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In order to mimic the interactions between cancer and the immune system at cell scale, we
propose a minimal model of cell interactions that is similar to a chemical mechanism including
autocatalytic steps. The cells are supposed to bear a quantity called activity that may increase
during the interactions. The fluctuations of cell activity are controlled by a so-called thermostat.
We develop a kinetic Monte Carlo algorithm to simulate the cell interactions and thermalization
of cell activity. The model is able to reproduce the well-known behavior of tumors treated by
immunotherapy: the first apparent elimination of the tumor by the immune system is followed by
a long equilibrium period and the final escape of cancer from immunosurveillance. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4964778]

I. INTRODUCTION

The activation and response of the immune system
to antigens is a complex process which involves different
cells and molecules. In particular the immune system
response to mutated cells, and more specifically to cancer
cells, has gained much attention at the beginning of
the twentieth century.1 However, a minimal interpretation
of tumor immunogenicity, according to which a tumor
induces a response of the immune system that is able to
eliminate the tumor, has proven insufficient. More complex
interactions between the cancer cells and the immune
system cells need to be considered to account for tumor
development in the presence of antigens.2,3 The treatment
of cancer by immunotherapy and the development of
successful vaccination protocols require a refinement of the
understanding of cancer immunosurveillance. The concept of
immunoediting has been introduced in order to take account
of the dual role of the immune system in both the elimination
of cancer and the possible promotion of tumor growth.4,5

Immunoediting is supposed to encompass three processes,
elimination, equilibrium, and escape, known as the three E’s.2

After a first step of tumor elimination, during which the
immune system successfully controls the tumor, the immune
system itself is suspected of promoting the generation of tumor
cell variants able to resist to the attack of the immune cells.
This second step is called equilibrium, due to the apparent
stationary state of the system. However, a third step of tumor
escape from immune destruction can be then observed.

The aim of the present paper is to develop a kinetic
Monte Carlo approach in order to simulate the interactions

a)Author to whom correspondence should be addressed. Electronic mail:
anle@lptmc.jussieu.fr

between the tumor and immune system at the cell scale.
We recently developed a kinetic theory approach to cell
interactions6–8 relying on hypotheses that are not easily
testable for the moment. As far-from-equilibrium living
units, cells are supposed to follow a strategy that can be
modeled by the tendency to increase a nonconserved, scalar
quantity, further referred to as activity. This quantity should
not be confused with the effective concentration of a chemical
species in a mixture. The term has been chosen in reference
to active matter,9 a system composed of a large number of
agents which are able to produce work at the expense of
energy consumption. In the present context, activity reflects
cell heterogeneity due to mutations. For immune system
cells, activity captures the level of learning reached at the
contact with cancer cells through the recognition process. The
activity allocated to cancer cells represents the progression
towards high values of malignancy. The considered system is
spatially homogeneous but the model mimics the biological
heterogeneity of cells by initially allocating different activities
to the cells and controlling the degree of heterogeneity by the
width of the probability distribution of the activity. We design
a model of binary cell interactions, considered as Markov
processes with activity-dependent transition rates. The binary
interactions lead to cell mutation and tend to increase the
activity of a cell. Exchanges with the microenvironment of
the cell are supposed to act as a bath for activity fluctuations.
By analogy with the control of energy fluctuations, the term
of thermostat is used to describe the control of the second
moment of the activity.10,11

The kinetic theory was originally designed to describe
molecular collisions in dilute gases.12 Applications to physical
systems include the modeling of dissipative interactions
between larger particles, in particular in the case of granular
flows.13–15 The kinetic equations are nonlinear partial integro-

0021-9606/2016/145(15)/154108/10/$30.00 145, 154108-1 Published by AIP Publishing.
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differential equations that can be numerically solved using
a direct simulation of the underlying stochastic processes
according to kinetic Monte Carlo approaches.16,17 The direct
simulation Monte Carlo (DSMC) method16,18 has been
introduced to simulate rare events in dilute gases and is
in particular well suited for the simulation of exothermic
reactions at large Knudsen number.19,20 However, the scope of
the method has been extended to soft matter and DSMC has
been successfully used to simulate phenomena of biological
relevance such as somitogenesis21 and chemotaxis.22 In the
case of cell interactions, we propose an algorithm based
on a succession of randomly chosen binary interactions
and thermalization steps. The possibility of reproducing
classical pathological cell behaviors can be envisaged as
an indirect, partial proof of our kinetic theory approach to cell
interactions.

