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Abstract 

 

The interest of molecular double core holes was predicted in 1986 by Cederbaum et al who 

showed that their spectroscopy can be more informative than that of the single core holes, 

especially when the holes are located at different sites in the molecule (Cederbaum et al J. 

Chem. Phys. 85 (1986) 6513). Their experimental study in single photon formation had to await 

2009-2010 with progress in synchrotron sources and development of efficient multi-electron 

coincidence experiments based on a magnetic bottle time of flight spectrometer. At the same 

time the advent of X-rays Free Electron Lasers opened the possibilty to create them in a 

two-photon process, and motivated new theoretical studies of their properties. We will illustrate 

here with a few examples, the progress done recently in the field, including formation of double 

core holes by double core photoionization, their spectroscopy and decay paths, and the related 

process of simultaneous core ionization and core excitation.   

 

1. Introduction 

 

Single photon double ionization from valence shell orbitals has been extensively studied 

as a probe of electron correlation. Especially the simplest atomic He and molecular H2 targets 

have attracted much experimental and theoretical work [1] [2] [3]. It is only in the last five 

years that it became possible to detect double photoionization in the deeper inner-shell 

molecular orbitals. Of primary interest is the double ionization in the K-shell, as it cannot be 

accessed by cascade Auger decay from a deeper shell. Two possibilities arise in molecules: 

either the two electrons are ejected from the same K shell of a given atom in the molecule 

(1-site Double Core Holes (DCH) or K
-2

) or they originate from two different K-shells, that is 

from two different atoms in the molecule (2-site DCH or K
-1

K
-1

). It is the multi-electron 

coincidence technique, based on the very efficient magnetic bottle time-of flight apparatus, 

which made possible the experimental observation of these weak cross section processes. K
-2

 

double ionization is typically 10
-3

 compared to the single ionization K
-1

, while the weaker 

K
-1

K
-1 

double ionization drops to a typical 10
-5

 value. The first interest of these DCH states is 
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their spectroscopy, which was predicted to be more sensitive to the chemical environment 

than the K
-1 

single core-hole spectroscopy. The demonstration was established by the 

experimental study of the C2H2n series (n = 1, 2, 3), testing the predictions made by 

Cederbaum et al in 1986 [4] that K
-1

K
-1 

spectroscopy does differentiate these species. Great 

efforts have been devoted to the calculation of DCHs energies, using different theoretical 

approaches and showing that they give access to the relaxation energy upon K shell ionization. 

In parallel the advent of intense x-rays Free Electron Lasers (XFELs) made it possible to 

observe also DCHs, but by populating them not in a single photon double ionization process, 

but in sequential two photon ionization, each photon extracting one K shell electron from the 

molecule. The key point is the duration of the XFEL laser pulse which needs to be of the 

order of the lifetime of the intermediate K
-1

 state (typically in the fs range). DCHs have been 

indeed probed with XFELs, however a careful analysis is needed due to the superposition of 

many other multiphoton processes. Another obstacle is the difficulty to take advantage of 

coincidence techniques in the present XFELs experiments, which are only partly compensated 

by the newly developed covariance techniques. The coincidence technique is, on the opposite, 

perfectly well suited to study single photon double ionization with synchrotron radiation. It 

allows for instance the observation of the decay of each DCH state by the successive emission 

of two Auger electrons, giving access to the intermediate and final states. Comparison with 

calculations showed the presence of nuclear motion during the Auger decay. The most recent 

development is the study of the closely related process in which a single photon 

simultaneously ionizes a K-shell electron and excites another one (noted K
-2

V). Theoretical 

modeling showed it offers rich spectroscopic information due to the superposition with equal 

probabilities, of the direct path and the conjugate one, which obey different selection rules.  

In this review we will summarize the progress recently achieved in these different 

subjects, and extend the previous reviews that have already been published on the subject [5] 

[6] [7] [8] [9].              

      

2. Experimental observation of single photon double ionization from molecular 

inner-shell orbitals 

 

Single photon double core ionization being a very weak process, its detection had to 

await the development of a very efficient experimental technique: multi-electron coincidence 

spectroscopy using a magnetic bottle spectrometer. Such a spectrometer is based on the original 

design of Kruit and Read [10] and was first implemented to study multiple ionization by J. 

Eland [11]. It has been used during the last 13 years to study a variety of multi-photoionization 

processes. The merit is that electrons emitted over 4π solid angle are collected and detected 

with a high probability (up to 70%, depending on the kinetic energy of the electron), so that 
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efficient coincidence detection of all emitted electrons is possible; moreover the long 

time-of-flight tube (over 2m) ensures a good kinetic energy resolution (of 1-2% of the kinetic 

energy). In the core double photoionization case considered here, the double core hole states 

produced after ejection of the two photoelectrons are unstable and decay mainly by successive 

emission of two Auger electrons. As will be explained below, it is the coincidence detection of 

at least 3 of the released electrons that has enabled one to isolate these weak double core 

ionization processes from the dominant single core ionization ones.   

 

2.1 K
-2

 states: 1-site Double Core Holes or Hollow molecules 

 

In this case, the two K shell electrons from a given atom A of a molecule are ejected 

following the absorption of a single photon, leading to what is called a ‘hollow molecule’. The 

complete reaction for the creation and the subsequent decay of the 1-site double core hole, can 

be written in the following way: 

 

h + AB →  AB
2+

 (K
-2

) + 2 e
-
Photoelectron   (1a) 

        →  AB
3+

 (K
-1

v
-2

) + e
-
Auger Hypersatellite  (1b) 

          →  AB
4+

 (v
-4

) + e
- 

2nd step Auger  (1c) 

where K is the K-shell orbital of the atom A, and v is a molecular valence orbital. 

 

The first emitted Auger electron is called ‘hypersatellite’ and is faster than the ‘2
nd

 

step Auger’ electron emitted afterwards (1c). We will illustrate this process with our first 

observation of 1-site double core photoionization. It was performed in N2 at Photon Factory 

(Japan) using photons of h = 1110eV [12]. Fig. 1 shows the experimental evidence; it relies on 

the coincident detection of the four electrons emitted in reaction (1) and on different energy 

representations of this 4-dimension problem. Fig. 1(a) shows the energy correlation between 

two photoelectrons when detected in coincidence with the two Auger electrons chosen in the 

kinetic energy ranges of 375-450 eV and 300-375 eV. Diagonal lines at a constant sum of the 

two photoelectrons’ energies are observed and correspond to the formation of different K
-2 

states. The binding energy of these states is deduced from the equation for energy conservation: 

(Binding Energy of K
-2 

states) = h(KEe1+ KEe2) , and is represented in Fig. 1(b). In addition 

to the first peak at 902.55 eV which corresponds to the K
-2 

ground state, satellite peaks appear 

at higher binding energy; they result from the additional excitation of a valence electron to an 

unoccupied orbital. It is interesting to note that the relative contribution of K
−2

 satellites is 

higher (~25%) than that of the satellites in K
−1 

single ionization (~10%) due to the stronger 

perturbation of the valence electrons introduced by the removal of two K-shell electrons instead 

of one. Finally, the complete Auger electron spectrum associated with the decay of the K
-2 
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ground state is shown in Fig. 1c. It is seen that the energy regions of the hypersatellite Auger 

[375–430 eV] and of the second-step Auger electron [300–375 eV] are clearly separated. 

Energy correlation between these two Auger electrons can also be represented, and give 

information on the intermediate N2
3+

 and final N2
4+

 states with a limited resolution due to the 

~6eV experimental resolution for fast Auger electrons [12].  

