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Abstract
Traditional protein annotation methods describe known domains with probabilistic models

representing consensus among homologous domain sequences. However, when relevant

signals become too weak to be identified by a global consensus, attempts for annotation fail.

Here we address the fundamental question of domain identification for highly divergent pro-

teins. By using high performance computing, we demonstrate that the limits of state-of-the-art

annotation methods can be bypassed. We design a new strategy based on the observation

that many structural and functional protein constraints are not globally conserved through all

species but might be locally conserved in separate clades. We propose a novel exploitation

of the large amount of data available: 1. for each known protein domain, several probabilistic

clade-centered models are constructed from a large and differentiated panel of homologous

sequences, 2. a decision-making protocol combines outcomes obtained frommultiple mod-

els, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The

method is evaluated for domain and architecture prediction over several datasets and statisti-

cal testing hypotheses. Its performance is compared against HMMScan and HHblits, two

widely used search methods based on sequence-profile and profile-profile comparison. Due

to their closeness to actual protein sequences, clade-centered models are shown to bemore

specific and functionally predictive than the broadly used consensus models. Based on them,

we improved annotation of Plasmodium falciparum protein sequences on a scale not previ-

ously possible. We successfully predict at least one domain for 72% of P. falciparum proteins

against 63% achieved previously, corresponding to 30% of improvement over the total num-

ber of Pfam domain predictions on the whole genome. The method is applicable to any

genome and opens new avenues to tackle evolutionary questions such as the reconstruction

of ancient domain duplications, the reconstruction of the history of protein architectures, and

the estimation of protein domain age. Website and software: http://www.lcqb.upmc.fr/CLADE.
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Author Summary

Current sequence databases contain hundreds of billions of nucleotides coding for genes
and a classification of these sequences is a primary problem in genomics. A reasonable
way to organize these sequences is through their predicted domains, but the identification
of domains in very divergent sequences, spanning the entire phylogenetic tree of species, is
a difficult problem. By generating multiple probabilistic models for a domain, describing
the spread of evolutionary patterns in different phylogenetic clades, we can effectively
explore domains that are likely to be coded in gene sequences. Through a machine learn-
ing approach and optimization techniques, coding for expected evolutionary constraints,
we filter the many possibilities of domain identification found for a gene and propose the
most likely domain architecture associated to it. The application of this novel approach to
the full genome of Plasmodium falciparum, to a dataset of sequences from three SCOP
datasets highlights the interest of exploring multiple pathways of domain evolution in the
aim of extracting biological information from genomic sequences. Our new computational
approach was developed with the hope of providing a novel tier of accurate and precise
tools that complement existing tools such as HMMer, HHblits and PSI-BLAST, by explor-
ing in a novel way the large amount of sequence data available. The existence of powerful
databases for sequences, domains and architectures help make this hope a reality.

Introduction
The evolutionary history of eukaryotic proteins involves rapid sequence divergence, addition
and deletion of protein domains, fusion and fission of genes. This implies that protein reper-
toires of distantly related species differ greatly (new architectures, that is combinations of
domains, are many), while domain repertoires do not (new domains are few) [1]. To account
for the great diversity of domain contexts in eukaryotes, an effort was made to categorize cod-
ing regions into protein domains and domain families. An important contribution issued by
this effort is the Pfam database [2], a large collection of protein families, each represented by
multiple sequence alignments (MSAs) and hidden Markov models (HMMs). Pfam also pro-
vides protein domain architectures and higher-level groupings of related domains (clans). It
highlighted that different architectures give rise to the diversity of proteins found in nature,
and that identifying domains of a protein can provide insights into its function. Hence, the
complexity of protein annotation can be simplified by focusing on domains, even though the
problem of unraveling domain organization (domain architecture) still remains.

Proteins sharing more than 30% of sequence identity have a high probability also to share
the same fold [3, 4]. Thus, since fold and function of a protein have generally an intimate rela-
tionship [5], strong sequence similarity is exploited by conventional alignment methods to
reconstruct families of functionally related proteins and to accomplish genome annotations.
Unfortunately, the complete sequencing of several organisms differing in physiology, habitat
and genetics, as Plasmodium falciparum, brought to light the weakness of homology-based
approaches to annotation [6–8]. This limitation is challenged even more by the large prokary-
otic and eukaryotic metagenomic samples generated today.

Radically new homology-based annotation approaches combine information from physico-
chemical properties of sequences and conserved amino acid positions in MSAs, together with
sophisticated inference methods to extract a general profile (typically a profile HMM, in short
pHMMs [9, 10]) of a protein domain family and use it as a signature for homology detection
[8, 11–17]. This profile represents a consensus of signals characterizing a given domain in a
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multitude of different species. We shall speak of sequence consensus model, in short SCM. Con-
versely, other approaches [18–20] associate to each protein domain family several different
profiles, built from a sample of diversified homologous sequences. The resulting set of profiles,
for all protein domain families, is approximately six or seven times larger than the number of
domain families, depending on the method. For instance, SUPERFAMILY [18] constructs 15
438 models for 1 962 SCOP superfamilies [21], and Gene3D [20, 22] constructs 16 933 models
for 2 738 domain families. Such sets of domain families are rather small compared to the num-
ber of distinct Pfam domains (14 831 for Pfam version 27) and one would like to generate and
handle multiple models representing all Pfam domains. The co-occurrence of domains within
a protein was also shown to be very powerful to accurately identify domains in divergent pro-
tein sequences [23] and especially for the P. falciparum genome [24–27]. Nevertheless, the 37%
of P. falciparum proteins still completely lack domain annotation and one of the main reasons
is that relevant signals in sequences might become too weak to be identified by consensus if
sequence divergence is too important or if the pool of sequences is biased (too small or overrep-
resented by certain clades). Another reason is that proteins without predicted domains might
belong to novel families completely missing in Pfam and other databases.

Based on the observation that structural and functional constraints might not be globally
conserved through all species, we propose a novel pipeline, called CLADE (CLoser sequences
for Annotations Directed by Evolution), that identifies domains in proteins by using all known
Pfam domains and the large quantity of available genomic data spanning through a large panel
of species. The idea is to “decompose” the signal of consensus shared by homologous
sequences, collected at the scale of the entire phylogenetic tree, into several consensus signals
coming from homologous sequences collected at the scale of species within clades (we shall
speak of clade-centered models, in short CCM), and possibly of species that are phylogenetically
distant from the genome considered. To do this, we construct several profiles for each Pfam
domain, starting from a large and differentiated panel of homologous sequences in a protein
domain family, and we use CCMs and SCMs to search for homologous sequences in the
genome to annotate. The outcomes of these models are processed and transformed into fea-
tures used to train a meta-classifier, that is a Support Vector Machine (SVM) [28], that assigns
a confidence score to each domain prediction. Based on this score (defined later) and on other
properties, such as domain co-occurrence, CLADE finds the most probable architecture for
each protein sequence by using DAMA [27], a tool that finds best domain architectures based
on multi-objective optimization criteria.

By using high performance computing (HPC), CLADE demonstrates that the limits in
annotation reached by current methods can be bypassed. In fact, HPC makes it possible to con-
struct and explore a large number of profiles (a few millions) and to search, within them, for
the appropriate evolutionary patterns that match the protein sequences to annotate. The idea
to explore a large space of profiles and to combine the information coming from them for the
prediction of domains within proteins has never been developed before and turned out to be a
winning strategy that opens up new hopes and directions for the development of accurate
annotation systems. In CLADE, each domain is represented by about three hundred and fifty
profiles, a number that is hundreds times larger than what has been previously proposed [18–
20]. In total, about 2.5 million profiles are used to annotate a genome. The information issued
by these models is merged and CLADE finds agreement among models, takes into consider-
ation their phylogenetic origin, and combines potential annotations in an accurate reconstruc-
tion of domain architectures. Both the profile-based search and the analysis of the resulting
annotations require HCP. By using grid computing, we could annotate proteins lying in the
twilight zone [29] of the P. falciparum genome, remarkably rich in A and T, and advance on
the fundamental question of how to identify domains for proteins that are highly diverged. The
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P. falciparum protein annotation represents a very difficult case study. More than 44% of open
reading frames in this genome remains without any putative annotation [30–32] in PlasmoDB
v11.1 that reports 2 464 proteins with unknown or hypothetical function over 5 542 genes. Our
methodology shows a striking improvement over current annotation approaches. No specific
property of the P. falciparum genome, besides its localization within the Alveolata clade, is
used and the method can be applied to any other genome.

We show that because of their closeness to actual protein sequences, CCMs are more spe-
cific and more functionally predictive than the broader Pfam family models, based on consen-
sus. The accurate domain annotation reached with CCMs has important implications also for
protein evolution studies. In fact, we show that CCMs provide novel information that can be
exploited to explore the landscape of protein domain evolution. We shall argue that CCMs can
help to trace ancient domain duplications, to reconstruct the history of protein architectures,
and to better estimate protein domain age.

Results
Our main claim is that protein domains are subject to heterogeneous evolutionary signals, pos-
sibly due to multiple evolutionary pressures of structural and functional origins. To demon-
strate that this observation greatly helps to improve annotation, we first present how CLADE
exploits the large quantity of available genomic information to provide protein sequence anno-
tation. Then, we validate CLADE approach on several datasets of sequences by demonstrating
that “multi-source” domain modeling is more appropriate than “mono-source” domain
modeling for capturing remote homology. We compare CLADE to widely used domain predic-
tion tools based on the mono-source approach. Finally, we report the improved annotation
realized by CLADE of all P. falciparum proteins, known to be difficult to annotate.

The CLADE approach
To predict domains in protein sequences, CLADE pipeline is organized in three main steps
(Fig 1). The input is a set of protein sequences coming from the same genome or from different
ones. In the latter case, each sequence is accompanied by its NCBI taxon code.

CLADE’s first step: Construction of protein profiles to identify potential domains. In
this step, CLADE uses information coming from the Pfam v27 database (Pfam27) and con-
structs probabilistic models by automatically sampling reference sequences through a large
panel of species representing the whole tree of eukaryotic, archaeal, bacterial, viral worlds, and
from metagenomes. If a user wants to use a preferred set of species, CLADE accepts the speci-
fied set, representing phylogenetic variability in the tree of life, as optional input.

For each Pfam domain, CLADE identifies a set of homologous sequences within those in
the Pfam27 FULL set based on their taxonomic origin. It selects species that are uniformly
spread either in the phylogenetic tree of life or within the specific set of species specified by the
user (see S1 Table for the set of NCBI clades considered). The selection guarantees that species
belong to different phylogenetic clades and that the phylogenetic tree is well represented (see
section “Clade-centered models” in Methods and S1 Fig). From each identified sequence,
CLADE constructs a probabilistic profile (Fig 1, top left): it constructed 2 404 066 profiles
based on the species distribution reported in Fig 2. For this, two computational approaches
that underlie different evolutionary assumptions have been used. The first captures the consen-
sus of homologous sequences. The idea behind this model is that homologous proteins should
share common physico-chemical and structural features that could be described by a sequence
profile based on the entire set of homologs [9]. For this reason, we call this model sequence con-
sensus model (SCM). 14 831 SCMs (one for each Pfam domain) were directly downloaded
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from Pfam27. These SCMs are profile Hidden Markov Models and they have been constructed
from the Pfam27 SEED set associated to the domain, representative of a large span of species.
These models are exploited by other annotation systems, such as HMMScan [2, 33]. The sec-
ond computational approach is based on a new class of models, called clade-centered models
(CCMs), and generated 2 389 235 CCMs. This was done by taking a few hundred homologous
sequences for each Pfam domain as reference sequences, and by constructing a few hundred
profiles for each domain. These models span regions of protein sequence space that are not
well represented in the SEED sequences from which the original Pfam SCM is constructed.
CCMs might highlight motifs, structural characteristics or physico-chemical properties that
are shared by a specific reference sequence and by a pool of sequences that are similar to it.
Hence, if the original set of reference sequences for a domain is made of divergent homologs,
CCMs are expected to describe properties that could be missed by the SCM representing global

Fig 1. Schema representing the three main steps of CLADEmethod. The 1st step (top) concerns the construction of
domain profiles from the Pfam database. A specific set of species can be furnished to CLADE (optional) to guide the
selection of homologous sequences (and species) for the construction of clade-centered models (CCM), otherwise set to be
a random selection. The output is a library of probabilistic models: for each Pfam domain, it contains a SCM, provided by
Pfam, and a large number of CCMs, associated to the FULL set of Pfam sequences for the domain. All probabilistic models
are used to identify potential domains occurring in query sequences. The schema illustrates the model construction for
domain D1; it is applied to all Pfam domains. The 2nd step (middle) matches all models generated in step 1 against query
sequences belonging to a given genome or to a set of sequences given as input, and identifies a set of potential domains
occurring in the sequences. Then, it filters potential domains by using support vector machines. For each domain, it
constructs a SVM that combines multiple features extracted from the SCM and CCMmodels associated to the domain. The
schema illustrates domain identification for a given query sequence; it is applied to all input sequences. The 3rd step
(bottom) takes the position of potential domains in a query sequence (from step 2) and runs DAMA, a tool designed to
predict domain architectures from known ones.

