norm, then 14 𝐽 (𝑛+1) = ‖𝑈 ̃(𝑛+1) -1 𝑊 ̃(𝑛+1) (𝑘, 𝐸, 𝑓 𝑝 ) -𝑆𝑉 𝐻 ‖ 𝐹 2 𝜇 ∑ (𝜎 2 + ∑ |𝑊 ̃(𝑛+1) (𝑖, 𝑗, 𝑓 𝑝 )Sparse SVD Method for High Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves 39 𝐽 (𝑛+1) = ‖𝑈 ̃(𝑛+1) -1 𝑊 ̃(𝑛+1) (𝑘, 𝐸, 𝑓 𝑝 ) -𝑆𝑉 𝐻 ‖ the relative iteration convergence difference 2 ∆𝐽 = 2|𝐽 (𝑛+1) -𝐽 (𝑛) |/(𝐽 (𝑛+1) + 𝐽 (𝑛) );
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	17	. These results suggest that the plate
	18	model represents a reasonable approximation for the data measured in cortical bone in the 𝑓 • ℎ range
	19	between 0.2 MHz•mm and 2 MHz•mm. For lower 𝑓 • ℎ values (or low frequency excitation) not considered

Table I .

 I 3 Values of velocity, density, and thickness of the specimens in the experiments 4 Specimens ρ (𝑔 • 𝑐𝑚 -3 ) Th (mm) 𝐶 𝑇 (𝑚𝑚 • 𝜇𝑠 -1 ) (𝐶 𝐿‖ , 𝐶 𝐿⊥ ) (𝑚𝑚 • 𝜇𝑠 -1 )

	Bone-mimicking Plate	1.64	4	1.62	(𝐶 𝐿‖ , 𝐶 𝐿⊥ ) = (3.57, 2.91)
	Human Radius Specimen	1.85	2.50	1.8	(𝐶 𝐿‖ , 𝐶 𝐿⊥ ) = (4.0, 3.41)
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