Information on the double photoionization process can be retrieved from experiment. 

For instance the intensity distribution along the diagonal lines in Fig.1 (a) demonstrates a 

continuous energy sharing between the two photoelectrons, which indicates a dominant direct 

double ionization process. It can be compared to the He double ionization at a lower excess 

energy of ~13eV instead of 208eV here, if we consider the Z
2
 scaling effect due to the effective 

charge Z of the core. The flatness of both distributions in He [13] and N2 suggests a dominant 

contribution at these low excess energies of the knock-out process resulting from the internal 

collision of a first 1s electron on the other 1s electron of the same atom [12]. Another 

experimental information is the intensity of the core double photoionization process: the ratio 

of double to single photoionization can be directly extracted from the coincidence data set, by 

comparing the number of detected events and taking into account detection efficiencies; they 

are typically of the order of 10
-3

, and seem to decrease with the nuclear charge Z [14]. They are 

of similar order of magnitude as for the K-shell double ionization of light atoms (12 ≤ Z ≤ 24) 

that have been extensively studied by their radiative K
h
 hypersatellite X-ray emission [15]. It 

would be interesting to explore the photon energy and element dependence of these double to 

single core photoionization ratios, in the same manner as it was done for light atoms. However 

this is not an easy experimental task, because of the coincidence technique and overlap of 

photoelectron and Auger energies when excess energy becomes large.   

Fig. 2 shows another example of the first observations of K
-2

 states with synchrotron, 

obtained in CH4 and NH3 by the group of R. Feifel [16]. In this case the signal was retrieved 

from the analysis of triple coincidence events involving detection of the two photoelectron and 

the fastest hypersatellite Auger electron. The lower statistics of the data in Fig 2 compared to 

Fig 1 can be assigned to the lower accumulation time (2h versus 12h), while the higher 

background originates probably from the less stringent conditions in signal filtering.      

Since these two pioneer experiments, 1-site DCHs have been observed in a variety of 

molecules. Table 1 lists the measured binding energies of K
-2

 ground states that have been 

reported in the literature up to now. It is seen that much remains to be done! Satellite states 

have been clearly observed in some cases and successfully calculated. This is the case for the 

N2 and CO (O K
-2

) satellite states calculated by Tashiro et al [17]. The N2 result is displayed in 

Fig. 3 and the satellite states of the isoelectronic C2H2 molecule, calculated by Lablanquie et al 

[18] is shown in Fig. 4 (b). It is seen that a good understanding of the origin of the satellite 

states is achieved (the main satellite peak is ascribed to a  excitation, see original 
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publications for assignments of the other components) and that their intensities are fairly well 

reproduced.    

 
 

Molecule Experimental Binding Energy   Reference 

    /eV  

1-site Double Core Holes (K
-2

)  

  

 CH4    651.5  ± 0.5 [16] 

 C2H2    652.5  ± 0.5 [18] 

 C2H4    650.4  ± 0.5 [14] 

 C2H6    650.6  ± 0.5 [14] 

 CO    666.7  ± 1   (C K
-2

) [14] 

 Propylene C3H6    650.5  (unresolved components) [9] 

 Ethyl trifluoroacetate    651.7  ± 1  (CH3 K
-2

) [9] 

     (CH3CH2OCOCF3)    653.7  ± 1  (CH2 K
-2

) [9] 

      -   659.2  ± 1  (CO  C K
-2

) [9] 

      -   666.3  ± 1  (CF3  C K
-2

) [9] 

  

 NH3    892   ± 0.5 [16]  

 N2   902.55 ± 0.5 [12] [14]  

 NO    904.8      (N K
-2

) [19] 

 N2O    896.9      (terminal N K
-2

) [19] 

 N2O    906.5      (central N K
-2

) [19] 

  

 H2O   1171   ± 1 [20] 

 NO   1179.4      (OK
-2

) [19] 

 N2O   1174.1      (O K
-2

) [19] 

  

 O2 1179.2  ± 0.8   [12] 

 CO 1178.0  ± 0.8  (O K
-2

) [12] 

 CO2 1174.7  ± 0.8  (O K
-2

) [12] 

 

 

2-site Double Core Holes (K
-1

 K
-1

)  

 C2H2    595.6  ± 0.5 [18] 

     596.0  ± 0.5 [14] 

 C2H4    593.3  ± 0.5 [14] 

 C2H6    590.2  ± 0.5 [14] 

 Propylene C3H6    591   [9] 

 

 CO    855.4  ± 1    [14] 

 N2    835.9  ± 1    [14] 

 

 

  TABLE I : Experimental binding energies of DCH states, as obtained from single photon 
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double ionization experiments 

 

2.2 K
-1

K
-1

 states: 2-site Double Core Holes 

 

Here, two K-shell electrons from different atoms in a molecule are ejected following 

the absorption of a single photon. The creation and the subsequent decay of the 2-site double 

core hole, can be written in the following way: 

 

h + AB →  [A(K
-1

) B(K
-1

) ]
2+

 + 2 e
-
Photoelectron            (2a) 

        →   [A B(K
-1

) v
-2

 ]
3+

  or  [A(K
-1

) B v
-2

 ]
3+

 + e
-
1st step Auger      (2b) 

           →  AB
4+

 (v
-4

) + e
-
 2nd step Auger        (2c) 

 

Note that the successive decay of the K-shell holes means that it is either of the two 

sites which decays first. 

As this double photoionization process relies on the weak electron correlation between 

two K-shell electrons localized at different sites in the molecule, its intensity was expected to 

be extremely low, making its observation possibly below experimental possibilities. It turned to 

be of the order of 10
-5

 compared to single photoionization, which is at the limit of detection. 

The first experimental observation of single photon 2-site K-shell double ionization was 

obtained on the C2H2 molecule [18] and is presented in Fig. 4. Four-fold coincidence between 

the two photoelectrons and the two Auger electrons, which are respectively chosen in the 270–

320 eV (Auger hypersatellite) and 200–270 eV (2
nd

 step Auger) ranges reveals in Fig 4 (a) the 

main K
-2

 line at 652.5 ± 0.5 eV and satellite states at the higher binding range, in the same way 

as presented above for the N2 isoelectronic molecule. One difficulty to detect the K
-1

 K
-1

 signal 

in the present case (where atoms A and B are both Carbon atoms) is that the two Auger 

electrons emitted in the decay (Eq. 2) lie in the same energy range of 230-250eV and could not 

be both detected because of the ~15ns dead time of the detector. It was however possible to 

isolate the characteristic K
-1

K
-1

 peak in three-fold coincidences between the two photoelectrons 

and one of the two subsequent Auger electrons. The peak appears in Fig 4 c) at a binding 

energy of 595.6 ± 0.5 eV, very close to the calculated value of 595.86 eV [18].  

An important experimental achievement was to demonstrate the validity of the original 

prediction form Cederbaum et al [4] that chemical shifts of DCHs, and especially of the K
-1

K
-1

 

ones, are more informative than those of single core holes. He used the C2H2n (n=1,2,3) series 

and predicted that these three molecules could be differentiated by the energy of their K
-1

K
-1

 

ground states, whereas the determination of the K
-1

 or even the K
-2

 ground state binding energy 

is not sufficient. The experimental confirmation was done in 2013 [14] and is illustrated in Fig. 