doi:10.1371/journal.pcbi.1005038.g001
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Fig 2. Distribution of species used for the generation of CCMs of Pfam27 domains. A. Distribution of
species illustrating the spread of the organisms chosen to construct models in CLADE. Species are
organized in Bacteria, Archaea, Viruses, several eukaryotic clades and environmental sequences
(“Metagenomes”). For each species, at least one domain sequence has been used to construct some CCMs.
“Metagenomes” are bacterial and eukaryotic sequences. B. Zoom over eukaryotic clades and environmental

Domain Annotation by Multiple Profiles and Co-occurrence

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005038 July 29, 2016 6 / 39



consensus. The idea behind the use of CCMs is that protein evolution pathways are bound to
be few due to the numerous structural and functional constraints that a protein undergoes.
This means that the evolutionary constraints that drive a protein evolution in a specific species
and the corresponding (conserved, structural, physico-chemical) signals identifiable in a
sequence, might be more easily detectable by looking closely at the evolutionary solutions
found by some other species. We hypothesize that some species share their evolutionary solu-
tions with the species to annotate, even if they are phylogenetically distant from it. The con-
struction of CCMs constitutes a basic difference between CLADE approach and existing
methods: CLADE uses SCMs like other methods and goes beyond them by exploiting extra
information present in our databases. Namely, it constructs CCMs describing the multiple,
possibly divergent, evolutionary solutions that are present in nature and uses CCMs to
annotate.

CLADE’s second step: Multiple criteria support predictions. CLADE exploits all models
produced in its first step to predict domains in the set of protein sequences to be annotated
(Fig 1, middle; see section “Combining Model Predictions” in Methods and S2 Fig). It uses
PSI-BLAST and HMMer (and their respective models) to screen each query sequence and
identify potential domains. CLADE uses a combination of criteria, ultimately converted into a
score provided by a Support Vector Machine (SVM), to specifically deal with false positives
and eliminate them. This issue is fundamental in domain prediction. The SVM discriminates
potential domains by evaluating which prediction is more probable among those displaying: a
small E-value, a sufficiently long domain hit, the phylogenetic proximity between the taxon of
the sequence to be annotated and the reference species generating the CCMs leading to annota-
tion, and a large agreement among models leading to the prediction. Scores issued by the SVM
filter boost weak domain predictions that positively satisfy several of the conditions, and penal-
ise high confidence domains when the combination of conditions do not support the predic-
tion. This step of merging together the results produced by different profiles for the same
protein sequence, distinguishes CLADE from other multiple-profile-based approaches [18–20]
(see section “Analysis of a benchmark dataset from SCOP” in Results for a comparison to the
strategy previously developed by SUPERFAMILY).

CLADE’s third step: Protein architectures filter predictions. Domain co-occurrence is
expected to enhance the level of confidence in a prediction [34, 35]. This is because: 1. the
majority of proteins are multi-domain, and 2. we observe fewer domain combinations than sta-
tistically expected [34, 36, 37]. Intuitively, co-occurrence suggests functional cooperation, that
is, two or more domains can interact to determine the protein function [38–40]. Once domains
are selected, CLADE calls DAMA, a tool that considers domain co-occurrence and domain
overlapping, and that combines several domains into most probable architectures (Fig 1,
bottom).

Multi-source versus mono-source approach to annotation
To demonstrate that “multi-source” domain modeling is more appropriate than “mono-
source” domain modeling for capturing remote homology, we consider several datasets: 1.
three datasets of single-domain sequences constructed from the SCOP database [21] as gold
standard, 2. four datasets of randomly generated single-domain sequences satisfying different
statistical hypotheses, 3. two datasets of randomly generated multi-domain sequences

sequences appearing in A. Eukaryotic sequences are divided in 17 clades. The most represented clades are
Metazoa, Fungi, Viridiplantae, Alveolata, Stramenopiles, Amoebozoa and Euglenozoa. All other clades are
zoomed inC.

doi:10.1371/journal.pcbi.1005038.g002
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satisfying different statistical hypotheses. We evaluate the improvement in using an annotation
that exploits multi-source domain modeling by comparing the performance of CLADE, that
favors the multi-source strategy, to the performance of HMMScan and HHblits, that favor the
mono-source one. We recall that HMMScan and HHblits are widely used search methods
based on sequence-profile and profile-profile comparison, respectively. We estimate the false
discovery rate (FDR) for the three methods. Also, with the SCOP datasets, we show that agree-
ment among models is an important feature present in CLADE, and missing in existing multi-
source domain approaches, like SUPERFAMILY. Note that CLADE skips its third step
(DAMA) on datasets 1 and 2 because they comprise single-domain sequences.

Analysis of a benchmark dataset from SCOP. We considered three datasets of sequences
coming from the database SCOP: ASTRAL95, ASTRAL30 and ASTRAL10. They are con-
structed from domain families sharing the same structure and they contain sequences with at
most 95%, 30%, 10% of sequence identity (see section “Databases” in Methods). On these refer-
ence datasets, we tested mono-source and multi-source annotation strategies with HMMScan
and HHblits supporting the mono-source strategy, and with CLADE, CLADEBEv, CLA-
DE_HHblits and CLADEBEvHHblits supporting the multi-source strategy. CLADE_HHblits
and CLADEBEvHHblits use the CLADE approach, but replace PSI-BLAST models and
sequence-profile search with HHblits models and profile-profile search. They allow us to verify
whether a profile-profile approach combined with multiple models improves CLADE perfor-
mance. The test considers, one at the time, ASTRAL domain families and uses a leave-one-out
cross validation strategy to verify how many times models constructed on all-but-one
sequences help to correctly annotate left out sequences. For all tools, results are reported in
Table 1; it is important to stress that the test is very stringent because it is realized at the SCOP
family level. (For the details on the implementation of the test, see section “Experiment on
SCOP datasets” in Methods.)

CLADE multi-source strategy clearly outperforms the mono-source strategy as illustrated
by HMMScan and HHblits results. Note that HHblits badly handles false positives compared
to HMMScan that uses a special filter for this (see section “Tools run for comparison” in Meth-
ods) and this appears clearly in the performance reported in Table 1. On the other hand, CLA-
DE_HHblits records a clear improvement over CLADE reaching a nearly optimal
performance. This highlights that the multi-source strategy successfully complements the
power of HHblits. It should be noticed though, that the profile-profile search becomes
extremely costly in time when expanded to a scale of hundred thousands models and thou-
sands (or even millions, for metagenomics) of sequences to be annotated. The conversion of
each query sequence into a profile, before performing profile-profile comparison, and the iden-
tification of domain specific cut-offs for all domains are highly time consuming and an
approach based on a sequence-profile comparison remains more computationally reasonable.

This test allows us also to compare CLADE with SUPERFAMILY [18], a probabilistic pro-
files library representing all structural domains present in the SCOP database [41]. Note that
CLADE has been constructed in the same spirit as SUPERFAMILY: both systems generate
multiple models for a given domain, but they select among the predictions of these models
with a different computational approach. SUPERFAMILY selects domains by looking at their
best E-value, while CLADE exploits best E-values and also agreement among different models
(second step) and domain co-existence (third step). Note that CLADEBEv selects among differ-
ent predictions of the models by using best E-values, as SUPERFAMILY does, and that domain
co-existence is not tested by CLADEBEv on the SCOP sequences, since the testing datasets con-
tain just one domain. While CLADE and CLADEBEv behave the same on ASTRAL95 (F-mea-
sure = PPV = Sen = 1, PPV = 1 for both), on more distant sequences, their performance
diverges. On ASTRAL10, we observe an increasing difference for CLADE and CLADEBEv in
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Table 1. Performance of CLADE, CLADEBEv, HMMScan and HHblits on a SCOP dataset of sequences.

ASTRAL10 Mono-source Multi-source

HMMScan CLADE CLADEBEv

TP 24 217 165

FP 10 89 141

FN 272 0 0

F-measure 0.15 0.83 0.70

PPV 0.71 0.71 0.54

Sen 0.08 1 1

HHblits CLADE_HHblits CLADEBEvHHblits

TP 29 300 289

FP 144 5 16

FN 133 1 1

F-measure 0.17 0.99 0.97

PPV 0.17 0.98 0.95

Sen 0.18 1 1

ASTRAL30 Mono-source Multi-source

HMMScan CLADE CLADEBEv

TP 430 994 741

FP 127 229 471

FN 694 28 39

F-measure 0.51 0.89 0.74

PPV 0.77 0.81 0.61

Sen 0.38 0.97 0.95

HHblits CLADE_HHblits CLADEBEvHHblits

TP 476 1241 1150

FP 502 7 97

FN 318 3 4

F-measure 0.54 1 0.96

PPV 0.49 0.99 0.92

Sen 0.6 1 1

ASTRAL95 Mono-source Multi-source

HMMScan CLADE CLADEBEv

TP 7000 8512 7772

FP 710 117 857

FN 923 4 4

F-measure 0.9 0.99 0.95

PPV 0.91 0.99 0.90

Sen 0.88 1 1

HHblits CLADE_HHblits CLADEBEvHHblits

TP 3934 8537 7947

FP 1679 96 686

FN 3020 0 0

F-measure 0.63 0.99 0.96

PPV 0.7 0.99 0.92

Sen 0.57 1 1

SCOP datasets ASTRAL95, ASTRAL30, ASTRAL10 contain sequences with at most 95%, 30%, 10% of

sequence identity.

doi:10.1371/journal.pcbi.1005038.t001
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F-measure (0.83 and 0.7, respectively) and in PPV (0.71 and 0.54, respectively) at Sen = 1
(Table 1). This shows that, by combining results obtained by different models through SVMs,
CLADE can highly improve its performance on domain detection.

To conclude, this analysis highlights that criteria other than sequence similarity play a key
role in an accurate identification of protein domains. The criteria describing agreement among
models and domain co-existence do not simply allow for new predictions but they provide
detailed scores justifying the confidence in a prediction. They can be fruitfully used by the biol-
ogist to annotate sequences.

Analysis of datasets of randomly generated sequences. We performed several statistical
tests to show that CLADE predicted domains are likely true positives. For this, we estimated
False Discovery Rate (FDR) expressing how many times a tool, namely CLADE, HMMScan
and HHblits, recognizes a known domain in a reshuffled sequence. We considered the problem
of annotating sequences containing a single domain. We used four different random genera-
tions of amino-acids sequences and constructed two H0 and two H1 hypotheses. Based on the
sets of sequences generated by these statistical hypotheses, we evaluated CLADE, HMMScan
and HHblits. The evaluation of HHblits is included whenever the multi-source strategy is
directly compared with the mono-source strategy.

As a first H0 hypothesis, we considered the set of 14 831 Pfam27 domain families, extracted
a reference sequence from the Pfam27 SEED set of each domain family and generated, for each
reference sequence, a random sequence by reshuffling the amino-acids (that is 1-mers) in the
original one. The resulting sequence has the same length as the original one and the same
amino-acids content. These random sequences were then annotated with CLADE and
HMMScan and the FDR was computed for both tools. A second H0 hypothesis test was real-
ized by considering a set of sequences representing each Pfam domain as above, and by reshuf-
fling quadruplets of consecutive amino-acids, that is 4-mers. Again, the random sequences
were annotated by CLADE and HMMScan, and the associated FDR was computed.

This test allows us to estimate how selective CLADE features are compared to the accep-
tance thresholds proposed by HMMScan in the identification of domains within sequences
expected to contain a single domain, i.e. where co-occurrence cannot be exploited. Since
CLADE uses several layers for filtering out domain predictions, its strategy is to accept more
domains at the beginning and filter them based on criteria that are not used by HMMScan. But
how much more does CLADE accept? The FDR computed for the two H0 hypotheses describes
how permissive CLADE is at the beginning of the process, before applying DAMA, compared
to HMMScan.

The two experiments were run 20 times each and 296 620 (14 831 × 20) random sequences
were produced for each experiment. For each random sequence, we checked whether CLADE
and HMMScan would predict a domain, and if so, whether the predicted domain was the
domain originating the sequence or a different (new) one. For 1-mers, CLADE obtained a FDR
of 6.98e-03 and HMMScan of 2e-04 on new domain predictions. For 4-mers, CLADE obtained
a FDR of 7.6e-03 and HMMScan of 2e-04. See also S2 Table.

