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Noé Gaumont · Clémence Magnien · Matthieu Latapy

Received: date / Accepted: date

Abstract A link stream is a set of quadruplets (b, e, u, v)
meaning that a link exists between u and v from time b
to time e. Link streams model many real-world situations
like contacts between individuals, connections between de-
vices, and others. Much work is currently devoted to the
generalization of classical graph and network concepts to
link streams. We argue that the density is a valuable notion
for understanding and characterizing links streams. We pro-
pose a method to capture specific groups of links that are
structurally and temporally densely connected and show that
they are meaningful for the description of link streams. To
find such groups, we use classical graph community detec-
tion algorithms, and we assess obtained groups. We apply
our method to several real-world contact traces (captured
by sensors) and demonstrate the relevance of the obtained
structures.

Keywords link stream · temporal network · density ·
face-to-face interaction · dense subgraphs

1 Introduction

In this paper, we deal with link streams, i.e. sequences of
quadruplets (b,e,u,v) meaning that a link exists between u
and v from time b to time e. Link streams model many real-
world situations like contacts between individuals, connec-
tions between devices, and others [5,6,16,17,21]. An illus-
tration is given in Figure 1.
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The problem of finding dense sub graphs has been ex-
tensively studied in the static case. Indeed, detecting cliques
and dense groups [2,20] allows finding particularly impor-
tant sets of nodes in graphs. Some community detection meth-
ods [1,10] also use density in order to obtain a high level
description of a graph.

The notion of density has been extended to link streams
and has been used to study complex networks [13]. It mea-
sures to which extent all pairs of nodes are connected all the
time. We use this density measure to find relevant groups.
This makes it possible to characterize partially the link stream
by highlighting the most relevant groups of links.

Such groups should have a high density but this is not
sufficient. Above all, they should have a density that is higher
than their neighbour groups because, just like in graphs, the
value of density in itself is not sufficient to evaluate a group.
Therefore, a group is meaningful if it has a higher density
than its neighbourhood, both structurally and temporally.
For example, a group which has a low density may be con-
sidered relevant if the neighbouring link stream is empty.
Conversely, a dense group may be considered irrelevant if
it is included in a larger dense group. An example of which
groups should be captured is given in Figure 1.

In order to find relevant groups, we proceed as follows:

– We build a projection of the link stream into a graph
where each link is mapped to a node in the graph;

– We apply a community detection algorithm on the pro-
jection and obtain a partition of links in the link stream;

– From the resulting partition, we keep only the relevant
groups, i.e. the ones which are denser than their neigh-
bourhood and are large enough; we feel that very small
groups have limited interest in terms of description of
the link stream.

To prove the efficiency of the process, we apply our method
on several real world networks and we argue that the groups
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Fig. 1: Example of a link stream. The nodes are on the vertical axis and time is on the horizontal axis. In the example, there
is a link between nodes d and f from time 1 to 2. Three dense groups of links are identified by colour (red, green or blue).

found are meaningful and could not have been retrieved by
static approaches.

The remainder of this paper is organized as follows. The
decomposition and validation method are explained in Sec-
tion 2. The data sets we use and the associated results are
presented in Section 3 and 4. In Section 5, the state-of-the-
art in dense groups detection is described and then we con-
clude and draw some perspectives in Section 6.

2 Method

Our method uncovers meaningful groups of links in a link
stream. To this end, we first compute a link partition of the
link stream. Then, we propose several criteria to evaluate
each group of the partition and retrieve the most meaningful
ones.

2.1 Definitions and notations

A link stream is defined as a triplet: L = (T,V,E), where
T = [α,ω] is a time interval, V a set of nodes and E ⊆
T × T ×V ×V a set of links. Links of E are quadruplets
(b,e,u,v), meaning that the pair (u,v) is continuously linked
in the time interval [b,e]⊆ [α,ω].

If, for all (b,e,u,v) ∈ E, u 6= v and for all (b,e,u,v) ∈ E
and (b′,e′,u,v) ∈ E, [b,e]∩ [b′,e′] = /0, then L is simple. In
the following, L will always be considered to be simple.
Also, we do not consider link orientation, i.e. (b,e,u,v) and
(b,e,v,u) are equivalent.

An extension of the density notion to link streams has
been proposed by Viard et al. [26], in the case where b = e.
It measures to which extent all pairs of nodes are connected
all the time. We adapt it to the general case of links with
durations. The density of a set of nodes, V ′ ⊆ V , in a time
interval [t, t +δ ], is expressed as follows:

d(V ′, t,δ ) =
1

|V ′| · (|V ′|−1) ∑
(u,v)∈V ′×V ′,u 6=v

τt,δ (u,v)
δ

, (1)

where τt,δ (u,v) = ∑(b,e,u,v)∈E |[b,e]∩ [t, t +δ ]| is the sum of
the durations of links between u and v in interval [t, t + δ ].
This includes links which are fully or partly included in the
time interval [t, t+δ ]. This definition is valid only for simple
link streams.

Notice that this is a natural extension of density because
if all existing links in V ′×V ′ last for the whole time interval
[t, t +δ ], i.e. ∀u,v ∈V ′ τt,δ (u,v) = δ , then static and tempo-
ral densities are equal.

