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only every 5 years. Analysis includes anomaly correlation coefficients and root13

mean square errors computed against several reanalysis and gridded observational14

fields, as well as against the nudged simulation used to produce the hindcasts ini-15

tial conditions. The last skill measure gives an upper limit of the predictability16

horizon one can expect in the forecast system, while the comparison with different17

datasets highlights uncertainty when assessing the actual skill. Results provide a18

potential prediction skill (verification against the nudged simulation) beyond the19

linear trend of the order of 10 years ahead at the global scale, but essentially20

associated with non-linear radiative forcings, in particular from volcanoes. At re-21

gional scale, we obtain 1 year in the tropical band, 10 years at midlatitudes in the22

North Atlantic and North Pacific, and 5 years at tropical latitudes in the North23

Atlantic, for both sea surface temperature (SST) and upper-ocean heat content.24

Actual prediction skill (verified against observational or reanalysis data) is overall25

more limited and less robust. Even so, large actual skill is found in the extrat-26

ropical North Atlantic for SST and in the tropical to subtropical North Pacific27

for upper-ocean heat content. Results are analyzed with respect to the specific28

dynamics of the model and the way it is influenced by the nudging. The interplay29

between initialization and internal modes of variability is also analyzed for sea30

surface salinity. The study illustrates the importance of two key ingredients both31

necessary for the success of future coordinated decadal prediction exercises, a high32

frequency of start dates is needed to achieve robust statistical significance, and a33

large ensemble size is required to increase the signal to noise ratio.34
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1 Introduction35

Because of the potential socio-economic impacts, decadal climate prediction has36

developed as a novel topic over the last few years (Meehl et al 2014) and given37

rise to great expectations. The goal of this exercise is to exploit the predictability38

of internally-generated climate variability together with that from the externally-39

forced component, as well as to enhance prediction skill by correcting the forced40

model response. The 11th chapter of the Intergovernemental Panel on Climate41

Change (IPCC) fifth assessment report (Kirtman et al 2013) describes the recent42

scientific achievements on this topic, but also emphasizes that several technical43

and scientific challenges remain. Although prediction skill arises mostly from ex-44

ternal forcing (e.g. Doblas-Reyes et al 2013), initialization of the slow components45

of the climate system has also provided added value for the first few years of the46

forecast, most notably in the North Atlantic (e.g. Hazeleger et al 2013b; Corti47

et al 2012; Kim et al 2012; van Oldenborgh et al 2012; Swingedouw et al 2013;48

Garćıa-Serrano et al 2014). This is at least partly due to the initialization of the49

Atlantic Meridional Overturning Circulation (AMOC), which shows large inertia50

in climate models (e.g. Persechino et al 2013). Over the North Pacific, some signs51

of improved prediction skill through initialization have been found associated with52

the Pacific Decadal Oscillation (PDO), (Mantua et al 1997) or Interdecadal Pa-53

cific Oscillation (IPO) (Keenlyside et al 2008; Meehl et al 2010; van Oldenborgh54

et al 2012; Meehl and Teng 2012). Mochizuki et al (2010) and Chikamoto et al55

(2013) showed that models ability to follow the subsurface temperature evolution56

in the North Pacific increases thanks to initialization. Because of its potential ef-57

fect on the atmosphere, SST has been the focus of most of these studies and is58
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indeed commonly used as an indicator of the ocean’s state in decadal prediction59

assessments. Nevertheless, subsurface fields are somewhat shielded from weather60

noise and might thus be expected to be more predictable than the surface fields61

(e.g. Branstator and Teng 2010), while they might still have the potential to affect62

the atmosphere on long time scales. Indeed, the oceanic heat content acts as a63

key indicator of climate perturbations on seasonal, interannual and longer time64

scales (e.g. Lozier et al 2008), accounting for the total amount of heat variation,65

through storage and transport, that could potentially be available for the atmo-66

sphere. Using a statistical analysis of control simulations, Branstator and Teng67

(2012) showed that initialization has the potential to improve prediction skill of68

the upper 300m temperature up to the first 5 years in the North Pacific and 969

years in the North Atlantic.70

Initialization techniques are numerous (Kirtman et al 2013), including assim-71

ilation of surface information only (e.g. Keenlyside et al 2008; Merryfield et al72