The paper is organized as follows. The model of cell
interactions is described in Section II and the kinetic equations
for the distribution functions of the different types of cells are
derived. The kinetic Monte Carlo algorithm is made precise
in Section III. The results are discussed in Section IV. In
particular the ability of the model to take into account the
three E’s of cancer immunoediting is examined and special
attention is devoted to the action of the thermostat. Section V
contains conclusions.

II. MODEL

We consider a spatially homogeneous system composed
by three different cell populations: cancer cells c, immune
system cells i, and normal cells n. The initial state of the
system is defined by the numbers Nc, Ni, and Nn of cells
of each population c, i, and n, respectively. The system is
open and in contact with a source S of normal cells which
maintains the number Nn of normal cells constant. An activity
variable, u ∈ R+, initially distributed according to a normal

distribution, P(u) = 1
σ
√

2π
e
−
(
u−µ
σ
√

2

)2
, of mean value µ and

standard deviation σ, biased by imposing u ≥ 0, is allocated
to each cell. We introduce a minimal model which considers
the onset of cell mutation. The model is based on binary
interactions among the different types of cell populations.
The magnitude of the activity increases through the
interactions.

The model is based on the following assumptions. A
cancer cell c(u) of activity u is able to mutate a normal cell
n(u′) of smaller activity u′ < u into a cancer cell c(u′) at an
activity-dependent rate and, consequently, to increase its own
activity by a small amount, ϵ . At the same rate, the source S
injects a normal cell n(u′′) with a normally distributed activity
u′′ so that the number Nn of normal cells remains constant




c(u) + n(u′)
k1(u − u′)H(u − u′)

−→ c(u + ϵ) + c(u′)

S −→ n(u′′)
, (1)

where H(u) is the Heaviside step function and k1 is a rate
constant. By analogy with a chemical mechanism, Eq. (1) can

be viewed as an autocatalytic production of cancer cells, in
so far as cancer cells are both reactants and products of the
interaction.

In order to take into account the dual role of the immune
system in fighting cancer and promoting it, we introduce
two different types of interactions between cancer cells and
immune system cells. Depending on the values of their activity,
the interaction between a cancer cell c and an immune system
cell i may lead to either two immune system cells or two
cancer cells

c(u) + i(u′)
k2(u′ − u)H(u′ − u)

−→ i(u) + i(u′ + ϵ), (2)

c(u) + i(u′)
k3(u − u′)H(u − u′)

−→ c(u + ϵ) + c(u′), (3)

where k2 and k3 are rate constants. In both cases, the interaction
also results in assigning an activity increased by ϵ to the cell
with the largest activity before the interaction. At cell scale,
the autocatalytic production of immune system cells by the
process given in Eq. (2) can be related to tumor elimination,
whereas the autocatalytic production of cancer cells by the
process given in Eq. (3) can be related to the phenomenon of
tumor escape introduced in immunoediting.2

Due to the interactions, the activity of the cells evolves and
fluctuates. A thermostat associated with a field E is introduced
in order to control the second moment of the activity of the
entire system. For a Gaussian isokinetic thermostat where
the kinetic energy is conserved, the constrained equations
of motion introduce a dissipative term proportional to the
velocity in the equation relating acceleration and forces. By
analogy with Newtonian equations, we write

du
dt
= E − αu, (4)

where α can be seen as a generalized coefficient of friction.
Imposing that the second moment ⟨u2⟩ of the activity is
conserved leads to ⟨u du

dt ⟩ = 0 = ⟨u⟩E − α⟨u2⟩, which results
in

α =
⟨u⟩E
⟨u2⟩ . (5)

In Eqs. (4) and (5), ⟨.⟩ has to be interpreted as an ensemble
average.