In a graph, the density is the probability that two ran-
domly chosen nodes are linked together. In a link stream, the
density in a given time interval is the probability that two
randomly chosen nodes are linked together at a randomly
chosen time. Both densities have values in [0,1]. For exam-
ple in Figure 1, nodes a, b, c, d and e in the time interval
[6,8] have a density of 0.05 because this node set is poorly
connected in this time interval. On the other hand, the same
node set in the time interval [0,1.5] has a much higher den-
sity because it is much more connected.

As in the case of graphs, density in link stream is very
sensitive to the node set size. For example in Figure 1, d(V \
{a},8,2) is much denser than d(V,8,2). Furthermore, the
duration δ also has a huge impact on the density. If the du-
ration is expanded and no additional link occurs, then the
density decreases quickly, e.g. d({e, f},2,2) is denser than
d({e, f},2,3) in Figure 1.

This definition holds for a group of nodes in a time inter-
val. For a given group of links E ′⊂E, let α(E ′)=min(b,e,u,v)∈E ′(b)
and ω(E ′) = max(b,e,u,v)∈E ′(e) denote respectively the be-
ginning and the end of E ′ and δE ′ = ω(E ′)−α(E ′) denote
its duration. The density of E ′ is then the density of the in-
duced nodes VE ′ = {u,∃(b,e,u,v) ∈ E ′} in the time interval
[α(E ′),ω(E ′)]:

d(E ′) = d(VE ′ ,α(E ′),δE ′). (2)

With this formulation, all links in E ′ are considered in
the computation of the density. However, other links might
also contribute to the density. For instance in Figure 1, if



Finding remarkably dense sequences of contacts in link streams 3

a

d

b

c

Time

Fig. 2: Transformation of a simple link stream with 4 nodes
(a-d) and 6 links into its link graph.

the density of plain black links is computed, all nodes are
induced by those links, thus V ′ = V , the beginning equals
2 and the duration equals 9. Therefore in the computation
of d(V,2,9), all black links are considered but red and blue
links are also taken into account.

2.2 Discovering candidate groups of links

We propose a transformation of a link stream into an un-
weighted undirected graph that we call the link graph. Each
link in the link stream is represented by a node in the link
graph. Two different links (b,e,u,v) and (b′,e′,u′,v′) are
connected in the link graph if they share a node and if their
time intervals are overlapping, i.e. {u,v}∩{u′,v′} 6= /0 and
[b,e]∩ [b′,e′] 6= /0, see Figure 2. Therefore, a link in the link
graph represents both a temporal and structural connection
between two links in the link stream. We tested a variation
with a weighted link graph where the weight is equal to the
duration of the time intersection. However, the results are
very similar to the unweighted version and therefore omit-
ted.

Dense groups in the link graph therefore represent groups
of closely interconnected links in the link stream, both struc-
turally and temporally. To detect those groups, we apply one
of the most used methods to detect communities: the Lou-
vain method 1 [3]. The output of the algorithm is a parti-
tion where each community is a candidate relevant group
of links. However, there are several reasons why some can-
didates may not be relevant. First, the candidates uncovered
by community detection method usually have heterogeneous
sizes and some are very small. As we do not consider very
small candidates as relevant, we discard them. Second, as
the Louvain algorithm greedily optimizes the modularity in
the link graph, the partition in the link stream might also
contain candidates which are irrelevant in a link stream con-
text. For example in Figure 1, the links in the time interval
[4,8] form a connected component in the link graph and are
considered as a community by the Louvain method. How-
ever, this candidate should not be considered as relevant be-
cause it is less dense than the links in [0,4] or even [7,11].

1 Other community detection methods can be applied.

Therefore, we need a method to validate or discard each can-
didate.

2.3 Selecting relevant candidates

Density in itself is not sufficient to evaluate a candidate’s rel-
evance. Indeed, the optimum value is trivially obtained for a
group of two nodes in the time interval when a link between
them exists. This is why we consider as relevant the candi-
dates which are denser than their neighbourhoods in the link
stream. To define neighbourhoods, we observe that the den-
sity, defined by Eq. 1, depends on three aspects: the group
of nodes V ′, the start time t and the duration δ . To take into
account these three aspects, we consider groups which differ
from the considered candidate in only one of these aspects,
which we call neighbour groups. We propose to evaluate the
relevance of a candidate by comparing its density to that of
the corresponding three kinds of neighbours. The higher its
density is compared to the one of its neighbour groups, the
better the candidate is.

2.3.1 Neighbourhood definition

For the start time (resp. duration) aspect, we consider all
possible values of start time (resp. duration) in a given in-
terval. Each of these values defines neighbour groups with
the same set of nodes, duration (resp. start time) as the can-
didate group and with the considered start time (resp. dura-
tion). We then compute the resulting density values of these
neighbours by varying the start time (resp. duration) in a
continuous fashion. Let I and I′ be intervals and L ⊆ E be
a candidate. The density values of its start time neighbours
are thus defined by d(VL,y,δL) with y ∈ I. The density val-
ues of its duration neighbours are defined by d(VL,α(L),z)
with z ∈ I′.

