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Abstract:

In order to mimic the interactions between cancer and the immune system at cell scale,

we propose a minimal model of cell interactions that is similar to a chemical mechanism

including autocatalytic steps. The cells are supposed to bear a quantity called activity

that may increase during the interactions. The fluctuations of cell activity are controlled

by a so-called thermostat. We develop a kinetic Monte Carlo algorithm to simulate the

cell interactions and thermalization of cell activity. The model is able to reproduce the

well-known behavior of tumors treated by immunotherapy: the first apparent elimination

of the tumor by the immune system is followed by a long equilibrium period and the final

escape of cancer from immunosurveillance.
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1 Introduction

The activation and the response of the immune system to antigens is a complex process

which involves different cells and molecules. In particular the immune system response

to mutated cells, and more specifically to cancer cells, has gained much attention at the

beginning of the twentieth century1. However, a minimal interpretation of tumor im-

munogenicity, according to which a tumor induces a response of the immune system that

is able to eliminate the tumor, has proven insufficient. More complex interactions between

the cancer cells and the immune system cells need to be considered to account for tumor

development in the presence of antigens2, 3. The treatment of cancer by immunother-

apy and the development of successful vaccination protocols require a refinement of the

understanding of cancer immunosurveillance. The concept of immunoediting has been

introduced in order to take account of the dual role of the immune system in both the

elimination of cancer and the possible promotion of tumor growth4, 5. Immunoediting is

supposed to encompass three processes, elimination, equilibrium and escape, known as

the three E’s2. After a first step of tumor elimination, during which the immune system

successfully controls the tumor, the immune system itself is suspected of promoting the

generation of tumor cell variants able to resist to the attack of the immune cells. This

second step is called equilibrium, due to the apparent stationary state of the system.

However, a third step of tumor escape from immune destruction can be then observed.

The aim of the present paper is to develop a kinetic Monte Carlo approach in order

to simulate the interactions between tumor and immune system at the cell scale. We re-

cently developed a kinetic theory approach to cell interactions6, 7, 8 relying on hypotheses

that are not easily testable for the moment. As far-from-equilibrium living units, cells

are supposed to follow a strategy that can be modeled by the tendency to increase a non

conserved, scalar quantity, further referred to as activity. This quantity should not be

confused with the effective concentration of a chemical species in a mixture. The term has

been chosen in reference to active matter9, a system composed of a large number of agents
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which are able to produce work at the expense of energy consumption. In the present

context, activity reflects cell heterogeneity due to mutations. For immune system cells,

activity captures the level of learning reached at the contact with cancer cells through the

recognition process. The activity allocated to cancer cells represents the progression to-

wards high values of malignancy. The considered system is spatially homogeneous but the

model mimics the biological heterogeneity of cells by initially allocating different activities

to the cells and controlling the degree of heterogeneity by the width of the probability

distribution of the activity. We design a model of binary cell interactions, considered as

Markov processes with activity-dependent transition rates. The binary interactions lead

to cell mutation and tend to increase the activity of a cell. Exchanges with the microen-

vironment of the cell are supposed to act as a bath for activity fluctuations. By analogy

with the control of energy fluctuations, the term of thermostat is used to describe the

control of the second moment of the activity10, 11.

The kinetic theory was originally designed to describe molecular collisions in dilute

gases12. Applications to physical systems include the modeling of dissipative interac-

tions between larger particles, in particular in the case of granular flows13, 14, 15. The

kinetic equations are nonlinear partial integro-differential equations that can be numer-

ically solved using a direct simulation of the underlying stochastic processes according

to kinetic Monte Carlo approaches16, 17. The direct simulation Monte Carlo (DSMC)

method16, 18, has been introduced to simulate rare events in dilute gases and is in partic-

ular well suited for the simulation of exothermic reactions at large Knudsen number19, 20,

However, the scope of the method has been extended to soft matter and DSMC has been

successfully used to simulate phenomena of biological relevance such as somitogenesis21

and chemotaxis22. In the case of cell interactions, we propose an algorithm based on a

succession of randomly chosen binary interactions and thermalization steps. The possi-

bility of reproducing classical pathological cell behaviors can be envisaged as an indirect,

partial proof of our kinetic theory approach to cell interactions.
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The paper is organized as follows. The model of cell interactions is described in Section

2 and the kinetic equations for the distribution functions of the different types of cells

are derived. The kinetic Monte Carlo algorithm is made precise in Section 3. The results

are discussed in Section 4. In particular the ability of the model to take into account the

three E’s of cancer immunoediting is examined and special attention is devoted to the

action of the thermostat. Section 5 contains conclusions.