5. Three-fold coincidences between two photoelectrons and one of the two Auger electron 

emitted in reaction (2) reveal the K
-1

K
-1

 signal, as explained previously. Note that the K
-2

 states 
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also appear in the spectra, because the energy range for the K
-1

K
-1

 Auger electrons corresponds 

also to that of the second step Auger electron emitted during the decay of the K
-2

 state (See 

reaction 1). The experimental result fully confirms the predictions of Cederbaum et al: the three 

molecules are differentiated by their K
-1

K
-1

 binding energy, whereas the K
-2

 ones are similar for 

C2H4 and C2H6. The sensitivity of the K
-1

K
-1

 binding energy comes from the fact that it depends 

on the C-C bond length, through the repulsion energy between the two core holes (see §5.1).    

 Since then, 2-site double core ionization has been detected in a few other molecules, 

as reported in Table I, but results are still few, as the weakness of the signal makes their 

detection very difficult. Note that K
-1

K
-1

 states have also been detected in four-fold coincidence 

experiments. This is either because the two K-shell holes are on atoms of different nature, 

implying different energy ranges for the 2 emitted Auger electrons in reaction (2), such as in 

CO [14], or because the dead time of the detector was reduced. A value of 6ns, corresponding 

to a to a dead zone in energy of ~12eV for electrons of 240eV, made it possible to observe 

K
-1

K
-1

 signals in C2H4 and propylene molecules [9]. A subsequent advantage is that the 

background is much reduced in 4-fold coincidences.   

An estimate of the probability for the two-site core double photoionization in C2H2 

molecules was presented in [18]. Although overestimated by a factor 3, the predicted values 

suggest that the mechanism is a knock-out process in which the first (primary) K-shell electron 

absorbs a photon and then ejects by internal collision a K-shell electron from the neighboring 

atom. The model predicts a 1/R
2
 dependence of the K

-1
K

-1
 cross-section on the C-C bond 

length. Such a dependence was experimentally observed in the series of molecules C2H2n (n =1, 

2, 3) [14], which brings a further argument for the validity of the knock-out picture.       

 

    

3. Auger decay of Double Core Holes 

 

 The great advantage of the coincidence experiments, is that they enable us to isolate 

efficiently the Auger spectra associated with the decay of well-defined double core hole states.  

 

Fig. 6 illustrates this with the Auger decays of double core hole states in C2H2. Decay 

of the K
-2 

DCH main line (b) and of the main satellite line (c) present similar characteristics as 

what is observed for the isoelectronic N2 case in Fig 1 (c): the first hypersatellite Auger 

electron is found in the 270–340 eV kinetic energy range (solid line) and is faster than K-VV 

Auger electrons in Fig 6 (d). The second step Auger electron released in the last step of the 

decay is found in the 200–270 eV range (dotted lines), at an energy similar but slightly lower 

than the K-VV Auger. The predominance of the spectator decay for the DCH satellite state is 

evidenced by the similarity of the Auger spectra in Fig. 6(b) and 6(c). A shoulder at 314 eV in 
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Fig. 6(c) indicates nevertheless the presence of the participator decay. Concerning the K
-1

K
-1 

DCH decay, Fig. 6 (a) demonstrates that the two Auger electrons are emitted with similar 

energies and in the 220–250 eV range. The binding energies of the C2H2
3+ 

intermediate
 
states 

created in the first step of the Auger cascade are
 
indicated on the top of Fig. 6. They are 

obtained by considering energy conservation during the 2 first steps of equations (1) and (2). 

Fig 6 a) and b) suggest that similar C2H2
3+ 

intermediate states are reached in the decay of 

K
-1

K
-1 

and K
-2 

DCHs, whereas more excited intermediate states result from the decay of K
-2 

satellite DCHs, as shown in Fig 6 c).  

 

Fig. 7 addresses the Auger decays of double core hole states in CO [14]. The interest 

is the comparison of the experiment with calculations, which bring clues to the decay 

mechanism of the K
-1

K
-1 

DCH. Calculations use the model detailed in Ref. [21]. Fig 7b shows 

that the decay of the 1-site C (K
-2

) DCH (Fig 7b) is quite well reproduced; it displays the 

contributions of the hypersatellite Auger electron in the 250-320eV range, and of the second 

step Auger electron below 250eV. As for the Auger decay of the K
-1

K
-1 

DCH (Fig 7c), the 

model assumes non concerted successive Auger decay on the two sites. In this case two 

pathways are possible where the first Auger occurs on the O site and the second on the C site, 

or the opposite. The calculations predicts close ratio for these two pathways because of the 

similar lifetimes of the C and O single core holes. The theoretical Auger spectra for the two 

decay pathways are plotted in Fig. 7 c). The total Auger spectrum is the sum of the two 

channels, and agrees well with experiment. It confirms that the Auger electrons emitted from 

the C site upon decay of the 2-site K
-1

K
-1 

DCH lie in the same 200-250eV energy range, 

slightly slower than the Auger electrons of the C single core holes, but similar to the second 

step Auger electron of the C K-2 DCH. It is interesting to note that calculation predicts a slightly 

faster C Auger electron for the decay of the K
-1

K
-1 state, if it is the C site that decays first rather 

than the O one.       

 

The next step in the description of the Auger decay of DCHs is to consider the effect 

of Coulomb explosion during the successive Auger decays. In spite of the low experimental 

resolution of the coincidence technique, comparison with calculations made it possible to 

demonstrate in the isoelectronic molecules C2H2 and N2, the effect of the nuclear motion once 

the first Auger electron has been emitted [22]. This is illustrated in Fig. 8 and 9. Fig. 8 

compares the experimental (a) and theoretical (b) two-dimensional Auger spectrum associated 

with the decay of the C2H2 K
-2 

ground state. It confirms the assignment of the hypersatellite and 

second step Auger electrons discussed in Fig.6. The overall agreement between calculation and 

experiment is good, but a closer look shows that the second step Auger electron is less 

structured than predicted. This is better seen in Fig. 9 a), where 1-dimensional complete Auger 
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spectra, are presented for the N2 molecule. They are obtained by the projection of 

2-dimensional Auger spectra such as those in Fig.8. The results are similar in C2H2 and N2, but 

nuclear dynamics calculations can be done only for the simpler N2 diatomic case  

Fig 9 (a), shows that the calculation, done without the effect of nuclear motion, agree with 

experiment for the shape of the hypersatellite Auger, but predicts two well separated peaks in 

the second step Auger spectrum, which are broader and less separated in the experiment. 

Inclusion of the nuclear motion in the calculation, that is nuclear dynamics during the lifetime 

of the K
-2

 initial and K
-1

v
-2

 intermediate states (see Equation 1) leads to the spectra in Fig 9 (b). 

The shapes of the spectra in the 1st Auger component are very similar to each other, which 

suggests that the effect of nuclear motion may be small in the 1st Auger decay. In contrast, the 

effect of nuclear motion is significant in the 2nd Auger. This effect can be understood if we 

consider the potential energy curves of the initial K
-2

 state which is bound, and of the K
-1

v
-2

 

intermediate states and v
-4

 final states which are all dissociative, with a steeper gradient for the 

final than the intermediate states [22] . Note that extraction of the two K-shell electrons from 

the same site in the molecule is in principle not expected to affect the bounding properties of 

the molecule, and the intermediate K
-2

 state should be bound, similar to the neutral ground state 

or to the single core K
-1

 one. This is in agreement with calculations for C2H2 and N2 [22]; but 

Inhester et al [23] predicted that it is not the case for H2O, where the K
-2

 state is found to be 

dissociative, opening new nuclear dynamics possibilities.                