The interval considered is [α,ω − δL] for the start time
aspect. For the duration aspect, the interval considered is
[0.8δmin,1.2δmax], where δmin (resp. δmax), is the smallest
(resp. largest) candidate duration in the partition. We use
this interval for two reasons. First, it contains all reason-
able durations when applied to our data sets. Second, we
also tested the interval [1,ω −α] which is much larger. It
changes the evaluation quantitatively but not qualitatively.
Indeed, groups with a duration of ω−α have a density close
to zero and therefore are always less relevant than candidate
groups.

For the nodes aspect, it is impossible to consider all pos-
sible node sets as there are too many of them: 2|V |. More-
over, most of the node sets will mostly be disconnected if the
link stream is sparse. Therefore, if VL contains k nodes, then
we consider all the sets of nodes of size k which share k−1
nodes with VL. Therefore, only similar groups are taken into
account. This comparison is therefore stricter but also fairer
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Fig. 3: Cumulative distribution of density rescaled to [0,1]
in the duration aspect for several candidates. Full (resp.
dashed) lines are candidates from the Rollernet (resp. Socio
Pattern) data set.

than the one to all sets of nodes or to randomly chosen set
of nodes. A lower number of shared nodes could be used but
was not considered because of computational tractability. In-
deed, there are already k(|V |−k) set of nodes considered for
a single candidate with our current method.

We end up for each aspect with several density values.
For the node aspect, we have k(|V |− k) density values. For
the start time (resp. duration) aspect, we have a function of
the start time (resp. duration) to density.

2.3.2 Score definition

We evaluate a candidate by comparing its density to the den-
sity values in each aspect. If a candidate is truly meaningful,
then it should have a higher density than most values in each
aspect. From experiments, the density values do not seem to
follow the same probability density function for all candi-
dates. As an illustration, Figure 3 presents the cumulative
distribution of the density for the duration aspect for 3 can-
didates in the Socio Pattern data set and 3 in the Rollernet
data set (these data sets are described in Section 3). If they
were following, for instance, a normal law, we could have
computed the z-score to check if candidates have a density
significantly larger than expected. Here the distributions do
not seem to follow a common law. Hence, we use percentiles
that quantify what fraction of the values are smaller than the
considered candidate’s density. For the node aspect which is
represented by a set of density values S, the score of a given
candidate L is:

pnode(L) =
∑di∈S 1di<d(L)

|S|
, (3)

where 1 is the indicator function. For the start time and du-
ration aspects which are represented by functions, the scores
pt and pδ of a given candidate L are:

pt(L) =
1

ω−δL−α

∫
ω−δL

α

1d(VL,z,δL)<d(L)dz , (4)

pδ (L) =
1

1.2δmax−0.8δmin

∫ 1.2δmax

0.8δmin

1d(VL,α(L),z)<d(L)dz . (5)

A low score means that the candidate’s density is smaller
than most densities in the aspect and for this reason the can-
didate should be discarded.

To sum up, a candidate is evaluated by a triplet consist-
ing of its score for each aspect, and should be discarded if
one of them is low, i.e lower than a given threshold. The def-
inition of what is a low value is non-trivial and depends on
the purpose of the study and the characteristics of the link
stream. For these reasons, we set no a priori thresholds and
instead choose them a posteriori based on the observations
made on the studied data set, as described in Section 4.

3 Data sets

We apply our method on four data sets. Table 1 lists the num-
ber of nodes (|V |), the number of links (|E|) and the duration
(ω−α) of each data set.

Socio Pattern [12] 2 contains the temporal network of
contacts between students in a high school in Marseilles,
France. It gives the contacts between 180 students of 5 classes
during 9 days (from a Monday to the Tuesday of the follow-
ing week) in Nov. 2012. The class of each student is known.

Rollernet [25] was collected during a rollerblade tour in
Paris in August 2006. The tour is a weekly event and gath-
ers approximately 2500 participants. Among these, 62 were
equipped with wireless sensors recording when they are at
a communication distance from one another. The data set
therefore contains the proximity links between the persons
carrying the sensors. We know the role of each person, e.g.
staff member at the front or association member.

Reality Mining [8] contains the temporal network of
contacts between 94 persons at the MIT Media Laboratory
between September 2004 and June 2005. Of these 94 sub-
jects, 68 were colleagues working in the same building on
campus (90% graduate students, 10% staff) while the re-
maining 26 subjects were incoming students at the univer-
sity’s business school. These data set was recorded by Blue-
tooth on loaned mobile phones.

Baboon [7,24] contains the position of 28 wild olive ba-
boons (Papio anubis) at Mpala Research Centre in Kenya
between 5 a.m. and 5 p.m. during 2 weeks. These 28 ba-
boons represent around 80% of a troop. Each baboon was
fitted with a custom-designed GPS collar that recorded its
location every second. We transform this data into a link
stream by creating a link between two baboons when the

2 http://www.sociopatterns.org
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Data sets |V | |E| ω−α

Socio Pattern 180 19774 9 days
Rollernet 62 15803 3 hours

Reality Mining 94 44975 9 month
Baboon 28 95616 14 days

Table 1: number of nodes |V |, number of links |E| and dura-
tion ω−α for each data set.
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Fig. 4: Number of active links (left axis) and average number
of active links per node (right axis) as a function of time on
the Socio Pattern data set.

distance separating them is less than 1.5 meter and make
each link last at least 10 seconds to smooth potential GPS
inaccuracy.