To show that “multi-source” domain modeling is more appropriate than “mono-source”
domain modeling for capturing remote homology, we constructed two H1 hypotheses, one
closer to the mono-source view, shared by the different approaches found in the literature and
based on consensus sequences, and a second one closer to the multi-source view, supported by
CLADE.

The first H1 hypothesis that we explored promotes the mono-source view and it is expected
to be favorably biased towards HMMScan predictions. We considered the set of 14 831 Pfam27

domain families and their associated SCMs, provided by Pfam27. Then, we generated 14 831
random sequences, each of them associated to a different probabilistic model, with HMMemit
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[33] (default parameters), a tool that generates artificial sequences from a probabilistic model.
The generated sequences are consistent with a sequence family consensus and they are useful
to test domain annotation. Next, we run HMMScan and CLADE for annotating domains in
these sequences. HHblits is run by constructing profiles for each query sequence with
hhblits over HHdb, the HHblits database, and by using HHsearch for a profile-profile com-
parison. Since the sequences come from specific domain families, we checked whether CLADE,
HMMScan and HHblits could predict the right domain family for each sequence. This experi-
ment was repeated 20 times and we evaluated sensitivity, PPV and F-score on the 296 620 gen-
erated sequences, or their associated profile. The plots describing CLADE, HMMScan and
HHblits sensitivity at different PPV values, and the number of domains predicted by the three
tools at different F-scores, are illustrated in Fig 3A (top and bottom). We note that for all tools,
at different sensitivity values, PPV is at least 0.98. For F-scores smaller than 0.8, the number of
predicted domains corresponds essentially to all domains in the set; for high F-scores, that is if
both the sensitivity and the PPV are large, then the number of predicted domains remains high

Fig 3. Mono-source versusmulti-source hypothesis tested on randomly generated sequences. Comparison
between CLADE, HMMScan and HHblits performance on the two H1 hypotheses. A. The mono-source hypothesis,
constructed in favor of HMMScan predictions, is evaluated with a precision-recall plot (top; Sensitivity versus PPV)
and by counting how many domains are discovered by the tools at a given F-score (bottom). CLADE curves are
constructed by considering all domains (green) or all domains sharing the same Pfam clans (pink). The same for
HMMScan (red for all domains and blue for clans) and for HHblits (orange for all domains and grey for clans) curves.
B. The multi-source hypothesis, constructed in favor of CLADE predictions, is evaluated by two plots, described as
inA.

doi:10.1371/journal.pcbi.1005038.g003
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(about a half of all domains) for all tools. Three more curves are added to the plots: by consid-
ering Pfam27 clans, that is related Pfam entries that are grouped together, we observe that
CLADE, HMMScan and HHblits perform comparably well and that CLADE and HHblits
profit of the notion of a clan better than HMMScan. The curves plotting PPV versus sensitivity
almost coincide for the three tools and they are very close when the number of domains versus
F-scores are considered. This means that, when clans are not considered, CLADE predicts
domains that are nevertheless very close to the original one. The performance for all systems is
very good, and the plots clearly point out that all tools can easily detect domains in generated
sequences when the sequence generator injects sufficiently precise information about the
domain, consistently with the sequence family consensus. (Compare to the experiments based
on the H0 hypotheses.) The slight advantage recorded for HMMScan is expected, since, as
argued above, this H1 hypothesis is in favor of HMMScan relying on the mono-source view.

The second H1 hypothesis that we explored promotes the multi-source view and it is
expected to be favorably biased towards CLADE predictions. For this, we considered the set of
P. falciparum sequences where CLADE predicted some domain while HMMScan predicted
none, and, out of it, we extracted the full set of domain sequences occurring in these P. falcipa-
rum sequences. Note that a P. falciparum sequence might contain several predicted domains,
and that each of these domain sequences have been considered. We obtained a total of 571
domain sequences. For each P. falciparum domain sequence, we looked into the CCMs that
CLADE used for predicting it and selected at most four CCMs showing an E-value< 1e-30, if
any. Given a CCM, we considered the sequence originally used to construct it and produced a
pHMMwith jackHMMer [33]. This means that we have at most 4 CCMs models associated to
each one of the 571 domain sequences. For each sequence, we picked one of their associated
CCMs with a uniform probability and generated a sequence from it with HMMemit. The gen-
eration of sequences was performed 20 times. For each resulting sequence, we constructed a
profile to evaluate HHblits. We annotated these 11 420 generated sequences or profiles with
CLADE, HMMScan and HHblits, and evaluated the three tools with sensibility, PPV and F-
score as before.

In the two plots of Fig 3B (top and bottom), we observe that CLADE performs better than
HMMScan and HHblits. This remains true when a more permissive evaluation is realized at
the clan level rather than the usual family level. For all methods, the clan evaluation shows that
many false predictions are domains that belong to the same clan of the true domain. We also
observe that HHblits outperformed HMMScan, the use of profile-profile searching being more
efficient [17, 42]. This highlights the interest of using multiple models in domain identification.
Nevertheless, we observe that HMMScan performance is very good, considering that it did not
find the domain on the original P. falciparum sequence. In this respect, it should be noticed
that:

1. here the task is somewhat easier, since HMMScan is asked to annotate a domain sequence
and not a larger P. falciparum sequence where the position of the domain has to be
identified.

2. we constructed CCMs starting from specific sequences from which CLADE annotated the
corresponding P. falciparum domain. They are possibly heterogeneous and they are sup-
posed to guide HMMScan domain recognition, since we know from CLADE analysis that
their reference sequence can help annotation. Yet, the lower HMMScan performance dem-
onstrates that the combination of several CCMs (multiple-source modeling) is important
for annotation. HMMScan does not use the idea of agreement between heterogeneous mod-
els while CLADE does.
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In conclusion, CLADE, HMMScan and HHblits predict more easily domains in the first H1
dataset than in the second one (see plots on the bottom of Fig 3A and 3B, where the y-axes
have not the same scale). By comparing the plots on the top of Fig 3A and 3B, we note that
CLADE performs similarly to HMMScan and HHblits on the first dataset, while on the second
one, constructed from a list of hard examples of remote homology, the difference among the
three systems is much more important. The heterogeneity of the domain models appears cru-
cial for obtaining an improved performance (considering clans or not) and a successful remote
homology detection. Clearly, HHblits profile-profile comparison improves the mono-source
strategy performance of HMMScan, but it remains poor when compared to CLADE multi-
source strategy.

CLADE FDR computed on multi-domain sequences. We estimated CLADE FDR on the
prediction of multi-domain proteins. To do so, we consider a FDR strategy that is based on the
first H0 hypothesis introduced above, generating random sequences that preserve the same
amino-acids composition of the original sequences. Here, we generated random sequences
starting from the 5 542 P. falciparum sequences. For each of these sequences, we concatenated
the real sequence to its random reshuffling (Fig 4A). Then, to annotate the domains and evalu-
ate the performance of the systems with an estimation of their FDR, we run CLADE and
HMMScan on this dataset of sequences and HHblits on the associated profiles. Several

Fig 4. CLADE predicts more domains over a range of FDRs. A. Illustration of the FDR estimation procedure. For each original protein sequence, we
make predictions on it and on twenty shuffled sequences concatenated to the original sequence, to allow “real” domains (Y, S) to boost false predictions on
the shuffled sequence (domains V, Z, X) when using domain co-occurrence. The estimated FDR is the ratio of false predictions per protein to the total
number of predictions per protein. Notice that domain co-occurrence might imply the original protein sequence to be re-annotated (see domain V in the
bottom sequence of the drawing). B. Illustration of the four types of annotation that can be induced by the concatenation with a shuffled sequence discussed
in the text.C. The y-axis is the number of predicted domains per protein (“signal”), while the x-axis is the FDR (“noise”), so better performing methods have
higher curves (more signal for a given noise threshold). CLADE (red) outperforms HMMScan (black), HHblits (green) and DAMA (pink) on the two datasets,
1-mer (top) and 4-mer (bottom), obtained by randomly reshuffling P. falciparum sequences (see text). CLADE has been tested under several restrictions
and the resulting FDR curves have been added to the plot: CLADEALV (grey), CLADEBEv (blue) and CLADEBEv-no-cut-off (orange). The inset plot zooms the
curves on small FDR values (< 0.001).

doi:10.1371/journal.pcbi.1005038.g004
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situations may arise, as illustrated in Fig 4B: 1. the original sequence is annotated as before, and
no annotation is found in the reshuffled one; 2. the reshuffled sequence as well as the original
sequence are both annotated with the original domain annotation; 3. the original domain
annotation is found in the original sequence and a different annotation is found in the reshuf-
fled one; 4. both subsequences are newly annotated. With respect to these four scenarios, we
counted as false positives all outcomes of kind 2, 3 and 4. That is, we just check whether the
random sequence can be annotated at all.

We repeated the construction 20 times and considered as FDR, the average FDR of the 20
experiments. We also checked the second H0 hypothesis introduced above, based on the
reshuffling of 4-mers, following the same procedure as for 1-mers. The idea behind this model
is that 4-mers within a protein sequence might be more likely to occur than others, since pro-
tein sequences might contain repetitive patterns.

A comparison among the tools is reported in Fig 4C (top) (see section “FDR curves” in
Methods and S3 Fig), where CLADE is shown to predict a much higher number of domains than
HMMScan and HHblits for any fixed noise threshold (that is, the same FDR) for both the 1-mer
and the 4-mer reshuffling. HMMScan and CLADE predict a comparable small number of
domains in the reshuffled parts, while CLADE predicts more domains than HMMScan on the
real parts. In contrast, HHblits performance is highly influenced by two main factors. First, the
construction of a profile for the shuffled part of the query sequence introduces extra noise in the
evaluation of HHblits, contrary to HMMScan and CLADE that directly work on sequences. This
factor seems to particularly affect HHblits in 4-mers, sequences that are harder to analyze than
1-mers. Second, the lack of domain specific cut-off acceptance for HHblits, contrary to
HMMScan and CLADE that filter out a large number of false positives due to suitable domain
specific cut-offs. Note that such cut-offs are crucial for CLADE. In fact, when we test CLADEBEv-
no-cut-off, that is the version of CLADE that does not include the SVM filter, that does not use
domain specific cut-offs and that considers a score system based on best E-values only, the behav-
ior of the system is essentially identical to the one of HHblits on 1-mer as illustrated in Fig 4.
Compare it with the curve associated to CLADEBEv also. (See curves on the 4-mer plot as well.)

In conclusion, we started from random sequences, relatively far from real protein sequences,
and showed that CLADE has a significantly different behavior from HMMScan and HHblits
on these datasets. Notice that the two H0 hypotheses would ask for the three tools to minimize
the number of predictions in random sequences. Even if HMMScan and CLADE detect some
domain, their performances remain very good as shown by the plots. HHblits’ lack of filtering
for false positives explains its poorer performance. It is interesting to notice that DAMA [27],
the tool used in CLADE 3rd step for reconstructing the best architecture from domain hits,
performs better than HMMScan based on E-value, when it is evaluated on hits obtained with
SCMs, as reported in Fig 4C. The CLADE curve evaluates how much the usage of CCMs
improves annotation compared to the usage of SCMs only. Note that DAMA is today the state-
of-the-art method compared to tools handling domain co-occurrence such as MDA [23],
CODD [24] and dPUC [26]. The curves demonstrate that, by combining DAMA with clade-
centered models, domain annotation highly improves.

Note that Fig 4C reports the behavior of CLADE when the model library is restricted to
CCMs from the Alveolata clade only (CLADEALV). One observes that at the same FDR value,
the number of predictions is much lower for CLADEALV than for CLADE.

Analysis of the dataset of all P. falciparum proteins
Upheld by CLADE performance on the SCOP benchmark datasets and the FDR tests, we
checked whether CLADE could significantly contribute to the identification of domains within
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the full set of P. falciparum proteins. A large number (2464) of P. falciparum proteins has no
identified domain in PlasmoDB and it remains with no domain identification (2068) even after
the analysis of existing in silico predictive methods [2, 24, 26]. We performed a large scale
domain prediction and compared CLADE results against annotations obtained with
HMMScan.

All evaluations reported below were realized with the same CLADE parameters (with an E-
value cut-off at 1e-3 and by adopting a specific SVM probability cut-off for each domain). See
section “CLADE pipeline, parameter settings and tools used in CLADE” in Methods.