In the framework of kinetic theory, distribution functions
f j(t,u) depending on time and activity for each kind of
cells j = n, i,c are introduced. According to the thermostatted
kinetic approach introduced in Refs. 6–8, the time evolution
of the distribution functions f j(t,u) can be written as

∂t f j(t,u) + ∂u
�
F(u) f j

�
= I j, (6)

where the term F(u) refers to the thermostat and the term
I j is the interaction term affecting the cells of type j and
resulting from the processes given in Eqs. (1)-(3). Specifically,
the interaction term Ic associated with the cancer cells
reads
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Ic =

R+

k1(u − ϵ − u′)H(u − ϵ − u′) fc(t,u − ϵ) fn(t,u′)du′

+


R+

k1(u′ − u)H(u′ − u) fc(t,u′) fn(t,u)du′

−

R+

k2(u′ − u)H(u′ − u) fc(t,u) f i(t,u′)du′

+


R+

k3(u − ϵ − u′)H(u − ϵ − u′) fc(t,u − ϵ) f i(t,u′)du′

+


R+

k3(u′ − u)H(u′ − u) fc(t,u′) f i(t,u)du′, (7)

where the first and second integrals refer to the autocatalytic
generation of cancer cells by Eq. (1), the third integral refers
to the destruction of cancer cells by Eq. (2), and the fourth and
fifth integrals refer to the autocatalytic production of cancer
cells by Eq. (3). Similarly, the interaction term Ii associated
with the immune system cells is

Ii =

R+

k2(u − ϵ − u′)H(u − ϵ − u′) fc(t,u′)
× f i(t,u − ϵ)du′

+


R+

k2(u′ − u)H(u′ − u) fc(t,u) f i(t,u′)du′

−

R+

k3(u′ − u)H(u′ − u) fc(t,u′) f i(t,u)du′, (8)

where the first and second integrals are related to the
autocatalytic production of immune system cells due to the
process given in Eq. (2) and the third integral is related to
tumor counterattack of immune system cells according to
Eq. (3). Finally, the interaction term In for the normal cells is
given by

In = −

R+

k1(u′ − u)H(u′ − u) fc(t,u′) fn(t,u)du′

+ P(u)

R+


R+

k1(u′ − u)H(u′ − u′′) fc(t,u′)
× fn(t,u′′)du′du′′, (9)

where the first integral originates from the mutation of
normal cells by the process given in Eq. (1) and the second
integral accounts for the effect of the source of normal
cells with activities distributed according to the normalized
distribution P(u). By integrating Eq. (6) over u for j = n, we
straightforwardly get ∂t


R+ fn(t,u)du = 0 and check that the

density ρn =

R+ fn(t,u)du of normal cells is actually kept

constant.
Due to the mutation of normal cells into cancer cells and

the simultaneous re-injection of normal cells into the system
through the process given in Eq. (1), the total number of cells
increases. Hence, the sum of the interaction terms does not
vanish 

j=n, i,c

I j , 0 (10)

and the second moment of the activity,

⟨u2⟩ =

R+

u2


j=n, i,c

f j(t,u)du, (11)

is not strictly conserved. However, in order to prevent an
explosion of activity fluctuations and for the sake of simplicity,

we introduce the same thermostat, as if the total number of
cells was conserved. By analogy with the coefficient of friction
α introduced in Eqs. (4) and (5), we look for a thermostat
term in the form F(u) = E − αu in Eq. (6) and obtain

F(u) = E

1 − u


R+

u *.
,


j=n, i,c

f j(t,u)+/
-

du

. (12)

In Sec. III, we propose to directly simulate the
stochastic processes defined in Eqs. (1)-(3) in order to
solve numerically the nonlinear partial integro-differential
kinetic equations (Eqs. (6)-(9)) which govern the far-from-
equilibrium dynamics of the cancer and immune system
competition.

III. KINETIC MONTE CARLO ALGORITHM

Kinetic Monte Carlo methods are designed to simulate
stochastic processes whose transition rates are known. In
particular, the algorithm introduced by Gillespie is used to
numerically solve a master equation associated with reaction-
diffusion processes.17 The master equation is intrinsically
stochastic. It has the form of a unique, linear equation for
a probability distribution.23 Without the thermostat, it would
have been possible to write a master equation associated with
the cell interactions defined in Eqs. (1)-(3). The probability
would have been a function of the activities and numbers of
cells of each type, considered as discrete, random variables.
We rather opted for an approach in the framework of kinetic
theory, first to easily control activity fluctuations and second
with the future aim of introducing spatial homogeneities,
i.e., following the distributions of cell position and velocity.8

There are significant differences with the master equation
approach. It is necessary to write as many kinetic equations
as cell types. The interaction terms given in Eqs. (7)-(9) are
nonlinear functions of the distribution functions. The kinetic
equations involve continuous distribution functions. Their
integration over the activity u provides deterministic densities
for each cell type.