      

 

4. Double Core Holes as observed in two photon processes at XFELs   

 

The advent of the new XFELs sources opened new perspectives with their 

unprecedented brightness, which can be up to 10 orders of magnitude higher than conventional 

synchrotron sources. One of their potential applications was predicted to be the study of DCHs, 

thanks to their sequential formation in a two photon process. Calculations preceded 

experiments and anticipated the power of this new spectroscopic tool, ‘x-ray two-photon 

photoelectron spectroscopy’, with the example of the para-aminophenol molecule [24]. The 

first gas phase experiments with the first XFEL source, the LCLS (Linac Coherent Light 

Source), revealed indeed the formation of DCHs in neon atoms [25]. The first DCHs in 

molecules were observed shortly later in N2 [26] [27]. Both Auger and photoelectron spectra 

associated to DCHs formation were observed in [27] while the molecular frame angular 

distribution of the hypersatellite Auger electron from aligned N2 molecules was obtained in 

[26]. 

Fig. 10 shows the first evidence of DCHs formation with XFELs in a photoelectron 

spectrum [27]. On the low energy side of the K
-1

 photoelectron corresponding to the single 
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ionization of the N2 molecule, a clear peak is observed at the expected position of the single 

site DCH photoelectron peak. However, this energy is also close to the calculated positions of 

peaks associated with core ionization of a triply valence-ionized N atom, and these processes 

cannot be distinguished in the photoelectron data. This illustrates the complexity of the 

processes occurring with XFEL excitation: sequential absorption of several x-ray photons 

occurs and the molecule has the possibility to Auger decay and dissociate in the course of this 

photon absorption. This makes the interpretation of XFELs spectra difficult and dependent on 

theoretical modelization. A substantial progress was achieved when the XFEL pulse duration 

could be shortened below the core-hole lifetime. In this way, one can optimize the probability 

of two photon absorption before the first created hole can decay. In short, one “beats” the 

Auger decay clock. This was demonstrated by Berrah et al in CO [28] and used later to 

investigate a series of molecules including N2 [29]. Fig. 11 illustrates the method and 

demonstrates the progress compared with Fig 10. The XFEL pulse duration has been decreased 

from the previous 280 fs to 10 fs, that is of the same order of magnitude as the N1s lifetime 

(6.4 fs). Another important parameter is the intensity of the XFEL radiation at the interaction 

zone which is further increased by tightly focusing the laser beam. Comparison of the focused 

(blue) and unfocussed (green) spectra allows one to extract the nonlinear contributions to the 

photoelectron signal and to observe clearly both single-site and two-site DCHs. The spurious 

peaks that complicated the photoelectron spectrum in Fig. 10 are now reduced to a single peak 

‘PAP’ which corresponds to a Photoionization - Auger decay - Photoionization sequence. 

The demonstration of the XFEL-based two-photon photoelectron technique to study 

the spectroscopy of DCHs has thus been achieved. It has been applied to a series of molecules: 

N2, CO, N2O, CO2 [29] [30]. One difficulty with XFELs experiments is that they are not suited 

for coincidence experiments, such as the ones presented above on synchrotron sources. The 

reason is twofold: the low repetition rate (120 Hz at LCLS compared to ~1MHz at synchrotron) 

and the very high fluence which leads to the ionization of several molecules in a single laser 

shot. An alternative method has been developed: ‘partial covariance mapping’. It is not a 

coincidence method but a correlation method based on a statistical analysis of ionization events. 

High counting rates of a few tens of events by laser shots can then be analyzed. The potentiality 

of this method was demonstrated with the study of DCH formation in Ne atoms [31] [32]. It 

reveals details of the complex electron dynamics of targets in a XFEL field, and enables one to 

resolve different photoionization sequences such as PAPA and PPAA. Extension of this 

covariance mapping method to multi dimensions was addressed theoretically by Zhaunerchyk 

et al [33]. They showed that three particles can be correlated but that fourfold covariance 

analysis fails in general. The two dimension covariance mapping was then applied to the study 

of aminophenol molecules [34] and of C2H2 and C2H6 [35].   
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5. Theoretical aspects  

 

 

5.1 Formulations of the binding energies of DCH states 

 

As theoretical aspects of DCH binding energies have already been described in detail [36] 

[37] , only a brief summary will be presented here. The binding energy BE(Ki
-1

) of a single 

core-hole state whose hole is at the atomic site i can be written:  

BE(Ki
-1

) = - εi - RC(Ki
-1

) ,    (i) 

where εi is the Hartree-Fock energy of the core orbital and RC(Ki
-1

) is the generalized 

relaxation energy. The generalized relaxation energy includes the effects from both orbital 

relaxation and electron correlation, though usually the contribution from orbital relaxation is 

dominant. By developing the description for the single core-hole case, the binding energy of a 

DCH state (core holes are at the atomic sites i and j) can be formulated as 

BE(Ki
-1

 Kj
-1

) = - εi - εj - RC(Ki
-1

Kj
-1

) + RE ,   (ii) 

where RE is the repulsion energy of the two core holes. The repulsion energy for a K
-2

 state is 

estimated by the analytical formula [4] 

RE = (2
5/2

/3π)(Z − 2
−3/2

) ,   (iii) 

where Z is the nuclear charge of the atom on which the double core-holes is localized. As for 

K
-1

K
-1

 states, the repulsion energy is simply approximated by the inverse of the distance r 

between the two core-holes: 

RE = 1/r .   (iv) 

The relaxation energy RC(Ki
-1

Kj
-1

) in the DCH case, which appears in Eq. (ii), is not the 

simple sum of the relaxation energies on the individual core-holes, but includes a non-additive 

contribution NRC(Ki
-1

 Kj
-1

) upon double core-hole creation: 

RC(Ki
-1

 Kj
-1

) = RC(Ki
-1

) + RC(Kj
-1

) + NRC(Ki
-1

Kj
-1

) .   (v) 

The non-additive contribution in the case of K
-2

 states with double core-holes on the same 

atomic site, i.e, i = j, is called excess relaxation energy; it reflects the local properties of the 

atom with the core-holes. In contrast, the non-additive contribution for K
-1

K
-1

 state (i.e, i ≠ j) 

reflects the environments of the two core-hole sites and the chemical bonds between them. It 

is called interatomic relaxation energy. From Eqs. (i), (ii) and (v), excess or inter-atomic 

relaxation energy is represented as 
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NRC(Ki
-1

 Kj
-1

) = BE(Ki
-1

 Kj
-1

) - BE(Ki
-1

) - BE(Kj
-1

) - RE .   (vi) 

Since the repulsion energy can be estimated with Eq. (iii) or (iv), one can determine the 

excess or inter-atomic relaxation energy from the binding energies of the single and double 

core-hole states. 

5.2 History of the theoretical study of molecular DCH states   

 

The first theoretical study of molecular K
-2

 and K
-1

K
-1

 states was presented by Cederbaum 

et al. in the late 1980s [4] [38] [39], a long time before the experimental observation of these 

states. They predicted already that the energy shifts of the DCH states are more sensitive to 

the chemical environment around the ionized atoms than those of the single core-hole states 

[4]. This pioneering study was followed by several works [40] [41] [42], although the 

upcoming experimental observations of DCH states were hardly foreseen at that time. 