Domain annotation of all P. falciparum proteins. Over the 5 542 proteins of PlasmoDB,
HMMScan identifies 6 037 domains but leaves 2 068 proteins with no identified putative
domains. CLADE drastically reduced this number to 1 544, providing 25% improvement and a
global annotation of 7 841 domains (at E-values� 1e-3; see Fig 5A and Table 2, top). These
values describe the impact of CLADE on the full set of proteins. CLADE analysis on multi-
domain proteins is even more impressive as reported in Fig 5A, where the importance of
CCMs is highlighted. In many domain predictions, CLADE exploits CCMs in an exclusive
manner: about 87% of CLADE domain predictions obtained with E-value� 1e-60 are contrib-
uted by CCMs, and a total of 5 630 domains are identified by CCMs against 2211 identified by
SCMs at E-value� 1e-3 (Table 2, top). Also, more than a half of the domains predicted by
CLADE are co-occurring domains and this is true for all predictions, independently on the E-
values (Fig 5A). CLADE agrees on 98% of HMMScan predictions. Notice that HMMScan
annotation is based on SCMs, and that if we consider CLADE SCMs predictions only, the
number of CLADE predicted domains is smaller than that of HMMScan (2211 against 6037
domains). This is because CLADE predictions based on SCMs are often also obtained by
CCMs with a better E-value and counted as CCMmodel predictions. The number of domains
identified by SCMs and CCMs at a given threshold, is reported in Table 2 (top).

Two overlapping hits in PlasmoDB and CLADE “agree” if they are associated to the same
clan (possibly, the same domain). Vice versa, two overlapping hits “disagree” if they are associ-
ated to different clans (Fig 6A). We identify as “new”, those domains predicted by CLADE that
do not overlap PlasmoDB hits (Fig 6B) or that disagree with some PlasmoDB annotation (Fig
6A). Also, we say that a CLADE hit is “brand-new” if the domain does not occur in any P. fal-
ciparum protein architecture in PlasmoDB. Based on these notions we observe that among the
2116 new domains identified by CLADE, 916 concern P. falciparum proteins that have never
been predicted before (for an E-value� 1e-3; Table 2) and 1200 are additional domains enrich-
ing already identified protein architectures (Table 2, middle). As expected, no contribution
coming from SCMs seems to help, for both classes of predictions, most of the predictions being
based on CCMs. 971 domains are identified as brand-new. Note that brand-new domains
might enrich already known architectures or might occur in proteins with no annotation in
PlasmoDB. CLADE predicts their co-occurrence with already annotated domains for 603 of
them (Table 2, bottom).

Among the 2116 CLADE new domains (Fig 6A and 6B), there are 824 of them that belong
to proteins with unknown function in PlasmoDB, and among the 1200 domains enriching
known architectures (Fig 6A and 6C), we count 207 such domains (Fig 5B). In general, when
considering predictions for proteins with unknown function in PlasmoDB, the majority of
these predictions are realized without using domain co-occurrence and they greatly depend on
the availability of CCMs (Fig 5B).

An example of P. falciparum protein annotation realized with CLADE is illustrated in Fig 7.
The sequence was annotated by Pfam27 with a few known domains. Besides confirming Pfam27

annotation, CLADE identifies new hits by co-occurrence of similar domains in other species (Fig
7A). The co-existence of Kelch motifs, TIG and filamin domains in a Chlamydomonas reinhardtii
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Fig 5. Domain predictions for P. falciparum proteins. A. Cumulative plot of domain predictions, for all P.
falciparum proteins in PlasmoDB. All domains identified with an E-value� E are counted, where E indexes
the bins. The height of a bin corresponds to the total number of predictions. Predicted domains are classified
in two groups, depending on whether they have been predicted with (white and light grey) or without (dark
grey and black) domain co-occurrence, and two subgroups, depending on whether they have been identified
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through SCMs (white and black; Cooc-SCM and SCM) or by means of CCMs (light and dark grey; Cooc-CCM
andCCM). Note thatCooc� CCM [ CCM equals the set of domains detected by CCMs, and that
Cooc� SCM [ SCM is the set of domains detected by SCMs.B. Cumulative plot of domain predictions for
proteins with “unknown function” in PlasmoDB. Here, we consider that a domain has “unknown function” if it is
annotated in PlasmoDB with one of the following labels: unknown function, product unspecified, hypothetical
protein, pseudogene and conserved P. falciparum protein family. Bins are as inA. C. Distribution of species
generating all CCMs used to annotate the P. falciparum genome. The inset plot is a zoom of the last seven
clades; arrows help to identify names of clades. (Also, see S4 Fig for the distribution of species generating
CCMs used to detect new domains.)

doi:10.1371/journal.pcbi.1005038.g005

Table 2. Analysis of domains identified by CLADE but not by PlasmoDB.

CLADE SCMd CCMe

E-value Coocf Totalg Cooc Total Cooc Total

All domains identified by CLADE

1e-60 843 1698 44 206 799/461 1492/801

1e-30 1858 3392 228 558 1630/1043 2834/1728

1e-15 3050 5329 527 1095 2523/1614 4234/2683

1e-5 4483 7172 1156 1823 3327/2230 5349/3555

1e-3 5167 7841 1544 2211 3623/2475 5630/3801

Domains occurring on proteins predicted for the first timea

1e-60 7 23 0 0 7/4 23/18

1e-30 32 115 0 0 32/24 115/97

1e-15 127 393 2 2 125/110 391/361

1e-5 340 789 32 35 308/262 754/690

1e-3 467 916 57 60 410/346 856/774

Domains enriching known protein architecturesb

1e-60 41 49 0 0 41/37 49/43

1e-30 131 147 1 1 130/114 146/128

1e-15 347 428 2 2 345/294 426/373

1e-5 803 950 114 114 689/510 836/651

1e-3 1052 1200 206 206 846/638 994/780

Brand-new domains in P. falciparum annotationc

1e-60 9 18 0 0 8/8 17/16

1e-30 51 103 1 1 50/44 102/91

1e-15 190 402 1 1 189/169 401/373

1e-5 448 816 40 40 408/353 776/712

1 603 971 79 79 524/458 892/817

For increasing values E, the number of domains is cumulative, all domains identified with an E-value� E are counted.
aNumber of CLADE predictions occurring on proteins with no domain annotation in PlasmoDB.
bNumber of new domains annotated by CLADE that enrich already known protein architectures.
cNumber of new domains annotated by CLADE that occur in no P. falciparum protein, according to PlasmoDB.
dCLADE new predictions obtained with sequence consensus models (SCMs). These domains are not identified by HMMScan with GA cut-off.
ePredictions obtained with clade-centered models (CCMs). Two values n/m are reported, n is the difference between the total number of CLADE predictions

(third column) and the number of those predictions that are based on SCM (fifth column), andm is the number of predictions that are obtained exclusively by

CCMs (within the E-value range).
fNumber of CLADE predictions that are supported by domain co-occurrence.
gTotal number of CLADE predictions including those that are not supported by domain co-occurrence.

doi:10.1371/journal.pcbi.1005038.t002
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architecture and of DUF947 in a Aureococcus anophagefferens architecture with Dynein domain
allowed for a more precise annotation than the one proposed by Pfam27 (Fig 7B).

This example bears witness to the coherence of CLADE predictions. In fact, it highlights
that several domains identified by CLADE annotation based on Pfam24 and missed by Pfam24

annotation are confirmed by Pfam27 annotation. Namely, two of the four Kelch motif occur-
rences (orange domains in Fig 7C) and all three ATPases occurrences (grey domains in Fig 7C)
identified by CLADE24 are confirmed by Pfam27 (olive green domains and violet, grey, dark
violet domains in Fig 7A, respectively). Yet, a number of domains like DHC_N2 (Dynein), TIG
and filamin, highlighted already by CLADE with CCMs generated in Pfam24, are still to be
identified in Pfam27 annotation (Fig 7C). In this respect, notice that the Chlamydomonas rein-
hardtii architecture supported by Pfam27 has been highly enriched compared to the older ver-
sion in Pfam24 (see Fig 7D). This demonstrates that domains co-existence is a very powerful
tool of annotation analysis.

The multi-source strategy enriches CLADE architectures in P. falciparum sequences.
To illustrate the power of the multi-source strategy, we discuss a concrete example of domain
annotation for the two P. falciparum sequences PF3D7_0502000 (PFE0100w) and
PF3D7_1219100 (PFL0930w), where a clathrin domain is found in the two sequences (see pink

Fig 6. Schema of CLADE annotations versus PlasmoDB annotations. A. Examples of new domains in CLADE that
overlap either non annotated regions (blue) or PlasmoDB hits associated to different clans (green and yellow). Red hits
agree because they are associated to the same domain and (dark and light) violet hits agree because their associated
domains are in the same clan.B. Example of a new domain in a sequence that is not annotated in PlasmoDB. C.
Example of an enriched PlasmoDB architecture. It is constituted by CLADE domains that either agree with PlasmoDB
domains (light and dark grey) or are new (blue and orange). Note that CLADE hits agreeing with PlasmoDB annotation
might correspond to different regions in the sequence (see length of CLADE and HMMScan hits in dark and light grey).

doi:10.1371/journal.pcbi.1005038.g006
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Fig 7. CLADE annotation supported by domain co-occurrence. Analysis of P. falciparum protein PF3D7_1122900 (PF11_0240). The protein is 5
251aa long. The list of domains (in various colors and) annotated by various methods is reported on the bottom.A. Comparison of the architectures found by
CLADE27 (that is CLADE based on Pfam27 domains) and Pfam27. Six CLADE27 domains, absent in Pfam27, are highlighted by a black dot. B. Two Pfam27

architectures showing domain co-occurrence supporting CLADE27 annotation. C. Comparison of the architectures found by CLADE24 (that is CLADE based
on Pfam24 domains), CODD [24], dPUC [26] and Pfam24. Notice that the MORN_2 domain has been predicted by CODD but that it is supported by an
extremely high E-value (= 7.5) and no co-occurrence. All other domains have been detected by CLADE24 as well. Eleven CLADE24 domains, absent in
Pfam24, are highlighted by a black dot. Some of these domains have been identified by CODD and dPUC also. D. Two Pfam24 architectures showing co-
occurrence and supporting CLADE24 annotation. Compare with the Chlamydomonas reinhardtii annotation provided by Pfam27 in B.

doi:10.1371/journal.pcbi.1005038.g007
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domains with a black boundary in Fig 8A and 8B) by two distinguished CCMs presenting
rather different physico-chemical conservation profiles (Fig 8C, middle and bottom for
domains in PFL0930w and PFE0100w, respectively). The SCM associated to the Clathrin
domain by Pfam27 does not identify the domain in PFE0100w while it identifies it in
PFL0930w with E-value 1.9e-28.

We observe a low level of conservation in the physico-chemical profile of the Pfam27 SCM
(Fig 8C, top) compared to the high level of conservation recorded for the two CCMs used to
annotate the two sequences (Fig 8C, middle and bottom): when aligned with the clathrin hit in
the respective P. falciparum sequences, one observes that the number of positions preserving
the physico-chemical properties in P. falciparum is much higher for the CCMs than for the
SCM (see the higher number of starred positions below each one of the three profiles).

Besides the CCM used to best annotate the PFE0100w sequence, all other CLADE CCMs
for the clathrin domain were considered against the PFE0100w sequence but they scored lower
than the CCM generated byHarpegnathos saltator. The distribution of their E-value scores
across the phylogenetic tree is illustrated in Fig 8D. We notice that the best hits were obtained
with CCMs generated by Metazoan or Fungi species, and that for all models generated by
Alveolata species, scores were quite low, suggesting that annotation based on Alveolata species
could be hard to identify. A similar pattern can be displayed for PFL0930w.

Several CCMs display a physico-chemical conservation profile that is closer to PFE0100w
than to PFL0930w. See Fig 8E. For both sequences, we find CCMs with close profiles in the
three Metazoa, Amaebozoa and Alveolata clades.

Species helping domain identification. To understand how the large space of available
sequences is exploited by CLADE to attaint P. falciparum predictions, we performed two dis-
tinguished a posteriori analyses of the set of species generating the CCMs that helped CLADE
predictions (Fig 5C).

First, we observed that the 54% of the contribution is provided by homologs belonging to
the Alveolata clade and that the 46% of homologs belongs to other clades and, among them,
Metazoa, Fungi, Viridiplantae appear to be the most represented Eukaryotic clades. A non neg-
ligible contribution is also recorded from Viruses, Bacteria and Archaea homologs. (Compare
Bacteria with Viridiplantae in the inset of Fig 5C.) This finding agrees with the intuition that
best sequence similarity most likely appears within the Alveolata clade, but it also highlights
that half of the times this is not the case, and especially for the predictions whose E-value is not
very high (notice the E-value distribution in Fig 5C). When we consider new domains only, the
contribution from Alveolata species decreases (32.21%) in favour of all other species (67.79%;
S4 Fig). Over 2 116 new predictions, 291 come from CCMs generated from viral, bacterial and
archaeal species.