2 Model

We consider a spatially homogeneous system composed by three different cell populations:

cancer cells c, immune system cells i, and normal cells n. The initial state of the system is

defined by the numbers Nc, Ni and Nn of cells of each population c, i, and n, respectively.

The system is open and in contact with a source S of normal cells which maintains the

number Nn of normal cells constant. An activity variable, u ∈ R
+, initially distributed

according to a normal distribution, P (u) = 1
σ
√
2π
e
−

(

u−µ

σ

√
2

)2

, of mean value µ and standard

deviation σ, biased by imposing u ≥ 0, is allocated to each cell. We introduce a min-

imal model which considers the onset of cell mutation. The model is based on binary

interactions among the different types of cell populations. The magnitude of the activity

increases through the interactions.

The model is based on the following assumptions. A cancer cell c(u) of activity u is

able to mutate a normal cell n(u′) of smaller activity u′ < u into a cancer cell c(u′) at an

activity-dependent rate and, consequently, to increase its own activity by a small amount,

ǫ. At the same rate, the source S injects a normal cell n(u′′) with a normally distributed

activity u′′ so that the number Nn of normal cells remains constant:














c(u) + n(u′)
k1(u− u′)H(u− u′)

−→ c(u+ ǫ) + c(u′)

S −→ n(u′′)

(1)

where H(u) is the Heaviside step function and k1 is a rate constant. By analogy with
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a chemical mechanism, Eq. (1) can be viewed as an autocatalytic production of cancer

cells, in so far as cancer cells are both reactants and products of the interaction.

In order to take into account the dual role of the immune system in fighting cancer and

promoting it, we introduce two different types of interactions between cancer cells and

immune system cells. Depending on the values of their activity, the interaction between

a cancer cell c and an immune system cell i may lead to either two immune system cells

or two cancer cells:

c(u) + i(u′)
k2(u

′ − u)H(u′ − u)

−→ i(u) + i(u′ + ǫ) (2)

c(u) + i(u′)
k3(u− u′)H(u− u′)

−→ c(u+ ǫ) + c(u′) (3)

where k2 and k3 are rate constants. In both cases, the interaction also results in assigning

an activity increased by ǫ to the cell with the largest activity before the interaction. At

cell scale, the autocatalytic production of immune system cells by the process given in Eq.

(2) can be related to tumor elimination, whereas the autocatalytic production of cancer

cells by the process given in Eq. (3) can be related to the phenomenon of tumor escape

introduced in immunoediting2.

Due to the interactions, the activity of the cells evolves and fluctuates. A thermostat

associated with a field E is introduced in order to control the second moment of the

activity of the entire system. For a Gaussian isokinetic thermostat where the kinetic

energy is conserved, the constrained equations of motion introduce a dissipative term

proportional to the velocity in the equation relating acceleration and forces. By analogy

with Newtonian equations, we write

du

dt
= E − αu (4)

where α can be seen as a generalized coefficient of friction. Imposing that the second

moment 〈u2〉 of the activity is conserved leads to 〈udu
dt
〉 = 0 = 〈u〉E−α〈u2〉, which results
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in

α =
〈u〉E

〈u2〉
(5)

In Eqs. (4,5), 〈.〉 has to be interpreted as an ensemble average.