2010; Swingedouw et al 2013; Ray et al 2015), restoring to 3-dimensional data73

(e.g. Voldoire et al 2014; Bombardi et al 2014), forcing of the ocean model with74

atmospheric observations (Matei et al 2012; Yeager et al 2012) and more sophisti-75

cated alternatives based on fully coupled data assimilation schemes (Zhang 2007;76

Sugiura et al 2009; Karspeck et al 2014). It is yet difficult to distinguish whether77

one specific method clearly yields enhanced skill, as few studies have focused on78

comparing different techniques with a single climate model. Noteworthy is the79

study of Matei et al (2012), who found that hindcast experiments starting from80

reconstruction simulations forced with the observed evolution of the atmospheric81

state and associated heat flux over the ocean (including SST information although82

not explicitly) constitute a simple but skillful strategy for initialized climate pre-83
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dictions over the next decade, as compared to a 3-dimensional restoring towards84

ocean reanalysis. Bellucci et al (2013) highlighted the strong differences in pre-85

diction skill obtained with forecast systems using different ocean data assimila-86

tion products. Using perfect model approaches, Dunstone and Smith (2010) and87

Zhang et al (2010) found, as expected, an improvement in skill when subsurface88

information is used as part of the initialization. Nevertheless, given the uncer-89

tainty in ocean reanalysis below the surface (e.g. Ray et al 2015), several studies90

also focused on prediction skill using only information from the sea surface (e.g.91

Keenlyside et al 2008; Merryfield et al 2010). In particular, Kumar et al (2014)92

and Ray et al (2015) showed that SST nudging is efficient in reconstructing the93

observed subsurface variability in the equatorial Pacific.94

Given climate models usual biases notably in terms of mean state, another95

question that arises regarding the generation of initial conditions for predictions96

is the opportunity to use full field or anomaly initialization. In the first case, the97

coupled model is initialized with a state close to the real-world attractor and after98

initialization, drifts towards its own attractor. The second case limits this shock,99

but leads to question the link between mean state and variability. To put it dif-100

ferently, is it possible to properly reconstruct, and predict ENSO variability, for101

example, even if the warm pool is not correctly located in the model? Magnusson102

et al (2012), Hazeleger et al (2013a) and Smith et al (2013) show that at decadal103

time scales, it is difficult to determine whether one of these two strategies is more104

skillful than the other.105

This study aims at assessing prediction skill in the ocean with the IPSL-CM5A-106

LR climate model initialized via nudging towards observed SST anomalies. As107

described above, this set up lies on the side of relatively simple initialization tech-108



6 Juliette Mignot et al.

niques. Servonnat et al (2014) investigated the performance of this technique for109

the reconstruction of subsurface variability in a perfect model configuration us-110

ing the same climate model. Ray et al (2015) carried similar analysis but under111

historical conditions and using observations, highlighting the current uncertainty112

in subsurface ocean variability. Swingedouw et al (2013) showed the skill of the113

system in reproducing the Atlantic Meridional Overturning Circulation (AMOC)114

variability and Séférian et al (2014) used it to demonstrate the relatively long115

forecasting capabilities of the primary production in the tropical Pacific as com-116

pared to SST. Here, we provide a more systematic investigation of ocean surface117

and subsurface predictability of the system. The model, experimental set-up and118

statistics are presented in section 2. Global and tropical SST prediction skills are119

described in section 3. Section 4 and 5 concentrate on the prediction skill in the120

North Atlantic and in the North Pacific respectively. Section 6 discusses issues on121

sea surface salinity (SSS). Conclusions are given in the final section.122

2 Model and methods123

2.1 The climate model124

We use the Earth System Model IPSL-CM5A-LR (Dufresne et al 2013), developed125

at the Institut Pierre Simon Laplace (IPSL). The atmospheric model is LMDZ5126

(Hourdin et al 2013), with a horizontal resolution of 1.875◦ x 3.75◦ and 39 vertical127

levels. The ocean model is NEMOv3.2 (Madec 2008), in ORCA2 configuration.128

This non-regular grid has a nominal resolution of 2◦, refined in the Tropics and129

the subpolar North Atlantic. The ocean grid has 31 vertical levels. NEMOv3.2130

also includes the sea-ice component LIM2 (Fichefet and Maqueda 1997) and the131
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biogeochemical module PISCES (Aumont and Bopp 2006). The performances132

of the oceanic component in the coupled configuration are discussed in Mignot133

et al (2013). The reader is referred to the special issue in Climate Dynamics134

(http://link.springer.com/journal/382/40/9/) for a collection of studies describ-135

ing various aspects and components of the model as well as its performance for136

climatic studies. We emphasize here the contribution from Persechino et al (2013)137

who investigated the model’s potential predictability.138

2.2 The decadal prediction system139

The set of experiments considered here is summarized in Table 1. It first includes140

a 3-member ensemble of non-initialized historical simulations, all available on the141