In this respect, the analysis reported in Fig 4C quantifies the improvement obtained by add-
ing to the Pfam set of models, those CCMs generated by sequences belonging to arbitrary spe-
cies (red curve in Fig 4C) compared to the Alveolata models only (grey curve Fig 4C), making
the 3% of all CLADE models (see Fig 2). It confirms the interest in an expanded model
construction.

Second, we checked whether pairs of domains occurring in the same P. falciparum protein
were identified based on CCMs associated to species belonging to the same clade or not (S3
Table). Over the 1 688 P. falciparum proteins with at least two domains identified by CLADE
(where the confidence on these predictions is strongly supported by domain co-occurrence),
we found that 900 multi-domain proteins contain domains that are detected by CCMs coming
from different clades. In particular, if we look at predictions with respect to a fixed E-value, we
find that among the 60 multi-domain proteins containing at least a domain predicted at E-
value� 1e-60, 28 present a domain identification that is based on different clades. Similarly,
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Fig 8. A concrete example illustrating the role of the multi-source strategy in CLADE. Analysis of the clathrin domain
identification (Pfam domain PF00637) in two P. falciparum proteins PF3D7_0502000 (PFE0100w) and PF3D7_1219100
(PFL0930w). Their occurrence is highlighted with a black contour in A andB. These protein sequences are 1 272aa and 1 997aa
in length, respectively. A. Annotation of PFE0100w. Pfam27 prediction: only one domain is identified. CLADE prediction: three
domains are identified, two of which are new.B. Annotation of PFL0930w. Three domains are identified, a clathrin propel, a
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among the 627 multi-domain proteins whose domains are identified with 1e-15< E-
value� 1e-5, 376 are identified with different clades, that is almost half of the proteins contain-
ing at least two domains are identified with the help of several clades. This is in agreement with
the hypothesis that a protein evolutionary process is random, and hence, clade independent. A
concrete example is illustrated in Fig 8, where CLADE identifies three domains with CCMs
generated by sequences fromMetazoa (Harpegnathos saltator for the clathrin domain), Tricho-
monadida (Trichomonas vaginalis for zf-C3HC4) and Alveolata species (another P. falciparum
protein for VPS11_C). Two of the species defining CCMs predicted with best E-values are
sparse in the tree and far from the Alveolata clade, explaining the difficulty of annotating this
protein with SCMs. These three domains have been found to co-occur in 34 different species
including Homo sapiens and Anopheles gambiae (details are available in Pfam website).

Physico-chemical conservation for predictions based on CCMs. CCMs used in domain
prediction provide a physico-chemical profile of the protein that is typically more conserved
than the one obtained by the associated SCM (observe the number of starred positions along
the P. falciparum sequence in Fig 8C).

The amino acid groups analysis of the two P. falciparum sequences, PFE0100w and
PFL0930w, shows very high positional conservation obtained with the CCMs of Harpegnathos
saltator (E-value 4e-30) and Eurytemora affinis (E-value 2e-40). Compare with the conserva-
tion profile of the SCM on the PFE0100w sequence (E-value> 1, top).

This property augments our confidence in the method. In particular, notice that physico-
chemical profiles help to detail the differences between CCMs. In fact, different matches of dif-
ferent CCMs for the same domain might highlight different evolutionary signatures of the
domain. In Fig 8E, for instance, the physico-chemical profiles of different models for the cla-
thrin domain indicate two classes of models, one matching the PFE0100w domain and the
other matching the PFL0930w domain (see left and right profiles in Fig 8E).

CLADE versus HHblits on P. falciparum genome. We compared the domain annotation
obtained with HHblits and CLADE. For this, we considered increasing HHblits FDR thresh-
olds (from 0.1% up to 10%) and fixed CLADE FDR at 0.1%. Looking at predictions upon

clathrin H-link and seven copies of the clathrin domain. Pfam27: the selected clathrin domain (with a black contour) is identified
with E-value 1.9e-28. CLADE: the selected clathrin domain (with a black contour) is identified with a CCM based on Eurytemora
affiniswith E-value 2e-40. C. Physico-chemical conservation analyses of the SCM (top) for the clathrin domain identified in
PFE0100w, and of the two CCMs generated by Harpegnathos saltator (middle) and by Eurytemora affinis (bottom) for the clathrin
domain identified in PFE0100w and in PFL0930w, respectively. Each display shows the physico-chemical property that is most
represented at a given position of the multiple sequence alignment generating the profile. Colored bars describe physico-
chemical classes; the color scale is given at the bottom. The height of each colored bar corresponds to the frequency of the most
represented (conserved) amino acid property. Values vary from 0 to 100: for instance, a blue bar that goes up to 100 indicates
that the 100% of the amino acids occurring at this position are hydrophobic. The P. falciparum sequence PFE0100w is reported
for the top and middle displays together with the physico-chemical positional matching, indicated by a *, between the
corresponding residue in the P. falciparum sequence and the alignment position, if any. The display on the bottom is matched to
the PFL0930w sequence. Amino acids are classified as suggested in [43] according to biochemical similarities: hydrophobic
(VILMFWA), negatively charged (DE), positively charged (KR), aromatic (YH), polar (NSTQ), and C, G, P considered as special.
D. The species that contributed to CLADE identification of the clathrin domain in P. falciparum sequence PFE0100w are
organized into a schematic phylogenetic tree (drawing inspired by Figure 1 in [44]). For each clade, the total number of species
involved in CCM construction is indicated at the “root” of the associated tree. Species are marked by a colored dot indicating the
E-value range obtained by matching the corresponding CCM to the PFE0100w sequence. The color scale follows E-value
ranges. E. Four amino-acid profiles of the clathrin domain, two provided by CCMs generated by Metazoan species
(Harpegnathos saltator and Eurytemora affinis) and two by Amoebozoan species (Dictyostelium discoideum and Entamoeba
histolytica), are mapped against the two P. falciparum sequences PFE0100w (left) and PFL0930w (right). (Note that PFE0100w
and PFL0930w sequences are also reported in C.) E-values for the mappings of CCMs against the two P. falciparum sequences
are reported on the profile heading (in parenthesis). Profiles in the Alveolata box (bottom) are constructed by running PSI-BLAST
on the two identified Plasmodium domain sequences; they show high similarity with the profiles coming fromMetazoan and
Amoebozoan species.

doi:10.1371/journal.pcbi.1005038.g008
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which CLADE and HHblits agree (overlapping hits that are annotated by the two systems with
the same domain or by domains belonging to the same clan; see S5 Table), we observe that:

1. the proportion of HHblits domain hits in agreement with CLADE is much larger for strin-
gent FDR thresholds (note the almost complete overlapping at FDR 0.1% reported in S5
Table) and gets smaller, by reaching a converging bound, for high FDR values.

2. CLADE can detect with higher confidence (due to smaller E-values and co-occurrence),
domains that are detected by HHblits at much higher FDR, and therefore much lower confi-
dence. For instance, of the 916 CLADE domains occurring on proteins annotated for the
first time, 477 of them are detected by HHblits at FDR 10%.

3. CLADE predicts in newly annotated architectures more than 400 domains that are missed
by HHblits at FDR 10%. Of those, 230 are supported by co-occurrence and have E-value
varying from 6e-88 to 1e-3. The fact that they are supported by known co-occurrent domain
contexts brings confidence in their prediction.

4. for high FDRs, HHblits is prone to obtain a large number of false positives. In fact, note that
at FDR 10%, only 772 domains over a total of 3 260 HHblits predictions on proteins anno-
tated for the first time, are supported by domain co-occurrence. This holds true for both the
enrichment of known protein structures and the predictions of brand-new domains. In con-
trast, notice that at a FDR of 0.1%, many HHblits predictions are supported by co-occurrence.

Discussion
When sequences in a protein domain family are too divergent, signals of homology are easier
to trace with CCMs rather than with models based on the consensus of homologous sequences
spanning the entire phylogenetic tree (reminiscent ideas were presented in [7, 18–20, 45]).
CLADE shows that, by combining in a unique tool CCMs and consensus models, the predictive
power can be highly reinforced.

In CLADE, CCMs have been constructed for domains in the Pfam database. In this respect,
it is worth to highlight that CCMs are basically different from: 1. Pfam models characterizing
Pfam clans [46] whose purpose is to group different families together, possibly new protein
families that appear to have arisen from a single evolutionary origin; 2. Pfam models character-
izing Pfam domain families (called SCMs in CLADE). Compared to both Pfam family models,
CCMs are much closer to actual protein sequences, therefore more specific and more function-
ally predictive. In fact, one can think of CCMs as forming a new layer of models situated at the
very bottom of the Pfam hierarchy and associated to FULL sequences within Pfam domain
families. The example reported in Fig 8C and 8E illustrates how CCMs are closer to sequences
than Pfam family models.

Standard approaches, like Pfam, are limited to consensus within seeds only, and CCMs
showed to model evolutionary information differently. Below, we propose several ways to
revisit basic evolutionary questions based on CCMs.

CCMs can be used to analyze ancient duplications.Modern sequences evolved in the con-
text of full genome and local duplications. The fate of the duplicated domains could be different
for several reasons. The most important one is domain organization within architectures,
where the accomplishment of different cooperative functional purposes might induce dupli-
cated domains to reach possibly very divergent sequence profiles. CCM can help to model
these parallel profiles (created by domain divergence) better than a consensus approach. The
example on clathrin domains illustrated in Fig 8 highlights the parallel co-existence in the
Metazoa and Amoebozoa clades of CCMs characterized by two distinguished profiles,
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suggesting that an ancient duplication took place before the Metazoa-Amoebozoa phylogenetic
divergence and gave origin to the two kinds of domains observed today in the two clades. The
existence of two distinguished copies (fitting the two profiles) of the clathrin domain in the P.
falciparum genome, reveals that this duplication is even older and places it before the Metazoa-
Amoebozoa-Alveolata divergence. CCMs can be used for large scale explorations of parallel
profiles evolution.

Multiple CCMs can be used to analyse domain evolution.Whether the actual number of
evolutionary pathways for a domain family is relatively small or not remains an open question.
The large number of CCMs associated to a domain D characterizes the evolutionary landscape
of D, and highlights the viability of different evolutionary processes. The mathematical descrip-
tion of the models, as probabilistic profiles, can be used to explicitly address quantitative ques-
tions on the landscape variability. For instance, a measure of how different CCMs are, one
from the other, can be developed and used to bring an estimation on the number of distinct
evolutionary pathways associated to a domain. Do different domains have a sensibly different
number of evolutionary pathways associated to them? Does the distribution of distances
between probabilistic profiles of a given domain have a small/large variance? Can we suggest a
graph-like relational structure among CCMs and exploit the structure of the graph to infer
functional consequences? These questions do not have an answer today but they seem funda-
mental to the understanding of the evolutionary landscapes we observe.

CCMs and their impact on functional annotation. The interest of an accurate genomic
mapping of protein domains and protein architectures is multiple. It directly implies the possi-
bility to develop: 1. a more precise functional analysis of domains and architectures within
genomes; 2. a comparative analysis of domains and architectures between species within clades.
Based on it, pangenomic differences of phylogenetically close microbial species (strains or
genomes) can be defined at the domain level, and species variability carefully assessed. By
using domains as the building blocks of proteins functional activity, we can assert that the pres-
ence of the same domains within different architectures in different species/strains might guar-
antee a similar functional activity for the organism. In this sense, a relaxed notion of
pangenomic variability can be defined, closer in spirit to the functional activity of the species.
Similar observations apply to microbial communities, where domains, more than proteins,
appear to be useful building blocks for functional annotation; 3. a comparative analysis of
domains and architectures between species across distant clades. This could help to improve
estimating the age of domains and architectures [47, 48]; 4. an accurate identification of gene
homology between pairs of genomes. This will directly benefit synteny blocks reconstruction
and chromosomal rearrangement analyses; 5. an improved tracing of gene acquisition for bac-
terial species, where lateral gene transfer is much present. This will imply a more precise recon-
struction of reticulate evolution.