In the framework of kinetic theory, distribution functions fj(t, u) depending on time

and activity for each kind of cells j = n, i, c are introduced. According to the thermostat-

ted kinetic approach introduced in references6, 7, 8, the time evolution of the distribution

functions fj(t, u) can be written as:

∂tfj(t, u) + ∂u (F (u)fj) = Ij (6)

where the term F (u) refers to the thermostat and the term Ij is the interaction term af-

fecting the cells of type j and resulting from the processes given in Eqs. (1-3). Specifically,

the interaction term Ic associated with the cancer cells reads:

Ic =

∫

R+

k1(u− ǫ− u′)H(u− ǫ− u′)fc(t, u− ǫ)fn(t, u
′)du′ (7)

+

∫

R+

k1(u
′ − u)H(u′ − u)fc(t, u

′)fn(t, u)du
′

−

∫

R+

k2(u
′ − u)H(u′ − u)fc(t, u)fi(t, u

′)du′

+

∫

R+

k3(u− ǫ− u′)H(u− ǫ− u′)fc(t, u− ǫ)fi(t, u
′)du′

+

∫

R+

k3(u
′ − u)H(u′ − u)fc(t, u

′)fi(t, u)du
′

where the first and second integrals refer to the autocatalytic generation of cancer cells

by Eq. (1), the third integral refers to the destruction of cancer cells by Eq. (2), and the

fourth and fifth integrals refer to the autocatalytic production of cancer cells by Eq. (3).

Similarly, the interaction term Ii associated with the immune system cells is:

Ii =

∫

R+

k2(u− ǫ− u′)H(u− ǫ− u′)fc(t, u
′)fi(t, u− ǫ)du′ (8)

+

∫

R+

k2(u
′ − u)H(u′ − u)fc(t, u)fi(t, u

′)du′

−

∫

R+

k3(u
′ − u)H(u′ − u)fc(t, u

′)fi(t, u)du
′
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where the first and second integrals are related to the autocatalytic production of immune

system cells due to the process given in Eq. (2) and the third integral is related to tumor

counterattack of immune system cells according to Eq. (3). Finally, the interaction term

In for the normal cells is given by:

In = −

∫

R+

k1(u
′ − u)H(u′ − u)fc(t, u

′)fn(t, u)du
′ (9)

+ P (u)

∫

R+

∫

R+

k1(u
′ − u)H(u′ − u′′)fc(t, u

′)fn(t, u
′′)du′du′′

where the first integral originates from the mutation of normal cells by the process given

in Eq. (1) and the second integral accounts for the effect of the source of normal cells

with activities distributed according to the normalized distribution P (u). By integrating

Eq. (6) over u for j = n, we straightforwardly get ∂t
∫

R+ fn(t, u)du = 0 and check that

the density ρn =
∫

R+ fn(t, u)du of normal cells is actually kept constant.

Due to the mutation of normal cells into cancer cells and the simultaneous re-injection

of normal cells into the system through the process given in Eq. (1), the total number of

cells increases. Hence, the sum of the interaction terms does not vanish:

∑

j=n,i,c

Ij 6= 0 (10)

and the second moment of the activity,

〈u2〉 =

∫

R+

u2
∑

j=n,i,c

fj(t, u)du (11)

is not strictly conserved. However, in order to prevent an explosion of activity fluctuations

and for the sake of simplicity, we introduce the same thermostat, as if the total number

of cells was conserved. By analogy with the coefficient of friction α introduced in Eqs.

(4,5), we look for a thermostat term in the form F (u) = E − αu in Eq. (6) and obtain:

F (u) = E

[

1− u

∫

R+

u

(

∑

j=n,i,c

fj(t, u)

)

du

]

(12)
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In the next section, we propose to directly simulate the stochastic processes defined in

Eqs. (1-3) in order to solve numerically the nonlinear partial integro-differential kinetic

equations (Eqs. (6-9)) which govern the far-from-equilibrium dynamics of the cancer and

immune system competition.

3 Kinetic Monte Carlo algorithm

Kinetic Monte Carlo methods are designed to simulate stochastic processes whose tran-

sition rates are known. In particular, the algorithm introduced by Gillespie is used to

numerically solve a master equation associated with reaction-diffusion processes17. The

master equation is intrinsically stochastic. It has the form of a unique, linear equation

for a probability distribution23. Without thermostat, it would have been possible to write

a master equation associated with the cell interactions defined in Eqs. (1-3). The prob-

ability would have been a function of the activities and numbers of cells of each type,

considered as discrete, random variables. We rather opted for an approach in the frame-

work of kinetic theory, first to easily control activity fluctuations and second with the

future aim of introducing spatial homogeneities, i.e. following the distributions of cell po-

sition and velocity8. There are significant differences with the master equation approach.