In 2009, motivated by the advent of XFEL, Santra et al. proposed in a theoretical paper, to 

create DCH states by sequential two-photon ionization in intense XFEL pulse [24]. Following 

this work, theoretical investigation of the DCH states has become extremely active in the 

2010s. It has been further stimulated by the appearance of the first experimental data with 

XFEL and with synchrotron. Tashiro et al. calculated the binding energies of the K
-2

 and 

K
-1

K
-1

 states in diatomic and triatomic molecules, as well as in the C2H2n (n=1-3) series, [36] 

[43] with the complete active space self-consistent field (CASSCF) method, and evaluated the 

relaxation energies for the K
-2

 and K
-1

K
-1

 states. They showed that the interatomic relaxation 

energies of diatomic molecules are always negative, while in triatomic and polyatomic 

molecules these values are sensitive to the chemical bonds around the two core-holes. Tashiro 

et al. investigated also correlation satellite states associated with the DCH formation in N2 and 

CO, using the restricted active space configuration interaction (RASCI) method with the 

state-averaged CASSCF references [17]. Symmetry breaking and hole-localization in multiple 

core-hole states were discussed by Carravetta and Ågren [44], based on calculation using 

restricted active space (RAS) SCF method.   

For the calculation of DCH states in larger molecules, time-consuming methods such as 

CASSCF possess an obvious disadvantage due to the computational cost. To solve this 

problem, Takahashi et al. proposed to use the density functional theory (DFT) method for 

calculating DCH states. In a first step, they checked the validity of this approach by 

comparing the energy levels of Si K-shell DCH states of SiX4 (X = H, F, Cl) obtained with 

the DFT and with CASSCF methods [45]. Then, they successfully applied the DFT method to 

nucleobases [46] and to a series of disilyl molecules bridged with hydrocarbons [47]. 

Interatomic relaxation energy obtained for the bridged disilyl molecules was found to change 

from positive to negative, when increasing the length of the central carbon bridge. Meanwhile, 

Kryzhevoi et al. investigated, using Green’s function methods, DCH states of aminophenol 
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isomers and demonstrated that the binding energies of the K
-1

K
-1

 states are affected by the 

structural differences between the isomers [48]. In a second study, they calculated, with the 

ΔSCF method of HF theory, the binding energies of the K
-1

K
-1

 states in dicyano molecules 

bridged by carbon chains, and investigated the dependence of the interatomic relaxation 

energy on the hole–hole distance [49]. The interatomic relaxation energy is always negative 

and increases gradually toward zero when the distance between the two core holes increases. 

This general trend is in a sharp contrast to that observed in the bridged disilyl molecules [47]. 

Takahashi and Ueda re-investigated these two different kinds of chain molecules using both 

the HF and DFT methods [50]. They showed that the DFT results agree with those based on 

HF theory and that a fortuitous long-range correction in DFT [51] affects insignificantly the 

observed trends. The difference in the general trends observed for these chain molecules is 

understood to arise from the different environments of the two core-holes. 

T. D. Thomas [52] demonstrated the usefulness of Wagner plot [53] to evaluate the 

initial-state effects and the relaxation energies on K
-2

 creations, in his study of the molecules  

CH4−nXn, (X = F, Cl; n = 1-4) and C(CH3)4. Moreover, in his paper, he introduced the 

generalized Wagner plots which extend this approach to analyze K
-1

K
-1

 formation [52]. The 

generalized Wagner plot analysis has succeeded in illustrating the interatomic relaxation 

effects of two-site double core-hole states [54] [55] [37]. Ueda and Takahashi studied the 

interatomic relaxation energies in the XHm–YHn (X, Y = C, N, O, F; m, n = 0-3) and 

NX2CXO (X = H, F) compounds as well as in C60, using the generalized Wagner plots of the 

binding energies calculated with the DFT method [54]. The XHm–YHn (X, Y = C, N, O, F; m, 

n = 0-3) series were soon later re-calculated with HF and CASSCF methods; they showed a 

clear correlation between the interatomic relaxation energy and the electron densities at the 

bond between the core-hole atoms [37]. Tashiro et al. systematically investigated the 

interatomic relaxation effects of the K
-1

K
-1

 states in various molecules with polarizable unit; 

they used ab initio ΔSCF calculations and the generalized Wagner plots approach [55].  

DCH states have attracted theoretical studies to describe not only their spectroscopy but 

also their decay properties. The Auger decay rate of a K
-2

 state should be roughly twice the 

corresponding single core-hole rate, if we consider that the number of first-step Auger decays 

from a DCH state is the sum of the Auger decays from the individual core-holes. This 

approach has been verified in a calculation with Stieltjes imaging method [56], although it 

includes relaxation effects insufficiently. Inhester et al. investigated the Auger decay of the 

K
-2

 state in H2O as well as the ionization transition rate for its formation, using the single 

center expansion (SCE) method [23]. They found that the nuclear motion of the K
-2

 state 

affects the Auger spectrum. Subsequently they computed the Auger decay rates of the K
-2

 

states in a sequence of isoelectronic first-row hydrides, and showed that the rates of the 

double core-holes are more than twice those of the single core holes [57]. This rate 
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enhancement for DCH was attributed partly to an increased valence population in the vicinity 

of the core-holes. Tashiro et al. employed configuration interaction (CASCI) method based on 

the CASSCF orbitals to investigate the cascade Auger decays of the DCH states of CH4, NH3 

and H2CO [21]. In a following study, this method for calculating the Auger spectra was 

applied to the decay of the K
-2

 states in N2 and C2H2 and also to the decay of the satellite 

states in C2H2, and compared with the experimental Auger spectra [22]. The detailed 

comparison of the experimental and theoretical Auger spectra showed a deviation only in the 

second-step Auger profiles, suggesting an important effect of nuclear motion of the triply 

charged states populated in the first-step of the Auger cascade [22]. X-ray emission spectrum 

from K
-2

 and K
-1

K
-1

 states, which has not yet been observed experimentally, has also been 

predicted for CO [58].  

 

 

6. The related single photon simultaneous core ionization and core excitation 

process: K
-2

V states 

 

Closely related to double K-shell ionization, the precursor process in which one of the 

K-shell electrons is ionized while the other one (from the same atom) is promoted to a vacant 

orbital, presents very interesting properties. For sake of conciseness, we note here those states 

K
-2

V rather than the 2-hole 1-particle (2h-1p) notation used in ref [16] where these states were 

referred as pre-edge resonances below the K
-2

 threshold. The V orbital may be the LUMO or 

any other unoccupied orbital. There is continuous transition between K
-2

V process when V is 

a Rydberg orbital and K
-2

 double ionization as observed a long time ago between ionization – 

excitation process and double ionization in helium [59]. Since their first observation and 

identification [16], these K
-2

V states have attracted a new interest due to specific properties 

and rich spectroscopy that will be highlighted afterwards. The K
-2

V notation underlines the 

proximity to the K
-2

 ionization threshold and the pre-edge resonance assignment. However 

this description has no practicality for developing a theoretical model able to provide 

quantitative results although it presents a qualitative interest to understand some peculiarities 

of the K
-2

V process.  

 Another way to describe how these states are created is to relate them to satellite 

excitation following K
-1 

inner-shell ionization. Inner-shell ionization by a high energy photon, 

leaves the ion in a highly excited state that will finally decay by x-ray emission (favored for 

high Z atoms) or by Auger decay (favored for low-Z atoms) in a typical femtosecond 

timescale. In the intermediate K
-1

 ionic state, the sudden change of the core charge strongly 

affects the others electrons. Their initial wave functions in the neutral are no longer 

eigenfunctions of the ion and a consequence is the excitation of satellite states, when this is 
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energetically allowed, where K-shell ionization is accompanied by the excitation of a valence 

electron to a vacant orbital. This “shake-up” process results from the relaxation of valence 

orbitals following the change of the core charge. The excess energy relative to single core 

ionization is only the few eV necessary to excite a valence electron. The valence electron can 

also be promoted into the continuum -i.e. ionized- in a “shake-off” process, leading to 

core-valence double ionization.  The transition between shake-up satellites and core-valence 

ionization (shake-off) can be seen in electron coincidence 2-D maps since an Auger electron 

is emitted in both cases due to the presence of an inner vacancy, as was first demonstrated by 

Hikosaka et al [60] . The relative intensity of satellite lines with respect to the main K
-1

 

photoelectron line is typically a few percent. 