Bird16 proposed an efficient kinetic Monte Carlo
algorithm to solve the Boltzmann equation associated with
a dilute gas. The direct simulation Monte Carlo (DSMC)
method16,18 introduces effective particles and generates their
stochastic trajectories. Consequently, DSMC includes the
description of the fluctuations of particle numbers,24 in
common with the master equation. The direct simulation
Monte Carlo method even gives access to the dynamics of each
particle, whereas the Gillespie algorithm only provides the
evolution of particle numbers: DSMC is a particle dynamics
simulation method but the master equation and Gillespie
algorithm describe the system at a mesoscopic scale. After
ensemble averaging, it has been proven that DSMC gives
an exact solution of the Boltzmann equation.25 In order
to simulate cell interactions, we have adapted the standard
acceptance-rejection technique used in DSMC as follows.
The particles are cells. Each cell has an activity u. Time
is discretized. The time step ∆t is constant, contrary to the
waiting time for the next random process in the Gillespie
algorithm. During the time step ∆t, interactions between
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FIG. 1. Time evolutions of (a) the numbers of cells Nc and Ni (the inset plot is a zoom-in on the first time steps), (b) the mean activities ⟨u⟩, ⟨u⟩c, and ⟨u⟩i,
(c) the second moments of the activity ⟨u2⟩, ⟨u2⟩c, and ⟨u2⟩i. The black long-dashed lines refer to the entire system. The index c refers to cancer cells (red solid
lines). The index i refers to immune system cells (green short-dashed lines). Parameter values: E = 10−4, k2= 10−2, k3= 10−3.

different types of cells and between the cells and the thermostat
are successively performed. The maximum number of binary
interactions between a total number N of cells during ∆t
is assessed at r = N(N − 1)kmax∆umax∆t, where kmax is the
maximum rate constant among k1, k2, and k3, and ∆umax is the
maximum positive difference between the activities u and u′

of two cells.
First, r interactions between cells are tempted and

accepted according to their probability of occurrence. For
example, in the case of the process given in Eq. (1), the
interaction between a randomly chosen cancer cell c(u) and a
randomly chosen normal cell n(u′) is accepted proportionally

to k1(u−u′)
kmax∆umax

if u > u′ and rejected otherwise. After an
interaction has been accepted, the activities of the interacting
cells and the numbers of cells of each type are updated as
required by the considered process. The maximum difference
of activities, ∆umax, is also updated. In the particular case of
the processes given in Eq. (1), once the mutation of a normal
cell n(u′) into a cancer cell c(u′) occurred, a normal cell n(u′′)
is simultaneously introduced in the system with an activity u′′

randomly chosen according to the probability P(u). Hence,
the total number Nn of normal cells remains constant.

Then, each cell interacts with the thermostat associated
with the field E. Following Eqs. (4) and (5), we perform the
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following update of the activity of each cell at each time step:

u(t + ∆t) = u(t) + ∆tE
(
1 − ⟨u⟩

⟨u2⟩u(t)) , (13)

where ⟨u⟩ and ⟨u2⟩ are the continuously updated mean value
and second moment of the activity of the whole system,
respectively. It can be noticed that, whereas the interactions
between cells listed in Eqs. (1)-(3) may only increase the mean
activity ⟨u⟩ of the entire system, the thermostat may decrease
it when large activity fluctuations of a sufficient number of
cells arise. This situation is illustrated in Fig. 1 when the
immune system cells suddenly disappear, letting the system
with many cancer cells of anomalously large activities: The
thermostat rapidly brings their activity down, leading to a
decrease of the ensemble average value ⟨u⟩. However, in most
cases, the mean activity of the entire system has the tendency
to increase.

Binary interactions between cells and interactions be-
tween the cells and the thermostat are performed successively
during a sufficiently long time, which generates a stochastic
time series for the number Nc of cancer cells, the number Ni

of immune system cells, the mean value ⟨u⟩ of the activity,
and the second moment ⟨u2⟩ of the activity. The proposed
algorithm aims at directly simulating the kinetic equations
given in Eqs. (6)-(9) by additionally reproducing the internal
fluctuations inherent to small systems.