It is necessary to write as many kinetic equations as cell types. The interaction terms

given in Eqs. (7-9) are nonlinear functions of the distribution functions. The kinetic

equations involve continuous distribution functions. Their integration over the activity u

provides deterministic densities for each cell type.

Graeme Bird16 proposed an efficient kinetic Monte Carlo algorithm to solve the Boltz-

mann equation associated with a dilute gas. The direct simulation Monte Carlo (DSMC)

method16, 18 introduces effective particles and generates their stochastic trajectories. Con-

sequently, DSMC includes the description of the fluctuations of particle numbers24, in

common with the master equation. The direct simulation Monte Carlo method even

gives access to the dynamics of each particle, whereas Gillespie algorithm only provides
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the evolution of particle numbers: DSMC is a particle dynamics simulation method but

the master equation and Gillespie algorithm describe the system at a mesoscopic scale.

After ensemble averaging, it has been proven that DSMC gives an exact solution of the

Boltzmann equation25. In order to simulate cell interactions, we have adapted the stan-

dard acceptance-rejection technique used in DSMC as follows. The particles are cells.

Each cell has an activity u. Time is discretized. The time step ∆t is constant, contrary

to the waiting time for the next random process in the Gillespie algorithm. During the

time step ∆t, interactions between different types of cells and between the cells and the

thermostat are successively performed. The maximum number of binary interactions be-

tween a total number N of cells during ∆t is assessed at r = N(N − 1)kmax∆umax∆t,

where kmax is the maximum rate constant among k1, k2, k3, and ∆umax is the maximum

positive difference between the activities u and u′ of two cells.

First, r interactions between cells are tempted and accepted according to their prob-

ability of occurrence. For example, in the case of the process given in Eq. (1), the

interaction between a randomly chosen cancer cell c(u) and a randomly chosen normal

cell n(u′) is accepted proportionally to k1(u−u′)
kmax∆umax

if u > u′ and rejected otherwise. After

an interaction has been accepted, the activities of the interacting cells and the numbers

of cells of each type are updated as required by the considered process. The maximum

difference of activities, ∆umax, is also updated. In the particular case of the processes

given in Eq. (1), once the mutation of a normal cell n(u′) into a cancer cell c(u′) occurred,

a normal cell n(u′′) is simultaneously introduced in the system with an activity u′′ ran-

domly chosen according to the probability P (u). Hence, the total number Nn of normal

cells remains constant.

Then, each cell interacts with the thermostat associated with the field E. Following

Eqs. (4,5), we perform the following update of the activity of each cell at each time step:

u(t+∆t) = u(t) + ∆tE
(

1−
〈u〉

〈u2〉
u(t)

)

(13)
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where 〈u〉 and 〈u2〉 are the continuously updated mean value and second moment of the

activity of the whole system, respectively. It can be noticed that, whereas the interactions

between cells listed in Eqs. (1-3) may only increase the mean activity 〈u〉 of the entire

system, the thermostat may decrease it when large activity fluctuations of a sufficient

number of cells arise. This situation is illustrated in Fig. 1 when the immune system

cells suddenly disappear, letting the system with many cancer cells of anomalously large

activities: The thermostat rapidly brings their activity down, leading to a decrease of

the ensemble average value 〈u〉. However, in most cases, the mean activity of the entire

system has the tendency to increase.

Binary interactions between cells and interactions between the cells and the thermostat

are performed successively during a sufficiently long time, which generates stochastic

time series for the number Nc of cancer cells, the number Ni of immune system cells,

the mean value 〈u〉 of the activity, and the second moment 〈u2〉 of the activity. The

proposed algorithm aims at directly simulating the kinetic equations given in Eqs. (6-9)

by additionally reproducing the internal fluctuations inherent to small systems.

4 Results

The kinetic Monte Carlo algorithm of thermostatted cell interactions is used to generate

stochastic trajectories for different values of the field E associated with the thermostat

and different values of the rate constants k2 and k3 associated with the interactions of a

cancer cell and an immune system cell. In all the simulations, we choose the same initial

state, defined by the total number of cells N(t = 0) = 104, the number of cancer cells

Nc(t = 0) = 100, and the number of immune system cells, Ni(t = 0) = 100, at time t = 0.