 Similarly, if the photon energy is high enough, it becomes also possible for the 

remaining 1s electron to be promoted towards a vacant orbital. This corresponds to a “super” 

shake-up process which is however much weaker (~ 1‰) than valence shake-up (normal 

satellites) because the spatial overlap between core and valence orbital is very small and an 

important exchange of energy between the initially ionized 1s photoelectron and the other 1s 

electron is necessary to allow its excitation towards a valence orbital. Nevertheless, this 

process has been clearly identified thanks to very efficient electron coincidence spectroscopy 

with a magnetic bottle set-up. Some recently published results will be shown in the following 

paragraph. Moreover, since in the excitation of K
-2

V states only a single photoelectron is 

emitted a new experimental approach to observe such states become possible that will be also 

discussed.  

 

6.1 First experimental observations of K
-2

V states and their spectroscopic interest  

 

The first identification of K
-2

V states was done by Eland et al [16] in NH3, see Fig. 12, and 

appeared as a by-product of K
-2

 DCH states. The 12eV energy spacing, from the resonance to 

the K
-2

 edge, varying as Z
2
 compared to K

-1
V resonances was inferred but no further analysis 

of the observed states was attempted. K
-2

V states were then observed in H2O by Mucke et al 

[20].  

Following our measurements of DCH process in C2H2n (n=1,2,3) series, N2 and CO [14], 

we filtered out the same data set for the C2H2n (n=1,2,3) series by selecting three-electron 

events where a single photo-electron is coincident with two Auger electrons (Hypersatellite 

Auger  and second Auger decay) corresponding to the process :  

 

h + C2H2n  → C2H2n
+
 (K

−2
V ) + e

-
Photoelectron   (3a) 

   → C2H2n
2+ 

(K
−1

v
−2

V ) + e
-
Auger Hypersatellite  (3b) 

         → C2H2n
3+ 

(v
−4

V ) + e
- 

2nd step Auger   (3c) 
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In Fig. 13 we show the 2D coincidence map for C2H2 between two electrons out of three, 

when the third electron is an Auger electron in the [200-260eV] energy range. On this 2D map, 

the K
-2

V states are clearly identified by horizontal lines around y=130 eV kinetic energy that 

extend on the x axis between 280 and 320 eV that corresponds to the energies of 

hypersatellite Auger electron created in the first Auger decay of K
-2

V states. Note that the 

energy of the hypersatellite electron extends to higher energies than in the K
-2 

process due to 

the participator Auger decay of the excited electron. The highest energy hypersatellite Auger 

electrons could be considered hence as a signature of the K
-2

V states as hypersatellites x-ray 

transitions are the signature of K
-2 

states [15]. By projecting the vertical band between 280 

and 320 eV of the 2D map of Fig. 13 on the vertical axis we obtain the kinetic energy (KE) of 

specific K
-2

V photoelectrons from which the binding energies (BE) of the K
-2

V states are 

directly deduced: BE = h-KE, and the spectra in Fig. 14. The most interesting results come 

from the comparison of the K
-2

V spectra along the C2H2n molecular series. [61] 

A strong difference between the three spectra is observed with a first peak A around BE = 

635eV which appears twice higher in C2H2 than in C2H4 and is absent for C2H6. The other 

dominant peak B appears comparable on the three spectra. A striking similarity appears 

between these spectra and the NEXAFS one for the same molecules [62] where the first peak 

in C2H2 and in C2H4 is due to 1s excitation toward the LUMO * orbital. This orbital is 

degenerated twice for C2H2 and does not exist in C2H6. This means that, at a photon energy of 

770eV, the angular momentum of the photon is not transferred to the outgoing electron but to 

the excited one. This situation corresponds to conjugate shake-up satellites that are also 

observed in K
-1

 ionization close to threshold [63]. The other type of satellites corresponds to 

direct shake-up process where the photon ionizes a K-shell electron and carries out its angular 

momentum (dipolar ionization), in the relaxation process the other electron is excited in a 

monopolar transition. K
-1

 satellites are mostly due to direct shake-up and conjugate shake-up 

is only noticeable close to threshold [63] and could be related to resonant excitation of doubly 

excited states [64]. The important observation is that in Fig. 14 peaks A and B have 

comparable intensities. Peak A is identified as the * resonance resulting from conjugate 

shake-up while peak B is identified as a * resonance from direct shake-up. This is the first 

important result: direct and conjugate channels have similar intensities in this “super” 

shake-up process. This is qualitatively understandable in terms of aborted double K-shell 

ionization when one of the two outgoing electrons is recaptured in a vacant orbital. The 

angular momentum can be transferred without any preference to the ionized or to the excited 

electron.  
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A theoretical model has been developed, that provides absolute cross sections for the K
-2

V 

process. It was briefly presented in reference [61] and was detailed in Carniato et al [65]. It is 

based on extensive configuration interaction of both the initial and final state and evaluates 

cross sections in the dipole approximation. This model establishes the contribution of the two 

different processes cited above:  

1- direct shake-up described by dipolar K shell ionization accompanied by monopolar 

excitation (shake-up) of the remaining K shell electron,  

2- conjugate shake-up described by dipolar excitation of a K shell electron to a vacant V 

orbital accompanied by monopolar ionization (shake-off) of the remaining K-shell electron.   

The results of the calculations for the C2H2n series is shown in the right part of Fig. 14. It 

demonstrates that the direct (solid red line) and conjugate (dashed green line) contributions 

are indeed of similar intensity at this photon energy. It shows the unique property of K
-2

V 

states: they can be observed with different symmetries, in contrast to the NEXAFS case where 

the symmetry of the K
-1

V states is restricted by the dipolar excitation rules (they are thus 

analogous to the sole conjugate path in K
-2

V states). Another interesting property of the K
-2

V 

spectroscopy is that  valence orbitals which can appear as shape resonances above 

threshold in the K
-1

V case are here found below the K
-2

 threshold. 

 

6.2 Further experimental observations of K
-2

V states  

 

Note that K
-2

V states have not yet been observed with XFELs. One reason is that their 

general formation in a two-step process would need a scan of the x-ray energy and possibly 

two color experiments: one can imagine for instance a K→V excitation in a first step with a 

first color (of adjustable energy) and ionization in a second step by a second photon of fixed 

but higher energy than the first one. Such two color experiments are not yet routinely 

available at XFELs. Another possibility with single color experiment would be ionization by a 

first photon and subsequent excitation by a second photon of the same energy. Since the 

second energy threshold is higher, the energy of the first photon can be sufficient to ionize 

and just enough to excite in the second step. Since the second step must be resonant, the 

process could be very efficient (such resonant process are involved in multiple ionization of 

rare gases and are responsible for the observation of unexpected very high charge states [66]). 

We can remark that equivalent K
-1

K
-1

V states exist, but their formation in a single photon 

process is very inefficient (similar to that of the related K
-1

K
-1

 states) and they escaped 

detection up to now. A recent theoretical study [67] proposes that XFEls can be efficient tools 

to observe K
-1

K
-1

V states in heteronuclear molecules. They give the example of CO 

molecules and suggest to use two-photon processes with XFEL radiation to resonantly excite 

the O atom of the molecule in a first step and ionize the remaining C atom in a second step. 
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Such a path should be extremely efficient because of the resonant character of the first step 

path.      