IV. RESULTS

The kinetic Monte Carlo algorithm of thermostatted cell
interactions is used to generate stochastic trajectories for
different values of the field E associated with the thermostat
and different values of the rate constants k2 and k3 associated
with the interactions of a cancer cell and an immune system
cell. In all the simulations, we choose the same initial state,
defined by the total number of cells N(t = 0) = 104, the
number of cancer cells Nc(t = 0) = 100, and the number
of immune system cells, Ni(t = 0) = 100, at time t = 0.
The number of normal cells remains equal to Nn = 9800
throughout the simulation. We also set k1 = 10−6, µ = 0.2,
σ = 0.5, ϵ = 10−3, and ∆t = 1, where k1 is the rate constant
associated with the interaction between a cancer cell and a
normal cell given in Eq. (1), µ and σ are the mean value and
the standard deviation of the initial distribution of activities,
respectively, ϵ is the activity increase that the cell bearing the
largest activity before the interaction inherits after it, and ∆t is
the simulation time step. Depending on the values of the field
E, characterizing the efficiency of the thermostat, and the rate
constants k2 and k3, associated with the interactions between
cancer cells and immune system cells according to Eqs. (2)
and (3), different classes of behaviors are observed.

The case of a sufficiently small value of E, i.e., a poorly
effective thermostat, is first examined. The initial condition
imposes the same number of immune system cells and cancer
cells and the same distribution of activities between the two
populations. Hence, the relative values of k2 and k3 determine
which of the processes given in Eqs. (2) and (3) will initially
control the dynamics. Typical results obtained for k2 > k3

and a small field value E are given in Fig. 1. At the very
beginning, the autocatalytic formation of immune system
cells through Eq. (2) will be kinetically favored with respect
to the autocatalytic formation of cancer cells through Eq. (3).
As observed in Fig. 1(a), the number Ni of immune system
cells is growing rapidly, while the number Nc of cancer cells
decreases to reach a very low level. This short first period
models immunosurveillance and can be called elimination by
reference to the terminology introduced in immunoediting.2

Then, a long period, during which the number Ni of
immune system cells slightly increases and the number Nc

of cancer cells remains quasi-stationary, is observed. This
period of slow evolution can be called equilibrium.2 However,
the condition on the activities associated with the realisation
of Eq. (2) imposes that the process takes place only if the
interacting cancer cell has a smaller activity than the one of
the immune system cell. Consequently, the process given in
Eq. (2) most likely results in the withdrawal of the elements
with a small activity from the population of the cancer cells.
Hence, the remaining cancer cells tend to have a higher
mean activity ⟨u⟩c than the mean activity ⟨u⟩i of the immune
system cells, as shown in Fig. 1(b). As a result, the activity-
dependent rate of Eq. (2) decreases whereas the one of Eq. (3)
increases. When the numbers of immune system cells and
cancer cells exceed a given threshold, of the order of 700
for Ni and 150 for Nc for the chosen parameter values, the
dynamics switches from the control by the process given in
Eq. (2) to a control by the process given in Eq. (3). Then,
the autocatalytic formation of cancer cells leads to the rapid
increase of Nc and the rapid decrease of Ni. But now, Eq. (3)
favors the formation of cancer cells with an activity inherited
from immune system cells that were selected for their small
activity: As Nc increases, the mean activity of cancer cells
⟨u⟩c decreases. Consequently, the activity-dependent rate of
Eq. (3) decreases and the dynamics is again controlled by
Eq. (2). The variations of Nc and ⟨u⟩c are anti-correlated as
shown in Figs. 1(a) and 1(b). The dependence of the rates on
the activities introduces a feedback mechanism, comparable
to a feedback loop in a chemical mechanism associated with
temporal oscillations and the emergence of a limit cycle in the
space of densities.26 In the present context and for a poorly
efficient thermostat, this phenomenon leads to increasingly
large fluctuations of the numbers of cancer cells and immune
system cells until one of the fluctuations leads to a vanishing
value for Ni.