The number of normal cells remains equal to Nn = 9800 throughout the simulation. We

also set k1 = 10−6, µ = 0.2, σ = 0.5, ǫ = 10−3, ∆t = 1, where k1 is the rate constant asso-

ciated with the interaction between a cancer cell and a normal cell given in Eq. (1), µ and

σ are the mean value and the standard deviation of the initial distribution of activities,
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respectively, ǫ is the activity increase that the cell bearing the largest activity before the

interaction inherits after it, and ∆t is the simulation time step. Depending on the values

of the field E, characterizing the efficiency of the thermostat, and the rate constants k2

and k3, associated with the interactions between cancer cells and immune system cells

according to Eqs. (2,3), different classes of behaviors are observed.

The case of a sufficiently small value of E, i.e. a poorly effective thermostat, is first

examined. The initial condition imposes the same number of immune system cells and

cancer cells and the same distribution of activities between the two populations. Hence,

the relative values of k2 and k3 determine which of the processes given in Eqs. (2,3) will

initially control the dynamics. Typical results obtained for k2 > k3 and a small field value

E are given in Fig. 1. At the very beginning, the autocatalytic formation of immune

system cells through Eq. (2) will be kinetically favored with respect to the autocatalytic

formation of cancer cells through Eq. (3). As observed in Fig. 1a, the number Ni of

immune system cells is growing rapidly, while the number Nc of cancer cells decreases

to reach a very low level. This short first period models immunosurveillance and can be

called elimination by reference to the terminology introduced in immunoediting2.

Then, a long period, during which the number Ni of immune system cells slightly

increases and the number Nc of cancer cells remains quasi-stationary, is observed. This

period of slow evolution can be called equilibrium2. However, the condition on the activ-

ities associated with the realisation of Eq. (2) imposes that the process takes place only

if the interacting cancer cell has a smaller activity than the one of the immune system

cell. Consequently, the process given in Eq. (2) most likely results in the withdrawal of

the elements with a small activity from the population of the cancer cells. Hence, the

remaining cancer cells tend to have a higher mean activity 〈u〉c than the mean activity

〈u〉i of the immune system cells, as shown in Fig. 1b. As a result, the activity-dependent

rate of Eq. (2) decreases whereas the one of Eq. (3) increases. When the numbers of
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(a) (b)

(c)

Figure 1: Time evolutions of (a) the numbers of cells Nc and Ni (the inset plot is a zoom-in
on the first time steps), (b) the mean activities < u >, < u >c and < u >i, (c) the second
moments of the activity < u2 >, < u2 >c and < u2 >i. The black long-dashed lines
refer to the entire system. The index c refers to cancer cells (red solid lines). The index
i refers to immune system cells (green short-dashed lines). Parameter values: E = 10−4,
k2 = 10−2, k3 = 10−3.
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immune system cells and cancer cells exceed a given threshold, of the order of 700 for Ni

and 150 for Nc for the chosen parameter values, the dynamics switches from the control by

the process given in Eq. (2) to a control by the process given in Eq. (3). Then, the auto-

catalytic formation of cancer cells leads to the rapid increase of Nc and the rapid decrease

of Ni. But now, Eq. (3) favors the formation of cancer cells with an activity inherited

from immune system cells that were selected for their small activity: As Nc increases, the

mean activity of cancer cells 〈u〉c decreases. Consequently, the activity-dependent rate

of Eq. (3) decreases and the dynamics is again controlled by Eq. (2). The variations of

Nc and 〈u〉c are anti-correlated as shown in Figs. 1a, 1b. The dependence of the rates

on the activities introduces a feedback mechanism, comparable to a feedback loop in a

chemical mechanism associated with temporal oscillations and the emergence of a limit

cycle in the space of densities26. In the present context and for a poorly efficient thermo-

stat, this phenomenon leads to increasingly large fluctuations of the numbers of cancer

cells and immune system cells until one of the fluctuations leads to a vanishing value forNi.