CCMs and domain architectures identification. The way protein architectures form is an
important factor to understand protein evolution. A quantification of the elementary events
affecting protein architectures, such as domain(s) insertion/deletion, duplication and exchange,
was done [49] but, yet, little is known about the relationships between these elementary events
[50] and the molecular mechanisms they originate from. Finer domain mapping (obtained with
more precise annotation tools as CLADE) on all proteins of completely sequenced genomes will
contribute precise information on the evolution of protein architectures. This means, for
instance, a more precise estimation of the rate of insertion, deletion, duplication and exchange
of domains within proteins in a given species. In general, it would be interesting: 1. to establish
whether the process of generation of an architecture follows constraints or not, 2. to pinpoint
such constraints, if they exist, and 3. to verify whether they are species specific or not. This infor-
mation turns out to be useful in the context of phylogenetic profiles prediction [51].
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The role of the Alveolata and other clades in P. falciparum domain annotation. An a pos-
teriori analysis of our predictions highlights that: 1. species in the Alveolata clade are preferably
chosen for domain identification (54%), 2. a significant number of identifications (46%) are
suggested by species that lie outside the Alveolata clade (that is, far from P. falciparum) and yet
providing acceptable E-values for predicted domains (Fig 5C). The first point confirms the
strength and importance of considering phylogenetic signals in annotation, and the second
point highlights the limitations of the idea of phylogenetic proximity.

Besides the observation that many P. falciparum sequences are more easily identifiable by
CCMs generated by phylogenetically distant species rather than CCMs coming from Alveolata
species, other observations strongly reinforce the interest in looking at different clades while
identifying domains: 1. multi-domain proteins identified with CCMs originated in different
clades, suggest processes of domain evolution that are independent within each protein (see
the three domains identified with models constructed from Alveolata, Amaebozoa and Crypto-
phyta sequences in Fig 8); 2. new domain families are periodically added to databases like Pfam
and annotation becomes gradually more precise as a function of this addition (see the impact
of the Pfam27 enrichment on the Chlamydomonas reinhardtii protein architecture compared to
Pfam24 in Fig 7A and 7C); 3. CCMs coming from bacterial and archaeal species should allow to
check for ancient lateral gene transfer.

On CLADE methodological improvements.On the methodological side, the use of agree-
ment among models (handled by SVMs) and of co-occurrence (handled by DAMA) in
CLADE improves predictions up to 19.6% on the P. falciparum sequences (S4 Table), over a
score system based on best E-values (CLADEBEv) and this highlights that criteria other than
sequence similarity, play a key role in the identification of protein domains. The usage of multi-
ple criteria to reach agreement among models, allows for new predictions and plays an impor-
tant role in the evaluation of the confidence in a prediction, with improved scores that can help
the biologist to annotate sequences.

Several ways could be envisaged to improve further our methodological approach.

1. The sequence search tool PSI-BLAST [52] could be replaced by the profile-profile compari-
son tool HHblits [17], and both CCMs and consensus models could be constructed by
HHblits. For large applications, the construction of profiles for the query sequences and the
identification of domain specific cut-offs for all domains become too costly, and one could
transform HHblits models in HMMs to avoid profile-profile comparison.

2. The number of meta-features in the meta-classifier used to combine model predictions
could be increased. For instance, one could encode motif information known for specific
domains. The SVM could be improved, by making the choice of a given kernel to be domain
specific. More radically, the choice of designing CLADE based on SVM could be revisited.
Other decision strategies could be employed instead, like multi-response linear regression
[53] for instance.

3. Domain co-occurrence re-ranks low confidence domains as relevant when they appear with
co-occurring domains. The power of this criterion has been already observed in [24, 26, 34,
35, 54, 55]. Other multi-objective optimization functions could be added in DAMA to
screen the domain list and exploited in CLADE, as discussed in [27].

4. CLADE selects a reference set of domain sequences exploiting the large span of organisms
in the phylogenetic tree of life. This choice ignores how protein evolution is full of gene
duplications, horizontal gene transfer, domain shuffling and so on. It is reasonable to think
that building gene trees and couple them with CLADE would help to better span the
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sequence diversity right at the beginning of the models construction. Future development of
CLADE could explicitly consider orthology/paralogy/xenology to better build CCMs.

5. The pool of approximately 350 CCMs associated to each domain could be extended to pro-
vide an enriched annotation. Several databases, such as SCOP, CATH, Gene3D, propose
domains that are not shared with Pfam. From these domains new models can be con-
structed and added to the CLADE model library. This perspective demands the develop-
ment of criteria to avoid redundancy in the model library and to ensure a reasonable
computational time.

These methodological improvements are general, independent from specific genome char-
acteristics, and guarantee the strategy to be applied to any genome. They will likely be able to
address at least a part of the 28% of P. falciparum proteins that are still missing a domain iden-
tification and the protein architectures that should be enriched with new domains (among the
2394 single domain proteins, 1214 of them contain a domain that covers less than the half of
the protein length, and for these proteins we expect multiple domains to lie together). Some
unannotated proteins in P. falciparum likely contain completely novel domains, which are evo-
lutionarily unrelated to domains present in the existing domain family databases. If that is so,
CLADE would not find them, at least not until existing databases grow enough to cover more
of that domain space.

CCMs and computational power. By using HPC, CLADE demonstrates to push the limits
in annotation reached by current methods. The first step of CLADE, generating CCMs, is the
highly expensive one. It is performed once for all genomes to be annotated. All CCMs used to
realize P. falciparum annotation have been constructed in 3.7 months of computer time by
using 250 CPUs (and they are made publicly available). The two subsequent steps (2 and 3),
dedicated to genome annotation, are relatively fast. For example, CLADE steps 2 and 3 ran in
about 1 hr on 100 CPUs for the entire P. falciparum genome. CLADE domain library is
expected to be regularly updated on new domains appearing in databases. This means that
only CCMs for new domains need to be constructed and added to the existing library. This
step can be realized independently from steps 2 and 3. In years to come, the expected improve-
ments in HPC and in CLADE implementation (with a thoughtful selection of domain models)
will render CLADE more computationally accessible.

Materials and Methods

Databases
Our method extends Pfam, an important collection of protein domains, that has been widely
used for annotating proteins with unknown function. We use Pfam v27 (Pfam27, downloaded
from http://pfam.sanger.ac.uk), containing 14 831 protein domains. In order to assess the per-
formance of our method, we apply it to the set of all P. falciparum proteins. For this, we use
PlasmoDB (http://PlasmoDB.org), that is the official repository of the P. falciparum proteins
used as a reference database by malaria researchers. PlasmoDB v11.1 contains 5 542 proteins.

We used the UniProtKB database [56]: 1. to extract NCBI taxonomy for sequences and the
list of known domain architectures. 2. to recover the Pfam domain organization of all proteins
in UniProt 15.6 (Swiss-Prot 57.6 and SP-TrEMBL 40.6); we downloaded the dataset ftp://ftp.
ebi.ac.uk/pub/databases/Pfam/releases/Pfam27.0/swisspfam.gz and used it to analyze co-
occurrence in CLADE annotations. (In our tables and figures, “Cooc”, abbreviating “predic-
tions supported by domain co-occurrence”, and “Cooc-CCM”, abbreviating “predictions iden-
tified by a CCM and supported by domain co-occurrence”, count architectures whose domain
pairs belong to already known architectures.)
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A reference list of clades has been extracted from NCBI (http://www.ncbi.nlm.nih.gov/
taxonomy) and used for selecting a representative set of sequences in the construction of
CCMs. Clades have been specified for Bacteria, Archaea, Viruses and Eukaryotes in S1 Table.

We used the SCOP v1.75 [41] database to compare CLADE, based on the multi-source
strategy, with the mono-source strategy of HMMScan [2, 33] and HHblits [17]. Also, the
SCOP datasets allowed us to compare CLADE with the computational strategy employed in
SUPERFAMILY, a system that builds multiple hidden Markov models, for each protein super-
family, to realize sequence search. The SUPERFAMILY sequence search method is built on 1
962 superfamilies (from classes a to g), while CLADE relies on Pfam27 containing 14 831 pro-
tein domains. To realize the comparative analyses, we considered SCOP domains whose associ-
ated sequences are coming from at least 10 species, and constructed a three testing sets from
the ASTRAL95 dataset, containing 255 domain families and 8 633 sequences with at most 95%
sequence identity, from ASTRAL30, made of 66 domain families and 1 251 sequences with at
most 30% sequence identity, and from ASTRAL10 made of 18 domain families and 306
sequences with at most 10% sequence identity. ASTRAL95, ASTRAL30 and ASTRAL10 are
subsets of SCOP [21] and can be downloaded from http://scop.berkeley.edu/astral/subsets/
ver=1.75.

Tests with HHblits required the use of HHdb, a database built from the UniProt and NCBI
NR databases, and provided in the HH-suite package [17, 42].

Tools run for comparison
HMMScan was run with default parameters and curated inclusion thresholds. The option
–cut_ga, for model-specific thresholding (using profile’s GA gathering cutoffs to set all
thresholding), was used. HMMScan is included in the HMMer 3.0 package [33] downloadable
at http://hmmer.janelia.org/software.

HHblits was run with default parameters. It is part of the HH-suite package—version 2.0.15
[17, 42] downloadable at https://github.com/soedinglab/hh-suite.

Detailed description of the CLADE pipeline
First, we detail how Pfam methodology works and how we modify it by including additional
models, called clade-centered models (CCM). Then, we describe how to combine those models
to produce reliable predictions. In the final step, we apply DAMA, an algorithm especially
designed to take into account domain co-occurrence, to find the most likely domain
architecture.

Pfam methodology. Let Di be an arbitrary protein domain in the Pfam database. In Pfam,
Di is associated to two sets of sequences, SEED and FULL. SEED is a set of protein sequences,
called seed sequences for the domain Di, that share evolutionary and structural properties. It is
defined by Pfam curators and results in a high-quality set of sequences. Pfam aligns seed
sequences to build a profile hidden Markov model, SCMi, that represents the consensus of the
seed alignment, that is the common features of the seed sequences. SCMi is used by Pfam to
scan databases of proteins with unknown function by localizing regions in sequences that are
similar to the domain Di. Pfam predictions are those domain hits that HMMScan identifies
with the –cut_ga option. In contrast, FULL is a automatically generated set. To construct it,
Pfam uses SCMi to search in UniProtKB [56] for all significant hits from HMMScan (using the
–cut_ga option). Most FULL sequences are never evaluated by experts, and some of them
are probably false positives from HMMScan (sharing neither evolution nor structure). FULL
contains SEED. In what follows, FULL is denoted Si ¼ fsi1; . . . ; sing and SEED is denoted
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Si� ¼ fsi�1 ; . . . ; si�mg. Each sequence in FULL, and therefore in SEED, is associated to a protein in
the UniProtKB database and provides a NCBI taxonomy for it.

A simplified Pfam flowchart, showing the library of SCMs generated by HMMer, one for
each domain Di, is illustrated in S1 Fig (solid lines).

Clade-centered models. SCMi is a probabilistic model explaining how sequences in the
SEED dataset Si� of Pfam27, associated to the domain Di, have evolved. By contrast, we shall
build a number of new models by exploiting information coming from (possibly different) evo-
lutionary paths associated to specific species. They are called CCMi

j, where CCM stands for

clade-centered model, i indexes the domain Di, and j is an index running over the different
models. To construct them, we take at most 350 sequences belonging to different species by
choosing them from the FULL dataset Si in Pfam27. The algorithm extracts a comparable num-
ber of sequences, whenever possible, from each clade. This automatic selection guarantees that
the distribution of species is as uniform as possible across the panel of phylogenetic clades. (See

list of clades leading the selection in S1 Table.) This set of selected sequences is referred to as Si .

Each sequence in Si will be used as a query to search for similar sequences, with PSI-BLAST
[52], within the non-redundant protein database (NR). From the resulting set of similar
sequences, a probabilistic model CCMi

j is constructed. As a result, we produce models

CCMi
1; . . . ;CCM

i
mi
, withmi ¼ jSij j � 350. See S1 Fig (dotted lines).

Combining Model Predictions. Reliable predictions are obtained by combining domain
hits from different models. We follow three main steps:

1. The building phase of the ensemble of clade-centered models.We modify Pfam original
library, in such a way that, a single domain Di is now represented by an ensemble of models

Ci ¼ fCCMi
1; . . . ;CCM

i
mi
; SCMig. We have used PSI-BLAST [52] and HMMer [33] for pro-

viding models in Ci. The two tools exploit different data: individual sequences in the FULL
dataset of Pfam27 were used as queries to build CCM

i
j with PSI-BLAST, and sequences in the

SEED dataset were used by HMMer in Pfam27 to build SCM
i. SCMi models were downloaded

directly from the Pfam website. A flowchart describing this pipeline is illustrated in S1 Fig (dot-
ted and solid lines).