Even if all these data sets are face-to-face interactions
networks, they are quite different in their dynamics. For ex-
ample, the Rollernet data set has roughly the same number
of links as Socio Pattern but it lasts only 3 hours compared
to 9 days for Socio Pattern. To visualize the data sets’ sparse
temporal dimension, the number of active links in time are
plotted in Figure 4 for the Socio Pattern data set. As there
are at most 40 links present at the same time between the
180 students, a graph representing a network at a specific
time is mostly empty. The figures for the other data sets are
in appendix (Figures 12,17 and 22). They also present a very
sparse temporal dimension.

4 Results

For each data set, we apply our method to uncover relevant
groups of contacts. As presented in Section 2, the first step
is to uncover a partition P of links. The basic statistics of
each found partition such as the number of candidates |P|,
the median number of links 〈|L|〉, and the median node size
〈|V |〉 are listed in Table 2. The first striking fact in this ta-
ble is that there are a lot of candidates in the partitions and
most of them are very small in terms of number of links and
nodes. There are however larger candidates in the Rollernet
data set. This difference might be caused by the short link
streams duration — 3 hours compared to several days — and
the high number of links which makes the link stream denser
than other data sets. In order to get a more precise picture of

Data sets |P| 〈|V |〉 〈|L|〉
Socio Pattern 12532 (155) 2 (9) 1 (15)

Rollernet 559 (75) 2 (31) 1 (194)
Reality Mining 5737 (474) 2 (12) 1 (36)

Baboon 37671 (1249) 2 (7) 1 (16)

Table 2: Median of some characteristics for each data set
partition. The value in parentheses corresponds to the value
for candidates with at least 10 links only.
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Fig. 5: Inverse cumulative distributions of the number of
links, nodes and duration (a) and density (b) for the can-
didates found by the Louvain method on the Socio Pattern
data set.

the Socio Pattern data set, the inverse cumulative distribu-
tions of the number of nodes, the number of links, durations
and density are presented in Figure 5. The distributions are
all heterogeneous, except for the density distribution. The
steps observed for the density are caused by small candi-
dates; typically a group with 2 links between 3 nodes will
have a density of 0.33 and candidates with 1 link 3 will have
a density of 1. The figures for the other data sets are in ap-
pendix (Figures 13, 18 and 23). For those data sets, we also
observe heterogeneous distributions for the number of links,
the number of nodes and the duration and steps in the den-
sity distribution.

As small candidates have a very limited interest in terms
of description of link streams, we begin by discarding groups
having less than 10 links. This leaves us with many candi-
dates in all data sets, and we need to distinguish the relevant
ones from the others.

4.1 Groups validation

To separate relevant candidates from others in the partition,
we set thresholds on the scores. A candidate is considered as
relevant if all its scores are above the thresholds. Notice that
decreasing the thresholds will increase the number of candi-
dates kept without removing any candidates previously kept.
Therefore, the thresholds can be chosen a posteriori. As we
do not have any knowledge for the thresholds selection, we

3 Candidates with one link represent 83% of all candidates.
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(d) Correlation between start time
and duration aspects.

Fig. 6: Inverse cumulative distribution of scores for each as-
pect for the data set Socio Pattern.

study the inverse cumulative distribution of scores for each
aspect to fix these thresholds. They are presented for the So-
cio Pattern data set in Figure 6 (a-c). For this data set, the
vast majority of scores are very high, i.e. close to 1, regard-
less of the aspect. We also observe for each aspect a sharp
bend in the inverse cumulative distribution of score and use
the corresponding value as threshold.

We use for the start time, duration and node aspect the
following values: 0.998, 0.85 and 0.98. For other data sets
see Figures 15, 20 and 25 in appendix; the scores are simi-
lar except for the Rollernet data set which has lower scores,
which may be caused by the denser underlying link stream.
Finally, Table 3 gives the threshold we used for each aspect
and data set.

A candidate is discarded when at least one score is below
the corresponding threshold. Therefore, we study if the as-
pects discard different candidates. The correlation between
start time and duration scores is plotted in Figure 6 (d). Both
aspects discard different candidates and therefore are not re-
dundant. The same observation holds with the node aspect
and for other data sets (see Figures 15 (d), 20 (d) and 25 (d)).

We present a manual analysis for two candidates cap-
tured in the Socio Pattern and Rollernet data sets respec-
tively, thus illustrating the notions of scores defined in Sec-
tion 2 and showing the relevance of the method. We chose
these candidates for manual checking because their respec-
tive data sets contain information on either the participants
or the usual schedule, which helps in evaluating the rele-
vance of groups.