When the rate constant k2 associated with the autocatalytic formation of immune sys-

tem cells is larger than the rate constant k3 associated with the autocatalytic formation

of cancer cells, we have checked that the vanishing of Ni and not Nc is systematically ob-

tained for different realisations of the stochastic processes. Actually, the increase of 〈u〉c

due to Eq. (2) offers a decisive advantage to the tumor cells, in relation with the increase

of the rate of the process given in Eq. (1), which faster produces cancer cells from normal

cells. No equivalent process occurs for the immune system cells that can only be produced

by a favorable interaction with cancer cells. Contrary to intuition and due to the complex

regulation induced by activity-dependent rates, the condition k2 > k3 eventually leads to

the death of all the immune system cells and the proliferation of the cancer cells. The

last third period of the evolution shown in Fig. 1a illustrates the phenomenon of tumor

escape, well known in immunoediting2, 4, 5.
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(a) (b)

(c)

Figure 2: Same caption as in Fig. 1 for E = 10−4, k2 = 10−3, k3 = 10−2.

The bad performances of the thermostat obtained for a small value of the field E =

10−4 are shown in Fig. 1c. Tumor escape is associated with an increase of the second

moment 〈u2〉 of the activity of the entire system that thermalization is not able to pre-

vent. The results shown in Fig. 1 prove that the processes given in Eq. (1-3) successfully

includes the modeling of the three E’s characterizing immunoediting2: A fast elimination

step, followed by a long equilibrium period and the final tumor escape are clearly illus-

trated by the evolution of the number of cancer cells and immune system cells given in

Fig. 1a.

The opposite behavior is observed in Fig. 2 for k2 < k3, i.e. a rate constant associated
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with the autocatalytic formation of immune system cells smaller that the rate constant

associated with the autocatalytic formation of cancer cells. What was true in Fig. 1 for

the cancer cells is observed in Fig. 2 for the immune system cells, and reciprocally. In

this case, the autocatalytic production of cancer cells from the normal cells by Eq. (1) is

slowed down by the smaller mean activity 〈u〉c of the cancer cells. A large fluctuation of

the number of cancer cells eventually leads to their complete elimination. Paradoxically,

the immune system is able to eradicate the tumor when the rate constant values favor the

autocatalytic formation of cancer cells with respect to immune system cells, in relation

with the detrimental impact of cancer cell activity decrease on the kinetics of cancer cell

formation from normal cells.

Figure 3 illustrates the exotic behavior obtained for k2 = k3, when the initial rates of

the processes given in Eqs. (2,3) are equal. As shown in Fig. 3a, both Nc and Ni slowly

increase in average and show increasingly large anti-correlated fluctuations, eventually

leading to the vanishing of Ni. In the terminology of immunoediting, the elimination

step is absent and the behavior resembles a two-step mechanism composed of equilibrium

and tumor escape from the surveillance of the immune system. However, contrary to the

distinct behaviors of the mean activities 〈u〉c and 〈u〉i observed in Fig. 1b for k2 > k3, the

two cell populations maintain the same mean activity level, as shown in Fig. 3b. Con-

sequently, the activity-dependent rates associated with the interaction of a cancer cell

and an immune system cell remain close throughout the entire evolution. For k2 = k3,

the competition between the two pathways, leading to the proliferation of either immune

system cells or cancer cells, is not discriminating. The final increase of the number of

the cancer cell can be assigned to the autocatalytic production of cancer cell by Eq. (1),

kinetically favored by the increase of mean cancer cell activity.

As a partial conclusion, we state that in the absence of efficient thermalization, large

fluctuations of cell activity and consequently activity-dependent rates lead to large fluctu-
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(a) (b)

(c)

Figure 3: Same caption as in Fig. 1 for E = 10−4, k2 = 10−2, k3 = 10−2.
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(a) (b)

(c)

Figure 4: Same caption as in Fig. 1 for E = 10−3, k2 = 10−2, k3 = 10−3.

ations of the number of immune system cells and cancer cells, one of which results in the

vanishing of the corresponding cell population. The relative values of the rate constants

k2 and k3 associated with the autocatalytic production of either immune system cells or

cancer cells, respectively, control the final state of the system. For k2 ≥ k3, i.e. the initial

kinetically favorable formation of immune system cells nevertheless leads to tumor escape

and proliferation of cancer cells. On the other hand, the condition k2 < k3, associated

with the initial increase of cancer cells, eventually leads to their total elimination. We

examine in the next paragraphs how the strength of the thermostat may influence the

behavior of the system.
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We consider a larger value of the field E associated with the thermostat. As pre-

viously, different states are eventually reached, depending on the relative values of the

rate constants k2 and k3 but these final states differ from the ones obtained for a smaller

value of the field E. Figure 4, obtained for E = 10−3, is to be compared with Fig. 1,

obtained for E = 10−4. The other parameter values are identical. In particular, the rate

constants obey: k2 > k3. In both Figs. 1, 4, the immune system cells benefit from an

initial advantage, due their first kinetically-favored autocatalytic production through Eq.