 

On synchrotrons, we studied the K
-2

V process in propylene molecule C3H6 with a single 

and a double bond. The K
-2

V spectrum in Fig. 15a) is very similar (no background was 

subtracted) to what could be obtained by merely adding the spectra for C2H4 and C2H6 and the 

* resonance is about one fourth in intensity of the * resonance. 

 

 Other experimental results have been obtained on H2O and N2 in refs. [65] [68] in which 

the theoretical method and formalism has been detailed. The K
-2

V experimental spectrum in 

H2O is presented in Fig. 16 (left) and the theoretical calculation in Fig. 16 (right). Although 

the spectrum seems rather simple, one important result is that the first peak is broadened due 

to the dissociative state along the H-OH elongation coordinate. 

 

The N2 spectra at 979 eV are shown in Fig. 17, with experiment in the upper-left panel and 

theory in the right one. It shares common features with the isoelectronic C2H2 molecule with 

the prominent and well isolated * conjugate shake-up resonance at 877 eV and a broader 

structure centered around 892 eV which contains different resonances due to direct shake-up 

(3s, *…) but also to conjugate channel (3p…). We used N2 K
-2

V spectra to study the 

evolution of conjugate versus direct shake-up with photon energy to see if a faster decrease of 

the conjugate channel occurs. This study was limited to a photon energy range from 950 to 

1150 eV in order to keep a sufficient resolution for the magnetic bottle. The evolution of the 

experimental spectra give a good agreement between theory and experiment but shows only a 

moderate relative decrease of the conjugate channel with respect to the direct one.  

     

 Another study was performed on CO2 molecule at the carbon K-edge [69]. The advantage 

is that the first two resonances * and  are well isolated and identified as conjugate and 

direct shake-up. At a photon energy of 760eV, the ratio between the two resonances is close 

to 2 due to the twofold degeneracy of the first resonance. It was not possible to study this 

process on a broad photon range with the magnetic bottle, due to loss in absolute resolution at 

high energy (and to possible overlap between Carbon Auger electrons and Oxygen 

photoelectrons), but another type of experiment provides also some direct access to K
-2

V 

spectra. Because only one photoelectron is emitted during the formation of K
-2

V states, 

conventional electron spectroscopy is a possible issue to observe this process. The principle 

was demonstrated with the HAXPES spectrometer at the GALAXIES beamline in SOLEIL to 

study Ar
+
(1s

-1
2p

-1
nl) satellite states [70]. These are not strictly speaking K

-2
V states but 

related K
-1

L
-1

V ones, which correspond to K-shell ionization with simultaneous L-shell 
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excitation. Since the associated photoelectrons are well separated from “ordinary” 1s
-1

3l
-1

nl 

satellites (valence excitation) it was possible to extract the spectra in Fig. 18 in a few hours 

and to identify all the states involved. It was not possible to study Ar (K
-2

V) states in these 

condition but, in a recent experiment [71] Ne (K
-2

V) states have been observed and identified 

and reveal also a comparable contribution from direct and conjugate channels.  

In the CO2 case, conventional photoelectron spectroscopy was used to observe the C (K
-2

V) 

signal at a photon energy of 2300 eV. It was necessary to accumulate during 15h to observe 

the C (K
-2

V) signal on a high background due to O(K
-1

)-V
-1

 (core-valence) double ionization. 

The ratio C(K
-2

V) / O(K
-1

) is only about 10
-5

 but with high performance electron 

spectrometers and high flux synchrotron lines observing such process in nowadays possible. 

[69] The observed relative decrease of the conjugate channel with respect to the direct 

channel is found to be about a factor of 2 between 760 (i.e. 100eV above K
-2

 threshold) and 

2300eV (1650 eV above) as predicted by the theoretical model described above.  

 

Although K
-2

V process is a weak process (about 1‰ of K
-1

) the corresponding 

spectroscopy reveals interesting features when compared to normal satellites studies, XPS and 

NEXAFS. At fixed photon energy, both conjugate and direct “super” shake-up states appear 

with comparable intensities. The conjugate channel reveals resonances associated to the 

orbitals that are accessible in NEXAFS (1s →V dipolar transitions). The direct shake-up gives 

access to orbitals with different symmetries, as in XPS. Another interesting aspect is that the 

resonances which appear above K
-1

 threshold as shape-resonances are in the K
-2

V studies 

observed  below the K
-2

 threshold. 

                  

 

7. Conclusion  

 

Double photoionization from molecular inner-shell orbitals has been recently studied 

with multi-electron coincidence experiments and synchrotron sources. As summarized above, 

a large collection of results have been obtained in a few years, including the spectroscopy of 

these double core holes, (both the one-site (K
-2

) and the two-site (K
-1

K
-1

) ones), their Auger 

decay and the related K
-2

V process where one inner-shell electron is excited and the other is 

ionized. At the same time the advent of XFEL light sources has allowed complementary 

observation of the same processes, by creating them in a two-photon path. They confirmed the 

interest of the spectroscopy of DCHs which was predicted in the pioneering study by 

Cederbaum et al [4] in 1986, and stimulated the development of new theoretical models.  

However, from a practical point of view these complementary methodologies remain 

technically difficult and will need further improvements to go beyond the present status. With 
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synchrotron sources, the coincidence technique is able to provide high resolution 

spectroscopy of DCH states and this can be easily extended to K
-2

V spectroscopy with 

up-to-date electron spectrometers and synchrotron beamlines. The real limitation comes from 

the very small cross-section of the order of 10
-3

 with respect to single K-shell ionization for 

K
-2 

states, and drops further by two orders of magnitude for K
-1

K
-1 

states. The study of K
-1

K
-1 

states with multi-electron coincidences on synchrotrons is thus a difficult performance. With 

XFEL light sources, the cross section is not an issue, and both one-site and two-site DCHs can 

be equally and efficiently created with short light pulses in the fs range (below the core-shell 

lifetime). However new experimental developments will be needed to fully disentangle all the 

possible processes that add up to core double ionization. With the much higher repetition rates 

which are planned in the new XFEL centers under construction, one should certainly consider 

the possibility of coincidence spectroscopy to identify clearly all the possible channels.   
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Fig.1: Single photon 1-site core double photoionization of N2 [12], obtained at a photon 

energy of 1110eV. The spectra have been extracted from quadruple coincidence events in 

which one detects the two photoelectrons and the two Auger electrons emitted in the double 

core ionization and decay. (a) Energy correlation between the two photoelectrons, when 

detected in coincidence with two Auger electrons chosen respectively in the ranges 

[300-375eV] and [375-450eV]. The diagonal lines correspond to the different DCH states. (b) 

Spectrum of the K
-2

 states, obtained from the histogram of the sum of the energies of the two 

photoelectrons in (a). (c) Energy distribution of the Auger electrons emitted upon decay of the 

K
-2

 ground state. Reprinted with permission from [9]    
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Fig. 2 Spectrum of the K
-2

 Double core hole states in CH4 (a) and NH3 (b) obtained 

respectively at a photon energy of 750 and 950eV. The spectra have been extracted from 

triple coincidence data. Theoretical DCH levels are shown as bars for direct comparison. 

