A simple characterization of positivity preserving semi-linear parabolic systems - Sorbonne Université Access content directly
Preprints, Working Papers, ... Year : 2016

A simple characterization of positivity preserving semi-linear parabolic systems

Alain Haraux
  • Function : Author
  • PersonId : 836471

Abstract

We give a simple and direct proof of the characterization of positivity preserving semi-flows for ordinary differential systems. The same method provides an abstract result on a class of evolution systems containing reaction-diffusion systems in a bounded domain of $ \mathbb{R}^n$ with either Neumann or Dirichlet homogeneous boundary conditions. The conditions are exactly the same with or without diffusion. A similar approach gives the optimal result for invariant rectangles in the case of Neumann conditions.
Fichier principal
Vignette du fichier
Pos-preserv..pdf (123.56 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01389098 , version 1 (27-10-2016)

Identifiers

Cite

Alain Haraux. A simple characterization of positivity preserving semi-linear parabolic systems. 2016. ⟨hal-01389098⟩
73 View
78 Download

Altmetric

Share

Gmail Facebook X LinkedIn More