(2). As already explained and due to the activity-dependent criterion of selection of the

encounters in Eq. (2), the initial increase of the number Ni of immune system cells is

accompanied by a decrease of their mean activity 〈u〉i and an increase of cancer cell mean

activity 〈u〉c. Whereas this phenomenon was inducing a feedback mechanism in the case

of an inefficient thermostat, the fluctuations of activity and consequently of cell numbers,

whose dynamics highly depends on activity, are significantly damped for a higher value

of the field E. Hence, in the presence of a sufficiently effective thermostat, the initially

larger production rate of the immune system cells represents a decisive advantage, leading

to the stabilisation of the system in a stationary state with a final number of immune

system cells larger than the final number of cancer cells.

The results given in Fig. 5, to be compared with Fig. 2, are obtained for k2 < k3.

Again, a sufficient thermalization dampens the fluctuations of the number of cancer cells

and immune system cells. Hence, the initial increase of the number of cancer cells prevails

in the long term. For k2 < k3, the system reaches a non equilibrium steady state with a

number of immune system cells smaller than the number of cancer cells. Only the specific

case k2 = k3 qualitatively leads to the same results for E = 10−3 as for E = 10−4. A

larger field E does not succeed in suppressing the fluctuations of Ni and Nc and tumor

escape is equally observed.

Hence, the results obtained in the case of a sufficiently effective control of activity
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(a) (b)

(c)

Figure 5: Same caption as in Fig. 1 for E = 10−3, k2 = 10−3, k3 = 10−2.
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fluctuations are more in line with intuition. For different values of the rate constants k2

and k3 which control the dynamics of the interactions between the immune system cells

and the cancer cells, the system reaches a stationary state associated with nonvanishing

values of both the number Nc of cancer cells and Ni of immune system cells. A smaller

stationary value of the number of cancer cells is obtained for k3 < k2, i.e. in the case of

kinetically-disadvantaged cancer cell formation.

5 Conclusion

In order to model cancer immunosurveillance at cell scale, we propose a minimal model

of binary interactions between three types of cells, normal cells, cancer cells, and im-

mune system cells. The model of interactions resembles a chemical mechanism including

autocatalytic steps. The analogy with open chemical systems, maintained far from equi-

librium due to exchanges with a reservoir, is also used to mimic the production of normal

cells by living tissues. The cells are supposed to follow a strategy leading to the increase

of a non conserved quantity called activity. The cancer cells and immune system cells

are produced with activity-dependent rates, which induces a feedback loop, responsible

for large random oscillations of the cell numbers. Cell interactions are described in the

framework of thermostatted kinetic theory.

We have developed a kinetic Monte Carlo algorithm consisting of the succession of

binary cell interactions and thermalization of cell activity. In the case of a poorly efficient

thermostat, i.e. for large fluctuations of the activities and the numbers of cells, the model

successfully reproduces the three E’s of immunoediting (elimination, equilibrium, and

escape) for nonintuitive values of the dynamical parameters. The feedback mechanism

plays a crucial role in eventual tumor escape, observed for the initially kinetically-favored

production of immune system cells. In the case of a better thermalization, the system is

stabilized in a nonequilibrium steady state with nonvanishing values of both the number

Nc of cancer cells and the number Ni of immune system cells. More intuitive results
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are obtained, with larger final values of Ni for a larger rate constant associated with the

autocatalytic production of immune system cells and reciprocally, larger final values of

Nc for a larger rate constant associated with the autocatalytic production of cancer cells.

In the model, the heterogeneity of cancer cells is taken into account through the

distribution of the activities but the considered system is spatially homogeneous. The

kinetic Monte Carlo approach can be generalized to inhomogeneous distributions of cells.

Work in this direction is certainly desirable, in order to account for the spatial spreading

of a tumor and for taking into account the role of metastasis.
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