2. The meta-classifier training phase. After the building phase of CCMs and SCMs, the mod-
els are run to search for potential domains and model outputs are combined to produce a final
decision. For this latter step, one can employ plurality voting or meta-learning techniques [57].
We implemented a meta-learning decision strategy that used a meta-classifier (Support Vector
Machine—SVM) trained from features that were obtained by pre-processing outputs of CCMs
and SCMs. Model outputs (frequently corresponding to confidence scores) have been used
directly in the SVM training [58]. After trying this algorithmic approach, we realized that we
did not achieve good performance possibly for two reasons. First, the high divergence of the
sequences in a protein dataset (for instance, the P. falciparum protein dataset) can imply that
the distribution of confidence scores in the training set is different from the distribution in the
testing data. Second, our models are very heterogeneous, since they were trained from different
data sources, thus, it is not expected that there is necessarily an agreement among their predic-
tions. Because of these two observations, any decision strategy that tries to find a perfect agree-
ment of model answers is expected to fail. To avoid this, we designed meta-features which aim:
(i) to highlight individual model results, when agreement among CCMs and SCMs models is
not observed, and (ii) to provide an indication of the performance of all models. See schema in
S2 Fig. We defined five meta-features as follows.

Let s be a query sequence that we wish to score against all models in Ci. Since the domain

Di can be found in multiple copies within s by different models Cj 2 Ci, where Cj is one of the
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CCMs or SCMi in Ci, we want to identify all best matches in s that do not pairwise overlap.
For each one of these best matches we create a distinguished hit, described by the location on
the sequence and by 5 features of the associated model Cj. To achieve goal (i), we extract three
features from the Cj output: the E-value (provided either by HMMer for SCMs, or by PSI-
BLAST for CCMs), the hit length (that is, the length of the domain found in s by the model
Cj), and a binary feature that indicates if the E-value of Cj is smaller than a threshold T0. For

goal (ii), we define two features concerning the percentage of models in Ci that support the
prediction of Cj. For this, we say that a model Cl supports the prediction of a model Cj if their
matches on s overlap each other and the overlapping size is greater than 50% of the Cj match
size. Thus, the fourth meta-feature is defined as the percentage of models that support Cj hav-
ing E-values smaller than a threshold T0 0. The fifth feature represents the percentage of models
Cl that support Cj and that are built from species that belong to the clade of s. Our motivation
is based on the assumption that species of the same clade tend to share more domains than
species of different clades. Note that, we do not penalize predictions that are obtained from
models built from species of distant clades, but we just wish to use this evolutionary informa-
tion to reinforce the presence of a domain when it is observed in species close to s. We discuss
T0 and T00 thresholds in section “CLADE pipeline, parameter settings and tools used in
CLADE” (Methods).

For each domain Di, we trained a meta-classifier (SVM) from the five meta-features
described above, to distinguish between real domain occurrences and false predictions. More
precisely, we built a one-vs-rest SVMi [59], that is a binary classifier that discriminates two
classes by finding a large-margin separation among them, as illustrated in S2 Fig. For this, we

used all sequences in the set Si n Sij as a positive training set, that is all sequences in Si with the

exception of those used to build CCMs. If jSi n Sij j < 50 sequences, then we consider the

entire set Si. Moreover, to augment the number of sequences in the positive training set, we

apply a rate of mutation of 20% on the initial set of sequences Si n Sij (Si when jSi n Sij j < 50)

to arrive to a total of 1 000 sequences per domain. This was done with The Sequence Manipu-
lation Suite software [60]. To construct the negative training set, we randomly choose 20
sequences in each set Sk, where k = 1. . .14 831 (the number of Pfam domains), and shuffle
their 2-mers. We obtain about 300 000 sequences. Notice that when we compare models of
Di against these 300 000 sequences, only a few of them give an E-value smaller than 1 (chosen
as threshold) and this ensures these sequences to be negative for Di. We repeat the construc-
tion 10 times and randomly choose, among all generated sequences, 1 000 sequences that will
form the negative set. Positive and negative datasets have the same size, in order to avoid
unbalanced sets. (For certain protein families this is obtained by using the supersampling
SVM option.)

3. The prediction phase. Each protein sequence in the set to be annotated is used as a query s

to be scored against all models in the ensemble Ci. The hits produced by the models (corre-
sponding to predictions of domain Di in the sequence s) are then processed and the five fea-
tures described above are extracted for each occurrence of domain Di in s, as indicated in S2
Fig. Then, the SVMi (trained to recognize the domain Di, as described above) is asked to deter-
mine if the domain Di is found in the protein sequence s, and to provide a confidence score.
However, from a biologist’s perspective, it is more valuable to identify the most likely domains
that occur in s and that are not overlapping. This is known as a multi-class classification prob-
lem. To enable a set of one-vs-rest SVMs (one for each domain) to work with this problem, it is
essential to calibrate the output of each classifier into a confidence measure, like the posterior
probability. Since standard SVMs do not provide such probabilities, we employed Platt’s
method [61] to map SVM outputs into posterior probabilities. As a result, SVM’s probabilities
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are comparable to each other, and we can assign to s the domain that achieves the highest pre-
dictive value, as done in [62]. Strictly speaking, as noticed above, if several non-overlapping
matching of the same domain Di are found in s, then for each non-overlapping match, we
assign to s the domain that achieves the highest predictive value.

At the end of this step, several overlapping hits associated to different potential domains are
identified for s. Based on this set of potential domain hits, we determine the most likely domain
architecture for s. For this, we first observe that the tendency of a domain to occur preferen-
tially with a small set of other domains in a protein sequence can favor lower confidence
domains compared to higher confidence domains, once we want to insert them in a domain
architecture. Hence, we applied DAMA, an algorithm that has been designed to determine the
most probable domain architecture for s by taking into account domain combinations. Its per-
formance has been evaluated in [27].

E-values estimation in CLADE. CLADE works with two kinds of probabilistic models,
generated by PSI-BLAST and by HMMer. Because of their format we cannot put them
together in a single library and handle them in the same manner. A possibility would be to
convert PSI-BLAST to HMMer format or vice-versa. However, the transformation could
decrease the performance of the models. Then, we score the models individually, that is, each
model is used to scan the entire set of query sequences given in input to CLADE and the E-val-
ues corresponding to the matches are estimated by the respective tools (PSI-BLAST and
HMMer). This strategy assumes models to be independent. It should be noticed that this inde-
pendence assumption is frequently adopted by machine learning methods and it has been
shown to work well in most cases [63]. By adopting this strategy we assure CLADE E-values
not be over-estimated.

CLADE pipeline, parameter settings and tools used in CLADE. The three steps consti-
tuting CLADE are implemented with a number of parameters and implementation choices:

1. For each Pfam domain, an ensemble model, containing several CCMs and a SCM, is con-
structed and used for domain identification; an E-value is provided for each identified
domain.

2. Identified domains are filtered, based on several criteria; SVM probabilities are computed
for each domain.

3. Best architectures are selected using DAMA, and domains appearing in an architecture are
identified by an E-value and a SVM probability.

SCMs were downloaded directly from the Pfam web site, while CCMs were built with PSI--
BLAST (v.2.2.28 for 5 iterations and E-value cut-off 1e-03) on the NR database (download in
March 2014). PSI-BLAST was applied to sequences coming from species that were representa-
tives of the whole tree of life. In its second step, CLADE searches for domains occurrences in
the query sequences, based on CCMs and SCMs. In order to detect a large number of potential
Pfam domains, we set a permissive search E-value (= 1) in PSI-BLAST and HMMer search,
using default values for the remaining parameters. We combined the predictions obtained by
all profiles by training a SVM from features coming from profile outputs. For SVM, we used
the LIBSVM tool [64] (v.3.0) with default parameters, and we turned on the option “-b” to
provide probability estimates. The software is available at http://www.csie.ntu.edu.tw/*cjlin/
libsvm.

Five features were designed to highlight the best prediction and to provide a measure of the
performance of all profiles (see section “Combining Model Predictions” in Methods). The defi-
nition of two of these features depends on the thresholds T0 and T00. Namely, the restrictive E-
value threshold T0 =min(1e − 30, EvDi), where EvDi is the greatest E-value observed among
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proteins containing the domain Di in Pfam sequences, is set to compute the third feature. The
fourth feature equals the number of hits (profile outputs) with E-value smaller than T00 = 1.
This is a permissive threshold used to count the agreement with best predictions.

For each domain Di, a specific SVM probability cut-off TDi
was defined, as done in Pfam [2].

Namely, we considered all sequences in the positive training set for the domain Di defined at
the end of subsection “The meta-classifier training phase” (see section “Combining Model Pre-
dictions” in Methods) and computed SVM probabilities for each sequence in both the positive
training set and the negative training set. If the intervals of the positive and the negative distri-
butions do not overlap, then we set TDi

to be the maximum value of the negative distribution. If
these intervals overlap, then we let μ and σ be the mean and the standard deviation of the posi-
tive distribution of SVM probabilities for Di, and we set TDi

= μ − 2σ.
This set of parameters is used by default in all analysis realized with CLADE. Note that also

CLADEBEv, the version of CLADE that does not include the SVM filter and that considers a
score system based on best E-values only, employs domain specific cut-offs. These cut-offs are
not the same cut-offs used in CLADE, but they are computed based on E-values of positive and
negative training sets. CLADEBEv-no-cut-off is CLADEBEv but uses a unique cut-off of 1e-3 for
all domains.

Finally, the DAMA software [27] uses the pre-computed list of domain pairs presenting
strong co-occurrence in known domain architectures and the list of domain architectures
extracted from UniProtKB. DAMA has been run with default parameters. Notice that domains
participating in architectures identified by DAMA have E-values< 1e − 3 and their length cov-
ers at least 40% of the original domain length. Hence, CLADE and CLADEBEv architectures
contain domains with these features. We stress that DAMA favors the identification of archi-
tectures that are made of co-occurring domains, but enriches them with new domains having
an E-value< 1e-10. These new domains added to an architecture do not co-occur with the
existing ones. Hence, CLADE and CLADEBEv architectures are made of domains that might
co-occur but not necessarily.

Experiment on SCOP datasets
To realize the comparison experiment on the three SCOP datasets, we used a leave-one-out
strategy as follows. Given a domain family FD in one of the ASTRAL datasets, we considered
the set of n sequences, coming from different species and associated to FD in ASTRAL, to create
n test-sets for FD. Each test-set takes n − 1 sequences for training and leaves one sequence out
for the test. Then, we tested whether the sequence that was left out could be annotated by a
model (or models) constructed without using it, and counted the correct identification of the
domain as a true positive (TP), the identification of an erroneous domain as a false positive
(FP) and the identification of no domain as a false negative (FN). Note that a domain is “cor-
rectly” identified when it belongs to the domain family FD.

This same procedure, was implemented for all systems we wanted to compare: HMMScan,
HHblits, CLADE, CLADEBEv, CLADE_HHblits, CLADEBEvHHblits.

For HMMScan (run with default parameters), each test-set of n − 1 training sequences was
first aligned with Clustal W (version 2.1) [65, 66]. Then we used hmmbuild to construct a
probabilistic model (a profile) from the alignment. To compare profiles and test sequences we
used hmmsearch that employs a composition bias filter by default for eliminating false posi-
tives. All tools can be found in the HMMer package—version 3.

For HHblits (run with default parameters), we also constructed a profile from each test-set
of n − 1 aligned sequences (it is the same alignment as for the HMMScan experiment) but
using hhmake. In HHblits experiment, test sequences must be represented by profiles and we
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used hhblits on HHdb (the HHblits database) to construct them. Profiles were compared
with hhsearch [42]. All tools can be found in the HH-suite package—version 2.0.15.

For CLADE, we considered the profile constructed from the test-set of n − 1 aligned
sequences in the HMMScan experiment, and we constructed additional profiles, one for each
sequence in the n − 1 set. This was done by using PSI-BLAST and the NR database (see details
in Methods). To combine the outputs of the n profiles, we trained a SVM by using as positive
set the same n − 1 sequences and as negative set other sequences never used in training nor
test. The negative sequences were chosen randomly into the same SCOP dataset of the positive
ones, and by avoiding sequences sharing the same SCOP fold. The SVM was trained with an
equal number of positive and negative sequences. The third step of CLADE, handling architec-
tures with DAMA, was not used.

For CLADEBEv, the version of CLADE that does not include the SVM filter and that consid-
ers a score system based on best E-values only, the procedure is the same as for CLADE. The
domain-specific cut-offs were learned based on E-values of positive and negative training sets.

For CLADE_HHblits, we carried out the same profile construction as for CLADE, but we
replaced PSI-BLAST and HMMScan profiles by HHblits models. Like before, we trained a
SVM for combining profile outputs. The only difference is that we used profile-profile compar-
ison to generate the meta-features for training the SVM instead of using sequence-profile com-
parison like in CLADE. The domain specific cut-offs used in CLADE were computed for the
HHblits models using the same learning procedure as that employed for CLADE.