Reprinted with permission from [16] 
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Fig. 3 : Spectrum of the K

-2
 Double core hole states in N2 (upper part) showing the main line and 

satellite states and their calculations by Tashiro et al [17]. MECO stands for ‘Multi Electron 

Coincidences’ experiments which are the ones from Fig. 1b) Reprinted with permission from [17] 
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Fig. 4 : 1-site and 2-site DCHs in C2H2. (a) Spectrum of the K

-2
 Double core hole states in C2H2, 

obtained from quadrupole coincidence data, and from the sum of the energies of the two 

photoelectrons when detected in coincidence with the two released Auger electrons of 200–270 and 

270–320 eV. (b) Predictions for K
-2

 DCH spectrum. The ×100 magnifying factor applies to the portion 

of the theoretical spectrum between the two main peaks to visualize the position of the lowest energy 

satellite state (dotted line). (c) is similar to (a) but here triple coincidence events are selected, and one 

plots the sum of the energies of the two photoelectrons when detected in coincidence with only one 

Auger electron of 230–250 eV. The one site K
-2

 Double core hole states continue to be selected, but the 

two site K
-1

 K
-1

 Double core hole state signal appears at a binding energy of 595.6eV. Electrons of less 

than 10 eV in (a) and (c) and of more than 60 eV in (c) have been discarded to reduce background. 

Vertical bars at the bottom correspond to theoretical calculations for the position of the K
-1

 K
-1

 and K
-2

 

main lines. A photon energy of hν = 770.5 eV was used. Reprinted with permission from [18] 
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Fig. 5: Observation of K

-1
K

-1
 Double core holes states in the C2H2n series. As in Fig. 4(c), spectra 

are obtained from triple coincidence data, and from the sum of the energies of the two photoelectrons 

when detected in coincidence with only one Auger electron of 230–250 eV. A photon energy of hν = 

770 eV was used. The red lines show the fit of our experimental data for the K
-1

K
-1

 and K
-2

 peaks by 

Gaussian functions and a cubic background. Reprinted with permission from [9].  
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Fig. 6 Auger spectra associated with the Auger decays of: the main K

-1
K

-1
 (a) and K

-2
 (b) states in C2H2 . 

They are compared with the Auger spectra of the most intense K
-2

 satellite state (c) and of the single 

K-shell core hole (d). In (b) and (c) the solid line displays the first emitted hypersatellite Auger electron, 

while the dotted line corresponds to the second emitted, satellite Auger electron; the top scale applies 

only for the first hypersatellite Auger electron (solid line) and reveals the binding energy of the C2H2
3+

 

intermediate states populated in the first step of the DCH Auger decay (Equation 1b) and 2b ). 

Reprinted with permission from [18]. 
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Fig. 7: Auger spectra associated with the decays of: (b) C K

-2
 and (c) K

-1
K

-1
 states in CO. They are 

compared with the Auger spectra of the single K-shell C and O core hole (a). The solid lines in (b) and 

(c) represent the calculated Auger spectra. For the K
-1

K
-1

 decay (c), two contributions of similar 

weight are predicted, in which it is either the C 1s hole (blue dots) or the O 1s hole (red hyphens) that 

decays first. Reprinted with permission from [14]  



31 

 

 
Fig. 8: Auger decay of K

-2
 DCHs in C2H2: two-dimensional energy correlation map of the two Auger 

electrons emitted upon the decay of the C2H2 K
-2

 ground state. (a) is experiment, (b) theory. In (a) the 

faster Auger electron is reported on the x axis, while the slower one is on the y axis. Experiment is 

blind in the shaded zone, which corresponds to electron pairs of too close energies, so that their 

successive arrival at the detector falls within its 15 ns dead time. In (b) the x axis corresponds to the 

first electron emitted in the Auger decay, while the y axis corresponds to the second Auger electron. 

Reprinted with permission from [22] 
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Fig. 9: Auger spectra associated with the decays of K

-2
 DCH ground state in N2. (a) compares 

experiment with calculation at fixed nuclear distances. (b) shows the effect of nuclear motion on the 

calculated Auger spectrum. Reprinted with permission from [22] 
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Fig.10: Photoelectron spectra recorded with XFEL radiation of 1.1 keV and 1.0 keV. The 

electron energies in the 1 keV spectrum have been shifted by 100 eV to higher kinetic energies. 

Vertical markers indicate the calculated photoelectron line positions for various molecular and 

atomic states of N2. Reprinted with permission from [27]         



34 

 

 

 

Fig 11: Photoelectron spectra of N2 recorded with XFEL radiation of 596eV. Blue curve: 

focused x-rays; green curve unfocused; spectra are normalized at the SCH peak. Magenta 

curve: difference spectra. Black vertical lines: experimental energies of the SCH, DCH, and 

PAP features; horizontal lines: estimated errors; yellow vertical lines: theoretical energies. 

Reprinted with permission from [29] 
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Fig 12: Evidence of the formation of K

-2
V states in NH3. (a) shows the K

-2
V singly ionized states from 

twofold coincidences, compared with a simply filtered DCH spectrum (b) -see Fig 2(b)-. (c) Spectrum 

of doubly charged products in coincidence with the K
-2

V peak at 880 eV shown in (a). The peak at 432 

eV represents direct core-valence ionization which occurs for all energies of the electrons, while the 

peak at 456 eV appears only in coincidence with the K
-2

V photoelectron peak. Reprinted with 

permission from [16]  
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Fig. 13: Evidence of the formation of K

-2
V states in C2H2. Energy correlation between two 

electrons detected in coincidence with a third one of (200-260) eV at a photon energy of 770 

eV, ~118 eV above the double core hole threshold [14]. Only three electron events are 

considered here. Reprinted with permission from [61] 
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Fig. 14: Left: Experimental K

-2
V states in C2H2n molecules recorded at a photon energy of 

770eV. The red line locates the K
-2

 threshold (or double ionization potential, DIP). Right: 

Absolute K
-2

V cross sections. A convolution with a FWHM 1.8 eV Gaussian was used to 

simulate experimental resolution. Dashed green, solid red, and thick black lines represent, 

respectively, the conjugate and the direct components and their incoherent sum. Assignments 

are given for the main contributions. Reprinted with permission from [61] 
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Fig. 15: (a) Propylene K

-2
V spectrum obtained by detecting one photoelectron in 

coincidence with two Auger electrons at a photon energy of 710 eV. The background is due to 

core-valence double photoionization processes that have not been subtracted. The first peak at 

635 eV is due to * resonance. (b) Associated K
-2 

spectrum showing the composite structure 

of the main peak due to the three different C atoms. Reprinted with permission from [9] 
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Fig. 16: K
-2

V spectra in H2O. Left = experiment at a photon energy of 1300eV. a) and b) are 

respectively the K
-2

V and the K
-2

 spectra. Red line is theory. Right gives the detailed K
-2

V 

theoretical spectrum with the conjugate and direct contributions. Reprinted with permission 

from [65].  

 

 

 

  

Fig. 17: K
-2

V spectra in N2. Left = experiment at a photon energy of 979eV. a) and b) are 

respectively the K
-2

V and the K
-2

 spectra. Right gives the detailed K
-2

V theoretical spectrum 

with the conjugate and direct contributions. Reprinted with permission from [68].  
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Fig. 18: The K
-1

L
-1

V spectrum of argon, relative to the intensity of Ar 1s
−1

 photoionization. 

Above 3530 eV, the relative intensity is multiplied by a factor of 4. The spectrum is obtained 

from the non-coincident detection of the photoelectron emitted upon K
-1

L
-1

V formation.  

Reprinted with permission from [70]. 

 