When the rate constant k2 associated with the autocat-
alytic formation of immune system cells is larger than the
rate constant k3 associated with the autocatalytic formation of
cancer cells, we have checked that the vanishing of Ni and
not Nc is systematically obtained for different realisations of
the stochastic processes. Actually, the increase of ⟨u⟩c due
to Eq. (2) offers a decisive advantage to the tumor cells, in
relation with the increase of the rate of the process given in
Eq. (1), which produces cancer cells faster from normal cells.
No equivalent process occurs for the immune system cells that
can only be produced by a favorable interaction with cancer
cells. Contrary to intuition and due to the complex regulation
induced by activity-dependent rates, the condition k2 > k3
eventually leads to the death of all the immune system cells
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and the proliferation of the cancer cells. The last third period
of the evolution shown in Fig. 1(a) illustrates the phenomenon
of tumor escape, well known in immunoediting.2,4,5

The bad performances of the thermostat obtained for a
small value of the field E = 10−4 are shown in Fig. 1(c). Tumor
escape is associated with an increase of the second moment
⟨u2⟩ of the activity of the entire system that thermalization is
not able to prevent. The results shown in Fig. 1 prove that
the processes given in Eqs. (1)-(3) successfully include the
modeling of the three E’s characterizing immunoediting:2 A
fast elimination step, followed by a long equilibrium period
and the final tumor escape are clearly illustrated by the
evolution of the number of cancer cells and immune system
cells given in Fig. 1(a).

The opposite behavior is observed in Fig. 2 for k2 < k3,
i.e., a rate constant associated with the autocatalytic formation
of immune system cells smaller than the rate constant
associated with the autocatalytic formation of cancer cells.
What was true in Fig. 1 for the cancer cells is observed in
Fig. 2 for the immune system cells, and reciprocally. In this
case, the autocatalytic production of cancer cells from the
normal cells by Eq. (1) is slowed down by the smaller mean
activity ⟨u⟩c of the cancer cells. A large fluctuation of the
number of cancer cells eventually leads to their complete
elimination. Paradoxically, the immune system is able to
eradicate the tumor when the rate constant values favor the
autocatalytic formation of cancer cells with respect to immune
system cells, in relation with the detrimental impact of cancer

FIG. 2. Same caption as in Fig. 1 for E = 10−4, k2= 10−3, k3= 10−2.
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cell activity decrease on the kinetics of cancer cell formation
from normal cells.

Figure 3 illustrates the exotic behavior obtained for
k2 = k3 when the initial rates of the processes given in Eqs. (2)
and (3) are equal. As shown in Fig. 3(a), both Nc and Ni slowly
increase in average and show increasingly large anti-correlated
fluctuations, eventually leading to the vanishing of Ni. In the
terminology of immunoediting, the elimination step is absent
and the behavior resembles a two-step mechanism composed
of equilibrium and tumor escape from the surveillance of the
immune system. However, contrary to the distinct behaviors
of the mean activities ⟨u⟩c and ⟨u⟩i observed in Fig. 1(b)
for k2 > k3, the two cell populations maintain the same mean
activity level, as shown in Fig. 3(b). Consequently, the activity-

dependent rates associated with the interaction of a cancer
cell and an immune system cell remain close throughout the
entire evolution. For k2 = k3, the competition between the
two pathways, leading to the proliferation of either immune
system cells or cancer cells, is not discriminating. The final
increase of the number of cancer cells can be assigned to the
autocatalytic production of cancer cells by Eq. (1), kinetically
favored by the increase of mean cancer cell activity.

As a partial conclusion, we state that in the absence
of efficient thermalization, large fluctuations of cell activity
and consequently activity-dependent rates lead to large
fluctuations of the number of immune system cells and
cancer cells, one of which results in the vanishing of the
corresponding cell population. The relative values of the

FIG. 3. Same caption as in Fig. 1 for E = 10−4, k2= 10−2, k3= 10−2.
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rate constants k2 and k3 associated with the autocatalytic
production of either immune system cells or cancer cells,
respectively, control the final state of the system. For
k2 ≥ k3, i.e., the initial kinetically favorable formation of
immune system cells nevertheless leads to tumor escape and
proliferation of cancer cells. On the other hand, the condition
k2 < k3, associated with the initial increase of cancer cells,
eventually leads to their total elimination. We examine in
the next paragraphs how the strength of the thermostat may
influence the behavior of the system.