In the Socio Pattern data set, we know the participants’
class; we also know when the lectures start in the morning
and, when the breaks happen. The group we consider con-
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Fig. 7: Plain lines: the function d(VL,z,δL) in (a) and
d(VL,α(L),z) in (b) for a group L in the Socio Pattern data
set. Dashed lines: density of L.

tains 50 links, 17 nodes and lasts for almost 15 minutes and
is one of the largest candidates. As this group starts at 7:44
am, this is likely a group of friends gathering before the first
lecture of the day which takes place at 8:00 am. Moreover,
all of them except one are in the same class, thus making the
possibility of a small class gathering even more likely.

This simple qualitative evaluation is a first step but we
might have missed a bigger structure. The underlying gath-
ering behind this group of links might have started earlier,
lasted longer or even impact other persons. As for all candi-
dates, we have computed its score for each aspect.

Node aspect. For this aspect, the group has a score of 0.98.
This means that of all adjacent node sets, the group has al-
most the highest density and therefore we are sure that this
specific node set is indeed important at this period.

Start time aspect. For this aspect, the function start time
to density is presented in Figure 7 (a). The circadian cy-
cle is clearly visible along with the week-end. Moreover the
group, with a density of 0.04, is denser than all its neigh-
bours for the start time aspect. Therefore the group has a
score of 1 which indicates that the start time of the group is
relevant.

Duration aspect. For this final aspect, the group has a score
of 0.98 which means that the group has also almost the best
duration. The function duration to density is presented in
Figure 7 (b). The group density is a bit higher if a shorter
duration is considered, which is not unexpected because the
duration affects the density. Moreover, this is still a very high
score because a broad interval of durations is considered in
the duration aspect, including durations that do not corre-
spond exactly to any group of links. Indeed, for a given node
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set V ′, duration δ and start time t, some links may be only
partially considered, i.e. ∃u,v ∈ V ′, (b,e,u,v) ∈ E s.t. 0 <

|[b,e]∩ [t, t+δ ]| ≤ |[b,e]|. In this case, the neighbour groups
considered cannot be recovered by a group of links, and their
density is not reachable by a group of links. Therefore, a
group of links with a perfect score of 1 would be very sur-
prising. Notice that even when increasing the interval for
the considered values of duration and exploring d(VL,y,z)
for y ∈ [α;ω − δL] and z ∈ [0.8gmin;1.2gmax], the candidate
is still often the best. This emphasizes even more greatly the
peculiarity of this candidate.

In the Rollernet data set, we know the role of some par-
ticipants (staff member, a group of friends, ...). The group
we consider contains 38 links, 9 nodes and lasts for almost
5 minutes. The start time is just at the beginning of the roller
tour and 8 of the group members are labelled as staff mem-
bers that should be at the rear of the tour. The last member
is labelled as a front member. This group might indicate a
quick talk before the beginning of the tour. Again we com-
puted its score for each aspect.

Node aspect. For this aspect, the group has a score of 0.99
which highlights the relevance of the node set at this start
time and for this duration.

Start time aspect. For this aspect, the group has a score of
0.85, see Figure 8 (a). As the Rollernet data set is denser
than the other data sets, the function start time to density is
more stable and other start times achieved higher density.
However the group still captures a local maxima of density.

Duration aspect. For this aspect, the group has a score of
0.86 for the duration aspect, see Figure 8 (b).

Even if these scores are not optimal, they are above the
thresholds and this is why the group is considered as rele-
vant.

Altogether, there are 136 groups considered as relevant
from the 12532 in the Socio Pattern data set. These groups
are selected because they have a high score. Most of them
have scores that are close but no equal to 1 meaning that
some neighbours are still denser. Finally for each aspect, we
check how far the group density is from the maximum den-
sity. The group density is, for 75% of all groups, on average
only 20% smaller than the maximum density in the aspect.
Therefore, groups are dense parts of the link stream and have
a density close to the maximal density.

Finally, the execution time for each data set is presented
in Table 3. The code has been run on a laptop with 8 Go of
RAM and an Intel core-i7 processor without any paralleliza-
tion. The code in C++ to compute the scores is available
online 4.

4 https://bitbucket.org/nGaumont/densityanalysis/
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Fig. 8: Plain lines: the function d(VL,z,δL) in (a) and
d(VL,α(L),z) in (b) for a group L in the Rollernet data set.
Dashed lines: density of L.

Data sets pnode pt pδ Nc execution
Socio Pattern 0.98 0.998 0.85 136 2 min

Rollernet 0.9 0.7 0.6 37 4 min
Reality Mining 0.97 0.98 0.8 394 1h

Baboon 0.95 0.99 0.85 1023 52 min

Table 3: Threshold used, number of groups captured and ex-
ecution time for each data set. pnode,pt ,pδ and Nc are re-
spectively the node aspect threshold, the start time aspect
threshold, the duration aspect threshold and the number of
group captured.

4.2 Group characteristics

To get a more precise picture for the groups captured, the
inverse cumulative distributions of the number of nodes, the
number of links, durations and density are presented in Fig-
ure 9 for the Socio Pattern data set. The duration, node size
and link size distributions are again heterogeneous. The fig-
ures for the other data sets are in appendix (Figures 16,21
and 26).

In order to study to which extent the detected groups
offer a global description for the data set, we now study how
they cover the nodes and the time interval of the link stream.