CMIP5 database. They use prescribed external radiative forcing from the ob-142

served increase in greenhouse gases and aerosols concentrations, as well as the143

ozone changes and the land-use modifications. They also include estimates of so-144

lar irradiance and volcanic eruptions, represented as a decrease in the total solar145

irradiance. These simulations start from year 1850. Their initial conditions come146

from the 1000-year long control simulation under preindustrial conditions and are147

each separated by 10 years. Each of these simulations was integrated until end of148

2005. From January 1st 2006, they were prolonged using external forcing corre-149

sponding to the RCP4.5 scenario, as described in Taylor et al (2012). This ensemble150

of 3 members of historical+scenario simulations will be referred to as HIST in the151

following.152

The second set of experiments under consideration is a 3-member ensemble of153

nudged simulations, so called as they include a nudging towards observed anoma-154



8 Juliette Mignot et al.

lous SST variations. Each nudged simulation (NUDG1, NUDG2 and NUDG3 in155

the following) was started on January 1st 1949 from one of the historical simu-156

lations, using strictly the same external forcing, and applying also a nudging, or157

restoring term. This term consists in an additional heat flux term Q imposed in158

the equation for the SST evolution and written as Q = −γ(SST ′mod−SST
′
ERSST ).159

SST ′mod stands for the modeled SST anomaly with respect to the climatological160

mean computed between 1949 and 2005 in the corresponding historical simula-161

tion. SST ′ERSST are the anomalous SST from the Reynolds et al (2007) dataset162

with respect to the same climatological period. We use a restoring coefficient γ163

of 40Wm−2K−1, corresponding to a relaxing timescale of around 60 days over a164

mixed layer of 50m depth. This rather weak value as compared to previous studies165

using surface nudging (Keenlyside et al 2008; Dunstone and Smith 2010; Luo et al166

2005) typically represents the amplitude of air-sea thermal coupling (e.g. Frankig-167

noul and Kestenare 2002) and was justified in previous papers (Swingedouw et al168

2013; Servonnat et al 2014; Ray et al 2015). Efficiency of this nudging strategy169

in reconstructing subsurface variability is more specifically studied in Ray et al170

(2015), and the reader is referred to Swingedouw et al (2013) for a focus on the171

AMOC. Servonnat et al (2014) investigate several aspects of surface nudging in172

a perfect model context. Note also that as indicated in the previous references,173

nudging is not applied when and where the model sea-ice cover exceeds 50%.174

A set of 3-member ensembles of runs at least 10 years long where the restoring175

constraint is no longer applied (while the external forcing from historical and sce-176

nario simulations is used) was then launched from each nudged simulation. These177

simulations make up our retrospective forecasts, or hindcasts. For NUDG1 and178

NUDG2, hindcasts were launched on January 1st 1961 and every 5 years after-179
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wards until January 1st 2006, as recommended in the CMIP5 protocol (Taylor et al180

2012). These two sets of hindcasts, named DEC1 and DEC2 in the following, were181

both submitted to the CMIP5 near term database (e.g. Garćıa-Serrano et al 2014).182

Hindcasts starting from NUDG3 were launched every year from January 1st 1961183

until January 1st 2013. These series of hindcasts, named DEC3, was not submitted184

to the ESG, but is now part of the multi-model decadal forecast exchange project185