We consider a larger value of the field E associated
with the thermostat. As previously shown, different states are
eventually reached, depending on the relative values of the rate
constants k2 and k3 but these final states differ from the ones

obtained for a smaller value of the field E. Figure 4, obtained
for E = 10−3, is to be compared with Fig. 1, obtained for E
= 10−4. The other parameter values are identical. In particular,
the rate constants obey: k2 > k3. In both Figs. 1 and 4, the
immune system cells benefit from an initial advantage, due to
their first kinetically favored autocatalytic production through
Eq. (2). As already explained and due to the activity-dependent
criterion of selection of the encounters in Eq. (2), the initial
increase of the number Ni of immune system cells is accompa-
nied by a decrease of their mean activity ⟨u⟩i and an increase of
cancer cell mean activity ⟨u⟩c. Whereas this phenomenon was
inducing a feedback mechanism in the case of an inefficient
thermostat, the fluctuations of activity and consequently of
cell numbers, whose dynamics highly depends on activity,

FIG. 4. Same caption as in Fig. 1 for E = 10−3, k2= 10−2, k3= 10−3.
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are significantly damped for a higher value of the field E.
Hence, in the presence of a sufficiently effective thermostat,
the initially larger production rate of the immune system cells
represents a decisive advantage, leading to the stabilisation of
the system in a stationary state with a final number of immune
system cells larger than the final number of cancer cells.

The results given in Fig. 5, to be compared with Fig. 2,
are obtained for k2 < k3. Again, a sufficient thermalization
dampens the fluctuations of the number of cancer cells and
immune system cells. Hence, the initial increase of the number
of cancer cells prevails in the long term. For k2 < k3, the
system reaches a nonequilibrium steady state with a number
of immune system cells smaller than the number of cancer
cells. Only the specific case k2 = k3 qualitatively leads to the

same results for E = 10−3 as for E = 10−4. A larger field E
does not succeed in suppressing the fluctuations of Ni and Nc

and tumor escape is equally observed.
Hence, the results obtained in the case of a sufficiently

effective control of activity fluctuations are more in line
with intuition. For different values of the rate constants
k2 and k3 which control the dynamics of the interactions
between the immune system cells and the cancer cells,
the system reaches a stationary state associated with
nonvanishing values of both the number Nc of cancer cells
and Ni of immune system cells. A smaller stationary value
of the number of cancer cells is obtained for k3 < k2,
i.e., in the case of kinetically disadvantaged cancer cell
formation.

FIG. 5. Same caption as in Fig. 1 for E = 10−3, k2= 10−3, k3= 10−2.
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V. CONCLUSION

In order to model cancer immunosurveillance at cell scale,
we propose a minimal model of binary interactions between
three types of cells, normal cells, cancer cells, and immune
system cells. The model of interactions resembles a chemical
mechanism including autocatalytic steps. The analogy with
open chemical systems, maintained far from equilibrium due
to exchanges with a reservoir, is also used to mimic the
production of normal cells by living tissues. The cells are
supposed to follow a strategy leading to the increase of a
nonconserved quantity called activity. The cancer cells and
immune system cells are produced with activity-dependent
rates, which induces a feedback loop, responsible for large
random oscillations of the cell numbers. Cell interactions are
described in the framework of thermostatted kinetic theory.

We have developed a kinetic Monte Carlo algorithm
consisting of the succession of binary cell interactions and
thermalization of cell activity. In the case of a poorly efficient
thermostat, i.e., for large fluctuations of the activities and
the numbers of cells, the model successfully reproduces the
three E’s of immunoediting (elimination, equilibrium, and
escape) for nonintuitive values of the dynamical parameters.
The feedback mechanism plays a crucial role in eventual
tumor escape, observed for the initially kinetically favored
production of immune system cells. In the case of a better
thermalization, the system is stabilized in a nonequilibrium
steady state with nonvanishing values of both the number Nc

of cancer cells and the number Ni of immune system cells.
More intuitive results are obtained, with larger final values of
Ni for a larger rate constant associated with the autocatalytic
production of immune system cells and reciprocally, larger
final values of Nc for a larger rate constant associated with the
autocatalytic production of cancer cells.

In the model, the heterogeneity of cancer cells is taken
into account through the distribution of the activities but
the considered system is spatially homogeneous. The kinetic

Monte Carlo approach can be generalized to inhomogeneous
distributions of cells. Work in this direction is certainly
desirable, in order to account for the spatial spreading of
a tumor and for taking into account the role of metastasis.
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