Concerning node coverage, the distribution of the num-
ber of groups per node for the Socio Pattern data set is shown
in Figure 10. Notice that all the nodes are in at least one
group while some nodes belong to more than 20 groups.
With an average of 7.4 groups per node, the uncovered groups
form a highly overlapping cover. For other data sets, see Fig-
ures 14,19 and 24. For all data sets, we found that the struc-
ture is highly overlapping, especially for the baboon data
set; this is because a lot of groups are captured for only 28
nodes in the link stream.



8 Noé Gaumont et al.

λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.5 λ = 0.7
Socio Pattern 0.30 (0.55) 0.30 (0.55) 0.30 (0.55) 0.30 (0.55) 0.29 (0.54) 0.33 (0.85)

Rollernet 0.40 (0.52) 0.39 (0.64) 0.41 (0.54) 0.37 (0.54) 0.31 (0.57) 0.26 (0.75)
Reality Mining 0.42 (0.76) 0.42 (0.77) 0.36 (0.88) 0.42 (0.86) 0.38 (0.87) 0.36 (1)

Baboons 0.33 (0.95) 0.38 (1) 0.40 (0.84) 0.46 (0.94) 0.46 (0.93) 0.44 (0.85)

Table 4: Median (and maximum) Jaccard index between the groups uncovered and the communities found by bigclam in the
aggregated graph where a proportion of λ edges having the smallest weight have been removed. Values which are above 0.8
are in bold.
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Fig. 9: Inverse cumulative distributions of the number of
links, nodes and duration in (a) and density in (b) for the
candidates captured by our method on the Socio Pattern data
set.
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Fig. 10: Inverse cumulative distribution of the number of
groups captured per node for the Socio Pattern data set.

One could argue that this structure could also have been
obtained by a method computing overlapping communities
in a graph. To check this, we construct the aggregated graph
G=(V,E ′) of L =(T,V,E) such that there is an edge (u,v)∈
E ′ in G if and only if ∃(b,e,u,v) ∈ E. The edge weight
is the sum of the durations of each corresponding link in
the link stream. We test the bigclam method proposed by
Yang et. al [29] which captures overlapping groups of nodes
in a graph. This method considers only unweighted static
graphs. Since edge weights are heterogeneous, we need to
find a way to take them into account. As no natural weight
separation appears in the link’s weight distribution, we use
a simple rule such that an edge is present in the unweighted
graph if it has a weight strictly greater than at least λ% links,
λ being a given threshold. Thus even if the graph is un-
weighted, we still keep some weight information. We then
use the Jaccard index to compare the nodes of a commu-
nity found by bigclam and the nodes induced by a group

uncovered by our method in the original link stream. For
each group L captured and its induced nodes VL, we com-

pute J(L) = maxC∈C
|C∩VL|
|C∪VL|

, the maximum Jaccard index

among all communities C ∈ C found by bigclam. Table 4
presents the median and maximum Jaccard indexes of J(L)
for different data sets and thresholds λ . According to this
table, uncovered groups and communities found by bigclam
are different (the median Jaccard index is low). Some groups
are nevertheless present in both structures as reflected by a
high maximum Jaccard index. This happens in the Rollernet
and Baboons data sets for only very few groups and spe-
cific link removal thresholds. These high Jaccard indexes
might by correlated to the high number of uncovered groups
for these data sets because more uncovered groups induce a
higher probability to find a matching community.

Overall, our method has highlighted groups of nodes
which would not have been uncovered by this static method.

For the temporal aspect, we also look for the time over-
lap of groups. We compute the time proportion where no
captured group is present. For all data sets except the Roller-
net data set, there is no group present between 82% and 95%
of the time. For Rollernet, this proportion drops to 15%.
This difference is likely caused by the very short duration
of the link stream. Indeed, the Socio Pattern, Reality Mining
and Baboons data sets span nights, during which activity is
lower.

While most of the time there is no active group in the
link stream, at some times several groups are active at once.
This result is very different from the structural aspect. In-
deed, the groups form a cover of nodes but they are covering
only a small fraction of the time. In the Socio Pattern data
set, the groups are typically before the first lecture, during
the breaks and lunch, and after the last lecture. Therefore,
our method is able to recover important time intervals in
link streams, which further show its relevance. Notice how-
ever that isolating important time intervals could be done in
a simpler way, by observing the activity. To illustrate this,
the number of active groups over time is presented in Fig-
ure 11 along with the number of links for the first day of the
Socio Pattern data set.
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Fig. 11: Number of active links (plain line) and number of
active groups (red dashed line) as a function of time for the
first day of the Socio Pattern data set.

5 Related Work

In recent years, significant efforts have been devoted to find-
ing subgraphs in a temporal context. Subgraphs have mainly
been studied in two ways: either as communities in graph
snapshots or as dense sub-parts in evolving networks. These
approaches are related but not equivalent. The former finds
a whole partition of a network while the latter captures a
single group. As they optimize different metrics and respect
different constraints, it is difficult to compare the two ap-
proaches. See for instance these surveys and the references
therein [11,15,28] that describe community detection meth-
ods in graph snapshots. The results of these methods are par-
titions of nodes for each snapshot. In most of them, a group
of nodes in a specific snapshot is tracked in the next snap-
shot to follow its evolution. These methods suffer from in-
stability between two snapshots and from the construction
of the snapshot in which some information is lost. For ex-
ample, a group of nodes in a snapshot could be mistakenly
captured because the aggregation method makes it seem like
a relevant group. Symmetrically, a relevant group in the link
stream could be ignored if it is split between two snapshots.