(http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/decadal-186

multimodel; Smith et al (2012)). For all ensembles, initial conditions of the indi-187

vidual members were obtained by applying at the first time step a perturbation to188

the SST field seen by the atmospheric component, chosen randomly at each grid189

point between −0.05◦C and 0.05◦C. Note that, strictly speaking, each group of 3190

members in DEC9 also differ in terms of oceanic perturbation, since they originate191

from a different coupled simulation. Analysis of the impact of such differences in192

initial perturbations is beyond the scope of this paper and is not likely to have a193

strong effect (Du et al 2012). Note also that as in other CMIP5-type hindcasts,194

external forcing is exactly the same as in historical and nudged simulations. This195

forcing thus includes volcanic eruptions, even though this forcing would in reality196

not be available at the start date of the forecast in an operational context.197

In the following, we evaluate the forecasting skill of the system using two en-198

sembles of initialized hindcasts: the ensemble DEC3, on the one hand, consisting199

of 3 members launched every year, and the ensemble named DEC9, on the other200

hand, resulting from the merging of DEC1, DEC2 and a subsample of DEC3,201

which consists thus in a 9-member ensemble of hindcasts launched every 5 years202

from January 1st 1961 to January 1st 2006. On top of these, we consider the en-203
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semble of HIST simulations as a benchmark for multiyear prediction skill without204

initialization.205

2.3 Verification datasets206

In order to validate the prediction skill of the system, five different datasets are207

used. First, we consider ERSST, the SST field from Reynolds et al (2007), which208

was used for the nudging. Performances are expected to be highest with this refer-209

ence dataset, which, for our purposes, covers the period [1961-2013]. This dataset is210

represented with the dark blue color in the figures. The HadISST dataset (Rayner211

2003) taken as an alternate verification dataset gave very similar results as ERSST212

and is thus not shown. Secondly, we consider two ocean reanalyses, namely ORAS4213

(Balmaseda et al 2013, , color code orange in the figure), available until 2011, and214

SODA2.2.4 (SODA hereafter, color code cyan in the figures) (Carton and Giese215

2008; Giese and Ray 2011; Ray and Giese 2012), available until 2005. As described216

in Ray et al (2015), for example, these two reanalyses are based on different ocean217

models, with different resolutions, different forcing datasets and different assimi-218

lation schemes, which may lead to substantial differences. They yield a consistent219

(significantly correlated at the 90% confidence level) reconstruction of the oceanic220

variability mainly down to 200m (Ray et al 2015). We use them both in order to221

assess the prediction skill of the system but taking into account the uncertainty in222

data, in particular for ocean variables hard to constrain such as the AMOC. For223

the AMOC, we also consider the reconstruction proposed by Latif et al (2006),224

using a dipole of SST between the Northern and Southern Atlantic (featured in225

yellow in the figures). Finally, for the subsurface temperature, integrated ocean226
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heat content and for the salinity, we also use the EN3 set of objectively analyzed227

temperature and salinity profiles (color code purple) proposed by Ingleby and228

Huddleston (2007). This product is not optimized for SST, as it does not integrate229

specific surface data. All these datasets will be collectively referred to as DATA230

from now on in the text. Note however that these data sets are always considered231

individually in all computations, and not averaged out. Furthermore, for clarity of232

the figures, the ACC and RMSE skill scores computed for the HIST simulations233

with respect to each of these data sets are not identified individually with specific234

colors.235

2.4 Data processing236

As discussed for example in van Oldenborgh et al (2012), a large part of the skill237

in decadal temperature forecasts is due to the trend. In order to study the pre-238

dictability of the variability around the trend, it is important to remove the effect239

of the trend as cleanly as possible. A good definition of the trend is nevertheless240

difficult to obtain, given the non-linearity of the forcing (see discussion in Garćıa-241

Serrano et al (2014)). Furthermore, estimates of local trends are subject to large242

sampling variability because of the lower signal to noise ratio for smaller spatial243

scales. Therefore, we focus here on spatial averages over relatively large domains244

(typically, the North Atlantic Ocean between 30◦N and 60◦N) in order to maxi-245

mize the signal to noise ratio (Goddard et al 2012).246

The treatment of data is then done as follows. Firstly, all ensemble sets (HIST,247

NUDG3, DEC and DATA) are organized mimicking the hindcasts outputs, that is248

as a function of start dates (from 1961 to 2013 or 2006 depending on the DEC sys-249
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tem under consideration) and lead times (from 1 to 10 years). Secondly, anomalies250

are computed. The reference period is estimated as the overlapping period be-251

tween the observational records and the hindcasts, i.e. [1961 - 2005] if the SODA252

reanalysis is included. Results were also tested against the use of a longer reference253

period, namely 1961-2011. This implies excluding the SODA reanalysis, but main254

results were unchanged. We then consider, for each dataset, anomalies with respect255

to the linear trend. This trend is estimated separately for each forecast time over256

the reference period. The simulated trend is computed separately for each indi-257

vidual member and the same methodology is applied both for DEC3 and DEC9.258

Observational trend is also considered as forecast-time dependent. Note that this259

procedure includes a correction of a bias in the mean state as well as of the linear260

response to external forcings. We assume that the residual signal represents the261

unforced variability, but we know that this is just an assumption as the external262

forcing is not linear. Note that the IPSL-CM5A-LR coupled model has a climate263

sensitivity of 3.9K for a doubling of CO2 (Dufresne et al 2013), which places it at264

the 4th out of 11 models of the CMIP5 ranked per decreasing climate sensitivity265