For CLADEBEvHHblits, the procedure is the same as for CLADE_HHblits, with cut-offs
computed for HHblits models that are domain specific but based on E-values (as done for
CLADEBEv).

Estimated False Discovery Rate for domains identified in protein
sequences
Estimating the number of false predictions is an essential step for evaluating the performance
of domain identification methods. The basic principle is to estimate the probability that a
potential domain has been randomly predicted. We computed the False Discovery Rate (FDR)
in two different ways, based on different random models of sequence generation. The key idea
is that domain predictions on random sequences arise by chance alone, that predictions on real
sequences give us the total number of predictions (true or false), and that their ratio approxi-
mate the false discovery rate. For evaluating CLADE (but also HMMScan and DAMA), we run
it on real sequences concatenated to its reshuffled ones. The first random model takes a protein
and generates 20 different reshuffling of the protein sequence producing new sequences that
have the same residue content of the original one and the same length. We call this model
“1-mer”. The second randommodel takes a protein and generates 20 different reshuffling of k-
mers in the original sequence, for k = 4. We call this model “4-mer”. The idea behind this last
model is that small k-mers within a protein sequence might be more likely to occur than ran-
dom k-mers, since protein sequences might contain repetitive patterns (for instance, blocks of
hydrophobic amino-acids or other compositional biases). Given the original set of protein
sequences P and its associated shuffled sequences S, let P + S be the set of concatenated
sequences. Note that the set P + S is a set containing 20 times more sequences than P because
from each sequence in P, we generated 20 sequences. Then, we computed the number of
CLADE domain predictions within the P-portion (saying R) and the number of predictions
within the S-portion (saying A) of the P + S sequences, and set the FDR = A/R for the dataset.
This calculation is repeated 20 times, with respect to 20 different reshuffling and the FDR for
the 1-mer experiment is considered to be the average of the FDRs of the 20 datasets. The same
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for the 4-mer experiment. The same strategy was used in [26, 27] (see section “FDR curves” in
Methods).

The random reshuffling was realized with the perl function List::Util::shuffle().
FDR curves. The FDR can be controlled by modulating the E-value threshold used to filter

potential domains [26] and this possibility is used here to compare CLADE, DAMA,
HMMScan and HHblits performance. To construct the FDR curves, we followed two strategies.
The first strategy [27] generates all domain hits of E-value< 1e-3 with HMMER 3.0 and uses
them as input for HMMScan and DAMA. For HHblits, it generates domain hits with
HHsearch (by matching models, constructed with hhmake from Pfam seed alignments, to
profiles of query sequences, constructed with hhblits on HHdb) and considers only those
with E-value< 1e-3. For CLADE, it generates domain hits with CCMs and SCMs, and, again,
considers only those with E-value< 1e-3. Each tool reconstructs all architectures at once from
the set of their corresponding domain hits. For HHMScan and HHblits, architectures are con-
structed with Pfam strategy for which, in case of overlapping hits, the hit with better score is
chosen. For each tool, points in the corresponding FDR curve are obtained by varying the E-
value thresholdM and filtering out from the architectures all domain hits with E-values>M.
We varied E-values from 1e-60 to 1e-3 by small steps. From the resulting set of architectures
(made of domain hits of E-value<M only), we compute the FDR and the number of domains
per protein, and repeat the procedure until the whole curve is drawn.

The interest of this first strategy to generate FDR curves is twofold. When predictions of
protein domain architectures are realized over large sets of proteins, we might be interested to
have only one run that accepts domains with a high E-value and then decide how to select
architectures out of this run, depending on the characteristics of the output we find. Also, we
might be interested to explore the landscape of architecture predictions before deciding what
E-values to use as a threshold. In doing this, one would like to know whether the tool remains
robust while competing with a larger number of domain hits/false positives. This strategy eval-
uates this aspect of the tools performance.

The second strategy has been presented in [26]. Namely, for each tool, we consider several
input sets of domain hits with a E-value threshold<M, for different thresholdsM. They are
produced by HMMER 3.0 for HMMScan and DAMA, by HHsearch (as explained for the first
FDR strategy) for HHblits, and by HMMER and PSI-BLAST for CLADE. Then, we run each
tool on each corresponding set and compute FDR and number of domains per protein for the
resulting sets of architectures. This calculation allows constructing curves where the number of
domains per proteins is a function of the FDR values. Best performing methods present higher
curves. The FDR curves of all methods were computed by using the same set of shuffled
sequences. Note that HMMScan and HHblits architectures are obtained by resolving overlaps
with a preference for hits of lowest E-value. The curves obtained with this strategy are reported
in S3 Fig.

Evaluation of CLADE, CLADEBEv, HMMScan and HHblits performance
The performances of CLADE, CLADEBEv (a version without the SVM filter, introduced in the
second step of CLADE, and considering a score system based on best E-values only),
HMMScan [33] and HHblits [17, 42] have been evaluated by using two standard measures:
positive predictive value PPV = TP/(TP + FP) (also called precision) and sensitivity Sen = TP/
(TP + FN) (also known as recall), where TP, FP and FN are true positives, false positives and
false negatives, respectively. To give the overall performance for each method, we computed
the F-score (also called F-measure) combining PPV and Sen, and defined as F-score = 2 � PPV
� Sen/(PPV + Sen). The F-score can be interpreted as the harmonic mean of PPV and Sen,
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reaching its best value at 1 and worst score at 0. TP, FP and FN are defined as follows: let s be a
protein sequence, A be its domain architecture and T be the evaluated method; a true positive
is a domain in A that is correctly predicted by T, a false positive is a domain detected by T that
overlaps a different domain in A, and a false negative is a domain in A that is not detected by T.
The method T can detect other domains along s that do not overlap domains in A, and we shall
refer to them as “additional” domains.

Time complexity of the system and construction of the CLADEmodels
library
CLADE is a pipeline that involves several different tools, and its formal time complexity is hard
to establish. The model construction step takes relatively long time due to the time of genera-
tion of more than 2 millions (2 389 235) models defining the CLADE library. Namely, each
domain construction takes about 30 minutes, and the overall model construction step can be
realised in about 3, 7 months on 250 CPUs. Once the models are constructed, domain identifi-
cation is fast (that is, less than an hour on 100 CPUs for about 5000 proteins).

Data and software availability
CLADE software and the entire library of CCMs used for the applications presented in this
article are available at the address: http://www.lcqb.upmc.fr/CLADE. The CCMs that we gener-
ated can be used for annotating any genome and they avoid running the first step of CLADE
again. For P. falciparum, CLADE website provides access to a downloadable xls file containing
the full list of annotations for the 5542 P. falciparum proteins (AllDomains.xls). The file also
contains the annotations obtained with HHblits and HMMScan, and for each hit, it reports its
position, the PlasmoDb accession number, the Pfam domain name, the Pfam clan (if any), and
the E-value. The list of disagreeing hits between CLADE and HHblits/HMMScan is also given.
A HHblits/HMMScan hit disagrees with CLADE for two reasons: 1. either the hit does not
overlap CLADE hits, 2. or the hit overlaps (with an overlapping of any size) a CLADE hit of a
different domain and a different clan.

Supporting Information
S1 Table. Reference clades used for building CCMs in CLADE.
(PDF)

S2 Table. FDR for domain predictions: Comparison between CLADE and HMMScan tested
on the two H0 hypotheses. FDR computed for randomly generated domains under two H0
hypothesis tests (see the dataset description in section “Estimated False Discovery Rate for
domains identified in protein sequences” in Methods). Mean and variance over 20 randomly
generated sets of amino-acids sequences of false domain predictions realized by CLADE and
HMMScan. FDR values have been computed by considering that either a domain (All) or the
original domain (Original), or a new domain (New) identified on these randomly generated
sequences is a false positive. Each set of random sequences is constructed from the 14 831
Pfam27 domain families by reshuffling either amino-acids (1-mers) or quadruplets of amino-
acids (4-mers).
(PDF)

S3 Table. Multi-domain proteins on P. falciparum sequences. For different E-value ranges
we report the number of proteins predicted by CLADE as having at least two domains (MDP),
possibly two occurrences of the same domain. Also, we report the number of multi-domain
proteins that were predicted through local models coming from different clades (MDP DC).
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Notice that for these proteins, at least one prediction was obtained with a clade different of
Alveolata. Multi-domain proteins are counted according to the E-value of their higher confi-
dence domain.
(PDF)

S4 Table. Improvements and agreement of CLADE over HMMScan domain predictions on
P. falciparum sequences. Based on the lists of domain predictions provided by CLADE (based
on SVM) and CLADEBEv(based on best E-value), we report the percentage improvement,
agreement on domain predictions and agreement on domain architectures of these systems
over HMMscan on the full set of P. falciparum protein sequences. The improvement has been
computed as X − Y/Y, where X is the total number of domains predicted by CLADE or CLA-
DEBEv and Y is the total number of domains predicted by HMMscan with a GA cut-off. Per-
centage of agreement on domain predictions is the proportion of HMMscan domain
predictions shared with CLADE/CLADEBEv. Percentage of agreement on domain architectures
is the proportion of HMMscan domain architectures shared with CLADE/CLADEBEv. When
CLADE and HMMScan annotate a sequence with two domains belonging to the same Pfam
clan, we say that the two systems agree.
(PDF)

S5 Table. CLADE and HHblits predictions on P. falciparum sequences at various FDRs.
CLADE is run with an optimal FDR threshold set at 0.1% (top). The values reported on the
two CLADE columns (top), correspond to the values in Table 2 for an E-value equal to 1e-3.
HHblits has been evaluated at different FDR thresholds (middle) and its predictions are com-
pared to CLADE predictions (bottom). In the bottom table we report the total number (Total)
of HHblits predictions at FDR 0.1%, 1%, 5%, 10% and how many predictions have been found
by HHblits that were obtained by CLADE with an FDR of 0.1% (Shared). Note that, a domain
is “shared” by CLADE and HHblits if the two associated domain hits overlap and they belong
to the same clan. No condition on the size of the overlapping region is imposed.
(PDF)

S1 Fig. Pfam and CLADE flowchart for domain identification. Pfam methodology is showed
in solid lines, while modifications proposed by CLADE are shown in dotted lines. For clarity,
we duplicated the dataset of Pfam domains to highlight the different use, for model construc-
tions, of the two Pfam sets of sequences SEED (left) and FULL (right). In fact, given a domain
Di, the two methodologies make a different use of domain sequences. Based on the SEED set of
sequences Si� of Di, Pfam produces a multiple sequence alignment, MSAi�, and builds a profile
hidden Markov model, SCMi�. Based on this model, Pfam searches for new homologous
sequences and constructs a set of new representative members of Di, called FULL. FULL con-
tains SEED. On the other hand, CLADE builds models selecting sequences in the FULL set Si

according to a reference set of species. These selected sequences are used as queries for building
local models (CCMi) by using PSI-BLAST and the nr database. As a result, CLADE produces a
large model library containing both SCMs and CCMs, and uses it to scan genomes to be anno-
tated, like the P. falciparum genome (PlasmoDB).
(PDF)

S2 Fig. A meta-classifier to combine model predictions. Flow-chart describing the final deci-
sion making process on the outputs produced by the models of a domain Di. A meta-classifier
(SVM) is trained with five meta-features that are obtained by pre-processing the outputs of the
probabilistic models (SCMs and CCMs).
(PDF)
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S3 Fig. CLADE predicts more domains over a range of FDRs. The y-axis is the number of
predicted domains per protein (“signal”), while the x-axis is the FDR (“noise”), so better per-
forming methods have higher curves (more signal for a given noise threshold). CLADE (red)
outperforms HMMScan (black), HHblits (green) and DAMA (pink) on the two datasets,
1-mer (top) and 4-mer (bottom), obtained by randomly reshuffling P. falciparum sequences
(see text). CLADE has been tested under several restrictions and the resulting FDR curves have
been added to the plot: CLADEALV (grey), CLADEBEv (blue) and CLADEBEv-no-cut-off
(orange). The inset plot zooms the curves on small FDR values (< 0.001). Compare with the
plots in Fig 6C: here, the same data are plot with the strategy introduced in [26] and described
in Methods.
(PDF)

S4 Fig. CLADE on Pfam27: Distribution of new domains detected by CLADE. On Pfam27,
CLADE identifies 2116 new predictions compared to HMMscan. These are domains that either
do not overlap with HMMScan hits or they overlap with some hit that is neither the same
domain nor the same clan. CLADE predicts 32.21% of the new domains by using CCMs
defined from Alveolata species, and 67.79% by using CCMs defined from other clades. Notice
that 291 predictions come from CCMs defined from Viruses, Bacteria and Archaea species.
(PDF)
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