Several models keeping all the temporal information have
been proposed and used in different contexts to gain mean-
ingful insights. For example, the methods in [18,23] aim at
detecting communities in diachronic networks, i.e. links ex-
tremities are associated with possibly distinct timestamps.
A diachronic network is modelled as a graph, G = (V,E),
defined upon a set of time-labelled nodes, V = {(ui, ti)},
and a set of links, E = {((ui, ti), (u j, t j))}. This accurately
models citation networks where an author A publishing a
paper at time t1 is represented by the node (A, t1). The link
((A, t1),(B, t2)) exists if B has published a paper at time t2 in
which the paper from A published at time t1 is cited. Thus,
the link ((A, t1),(B, t2)) in the diachronic network has a dif-
ferent meaning than the link (t1, t2,A,B) in a link stream and
both models represent intrinsically different objects.

The problem of finding the densest sub-part in evolv-
ing networks and temporal networks has also been studied.
The method in [4] considers graphs where the weights on

the edges vary between −1 and 1, which is rather different
from link streams. Also, it recovers a subset of nodes on a
time interval such that it maximizes the sum of the weight.
Thus, some temporal information is lost because of the time
aggregation.

Epasto et al. [9] recover the densest sub-graph in evolv-
ing networks. An evolving network is a network that changes
according to a sequence of updates, namely edge additions
or removals. It maintains at each time a single group of
nodes which maximizes the average degree at this specific
time. Therefore, the method is relevant only when a rele-
vant network structure exists after each update, which is not
necessarily the case for link streams, as we have seen.

Rozenshtein et al. [19] designed a method to find the
densest sub-graph in temporal networks. The method cap-
tures a group of nodes and potentially several time intervals.
The maximum number of time intervals and the maximum
sum of the duration of time intervals are parameters of the
method, thus the results are very dependent on the parameter
choice. Also, the notion of density used is the average degree
in the graph aggregated over the chosen time intervals and
therefore some temporal information is lost.

Viard et al. [27] consider link streams where links do not
have durations and use a similar notion of density relying on
a parameter, ∆ , emulating link duration. With this notion of
density, they define maximal ∆ -cliques (in terms of nodes or
time interval) as sets of nodes having a ∆ -density of one in
a given time interval. ∆ -cliques are a great way to decom-
pose a link stream. However, the ∆ -cliques are typically very
small in size and duration. On the the Socio Pattern data, the
interactions are captured with a time precision of 20 seconds
therefore, when ∆ equals to 20 seconds, ∆ -density and den-
sity are equal. With ∆ = 20s, the biggest ∆ -cliques contains
only 5 nodes and 10 links. As the relevant groups can have
any density (see Figure 9(b)), we are able to detect bigger
groups and build more coarse description of link streams.

Sekara et al. [22] study a rich data set of approximately
1000 students during 36 months at a large European uni-
versity. They use the temporal network of face-to-face in-
teractions measured via Bluetooth. They study gatherings
which are represented by sets of nodes and time intervals.
Gatherings are captured by first transforming the temporal
network into snapshots of small duration and computing the
connected components in each snapshot. A gathering is then
a matching of connected components across snapshots using
a hierarchical clustering based on the Jaccard index [14]. In
the method, a gathering is considered only if it lasts at least
20 minutes. The definition of gathering relies on three in-
tricate parameters which are set a priori: the snapshots du-
ration, a threshold for connected component matching and
the minimum duration of each gathering. Moreover, the no-
tion of gathering is defined specifically to detect meeting of
students, which explains the high minimum duration. Our
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method is able to detect groups of diverse durations (see Fig-
ure 9(a)).

To sum up, some methods [4,9,19] seek the densest node
set in evolving networks. However, the criteria they use do
not take time into account as they rely on classical graph
metrics which might not be relevant for temporally sparse
data sets. Also, they recover only the densest node set while
we uncover several groups of links.

Other methods [22,27] detect node sets during time in-
tervals in link stream. However, the groups uncovered with
these methods have strict characteristics tailored to the ob-
ject of study: cliques or long duration. Our method is able
to detect more diverse groups. Finally, our method can be
tuned by parameters set a posteriori.

6 Conclusion

In this paper, we consider the problem of uncovering dense
groups in link streams where each link has a duration. As op-
posed to some existing methods, we take full advantage of
the temporal information thanks to the link stream formal-
ism which does not use any aggregation. This shift is impor-
tant as it eases the definition of algorithms and metrics that
mix structural and temporal information. The extension of
density for link streams that we propose is such an example.
Moreover, we do not consider a group as a combination of
a node set and a time interval but simply as a group of links
existing for a given time interval.

To uncover dense groups of links, we propose a method
that first transforms a link stream into a static, unweighted
and undirected graph where links of the link stream become
nodes in the graph. Two nodes in the graph are connected
if there is a temporal and a structural connection between
the corresponding links in the link stream. Thus looking for
communities in the graph is a way to find a set of candidate
groups. To do this, we use an existing community detection
method, namely the Louvain method.

To assess the relevance of the candidates in the found
partition of links, we propose to study several aspects. Each
aspect defines and builds neighbour groups from a given
candidate in the time or topological dimension. We use each
aspect to compute a score that compares the candidate den-
sity to neighbourhood densities. Once the scores of each
candidate are computed, the relevant ones are the one hav-
ing scores above thresholds that are set a posteriori using the
scores distributions. Changing the thresholds does not inter-
fere in the set of candidate but on the candidates selection.

We apply our detection method to 4 real world data sets.
All of them are face-to-face interaction networks. However,
they come from drastically different contexts. Two of them
are networks of students, one is a network of roller blade
tour participants in Paris and the last one is a network of

baboons in wild life. Also, the duration of each data set is
drastically different: from a few hours to several months.
In all data sets, we find groups having a very high density
compared to their neighbour groups.

There is no known ground truth in the used data sets,
however some metadata are known for two of them. In this
way we are able to analyze manually some of the uncov-
ered groups. We find that the groups correspond to relevant
events in the data and they have empirical justification such
as students gathering before the first class or for lunch. More
generally, we also studied the distribution of groups in time
and over the nodes. We find out that the groups are highly
overlapping over the nodes but concern only a small fraction
of time.

To test the novelty of our results, we apply a method
that detect overlapping communities on static graphs: the
bigclam method. We find that just very few groups were re-
covered by the bigclam method. Therefore by using time in-
formation, we are able to uncover new structures that might
hardly be detected by a static method.

6.1 Perspectives

Our method relies on a static graph, a classical commu-
nity detection algorithm, a minimum group size, and some
thresholds set a posteriori. An automatic selection of the
thresholds used is a promising direction, for example by de-
tecting inflection points in the scores distributions. Classifi-
cation methods could also be used on the groups based on
their three scores. However, we need to apply this method
in more diverse contexts to understand how reliable an auto-
matic method could be.

It would also be interesting to detect relevant groups
without relying on the transformation into a graph for two
main reasons. First, the density in the link stream cannot be
deduced from the static graph we created. Second, we might
have missed groups by using the Louvain algorithm on the
link graph.

Our method detects groups of links in link streams while
the literature is mainly focused on community structure in
graph snapshots. Communities in graph snapshots are re-
lated to dense groups, yet they are different. It would be
interesting to study the interplay between the two objects.
One way to do this could be to find appropriate time win-
dows and build graph snapshots from link streams and then
to use existing methods on the snapshots.

Finally, another promising direction is to build genera-
tive models of link streams with some constraints on density.
This would be beneficial to test the accuracy of our method
but also to design new algorithms applied to community de-
tection in link streams.
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A Rollernet data set
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Fig. 12: Number of active links (left axis) and average num-
ber of active links per node (right axis) as a function of time
on the Rollernet data set.
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Fig. 13: Inverse cumulative distributions of the number of
links, nodes and duration (a) and density (b) for the candi-
dates found by the Louvain method on the Rollernet data
set.
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Fig. 14: Inverse cumulative distribution of the number of
groups captured per node for the Rollernet data set.
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(d) Correlation between start time
and duration aspects.

Fig. 15: Inverse cumulative distribution of scores for each
aspect for the data set Rollernet.
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Fig. 16: Inverse cumulative distributions of the number of
links, nodes and duration in (a) and density in (b) for the
candidates captured by our method on the Rollernet data set.
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B Baboon data set
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Fig. 17: Number of active links (left axis) and average num-
ber of active links per node (right axis) as a function of time
on the Baboon data set.
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Fig. 18: Inverse cumulative distributions of the number of
links, nodes and duration (a) and density (b) for the candi-
dates found by the Louvain method on the Baboon data set.
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Fig. 19: Inverse cumulative distribution of the number of
groups captured per node for the Baboon data set.
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(b) Duration: pδ
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(c) Node set:pnode
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(d) Correlation between start time
and duration aspects.

Fig. 20: Inverse cumulative distribution of scores for each
aspect for the data set baboon.
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Fig. 21: Inverse cumulative distributions of the number of
links, nodes and duration in (a) and density in (b) for the
candidates captured by our method on the Baboon data set.
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C Reality mining data set
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Fig. 22: Number of active links (left axis) and average num-
ber of active links per node (right axis) as a function of time
on the Reality Mining data set.
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Fig. 23: Inverse cumulative distributions of the number of
links, nodes and duration (a) and density (b) for the candi-
dates found by the Louvain method on the Reality Mining
data set.
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Fig. 24: Inverse cumulative distribution of the number of
groups captured per node for the Reality Mining data set.
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(b) Duration: pδ
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(c) Node set:pnode
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(d) Correlation between start time
and duration aspects.

Fig. 25: Inverse cumulative distribution of scores for each
aspect for the data set Reality Mining.
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Fig. 26: Inverse cumulative distributions of the number of
links, nodes and duration in (a) and density in (b) for the
candidates captured by our method on the Reality Mining
data set.