(Vial et al 2013) and is stronger than the newest estimates of climate sensitivity266

around 3K (Collins et al 2014).267

To ensure having the same number of verification years at each forecast time268

in DEC3, we consider the verification period [1966 - 2005] when the SODA dataset269

is included. Following the four-year average approach this implies that the com-270

mon verification period spans from 1966/69 to 2002/05,with a total of 37 values271

per forecast lead time. Results are also tested against the common verification272

period 1966/69 to 2008/11, when SODA is excluded. Except if discussed in the273

text, results are generally similar. Note that the use of such common verifica-274
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tion framework yields the same number of degrees of freedom for all lead times275

for a single time series (e.g. Garćıa-Serrano et al 2012); this enables a consistent276

comparison of forecast skills at different lead times. Furthermore, given that the277

non-initialized simulations are in fact a re-organization of the outputs from three278

long-term simulations (HIST1, HIST2, HIST3), the time series constructed for the279

different lead times are identical and thus the statistical metrics are constant. The280

same applies to the DATA time series following this approach. Note furthermore281

that this common verification framework was not used for DEC9 due to the few282

start dates available.283

2.5 Forecast quality assessment284

Multi-annual prediction skill is measured in terms of anomaly correlation coeffi-285

cients (ACC) and root mean square errors (RMSE). ACC and RMSE are calculated286

based on the ensemble mean of the hindcasts. Both measures are computed for287

DEC and HIST respectively, against DATA, and for each lead time. Significance of288

the correlation is tested with a one-sided Student t-test at the 90% confidence level.289

The number of degrees of freedom takes into account the autocorrelation of each290

time series, as suggested in Bretherton et al (1999). We also test the significance of291

the ACC difference between HIST and DEC. The purpose of this additional test292

is to evaluate the added-value of initialization for the prediction skill. Significance293

of the difference between the RMSE of initialized (DEC) versus non-initialized294

(HIST) ensembles is evaluated using a Fisher test. Note that a fair estimation of295

the continuous ranked probability score (Ferro 2014) was found to yield very simi-296

lar conclusions as the RMSE. Given that the evaluation of probability distribution297
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might be problematic in DEC9 which only counts 8 realizations, we decided to298

show only RMSE here.299

All ACC and RMSE are also computed against the NUDG3 (simply named300

NUDG in the following) outputs, and significance is tested similarly. The point of301

evaluating prediction skill against both DATA and NUDG is to compare actual302

and potential predictability, respectively. Such assessment is particularly relevant303

when initial conditions have been constructed through nudging rather than di-304

rectly taken from an independent dataset. In this case, indeed, the correlation and305

RMSE of hindcasts with respect to NUDG is expected to be higher than computed306

against DATA, as NUDG contains effectively the initial conditions from which the307

hindcasts were launched, and these can then be substantially different from the308

data (e.g. Ray et al 2015). The forecasting skill against NUDG gives an idea of309

the upper limit of possible skill in the system, while the one computed against310

DATA measures the actual skill against a particular reconstruction of reality. The311

potential prediction skill defined here is inspired from Boer et al (2013) but not312

fully equivalent: for Boer et al (2013) potential forecast skill is analogous to actual313

forecast skill, but with the divergence of the forecast from the observed evolution314

being replaced by a measure of the divergence of model results from each other.315

Here, we rather use a different reference, namely the NUDG simulation. Note also316

that only one nudged simulation is used, and not the average of the three. Indeed,317

the nudging only has a limited impact on the ocean subsurface, so that the three318

nudged simulations do slightly differ after a certain depth (Ray et al 2015). As a319

result, averaging the three nudged simulations in these regions would risk to blur320

the reconstructed variability at depth. Note however that it would not change the321

results regarding the SST prediction skill.322



Decadal prediction skill with surface nudging 15

We also compare the skill of the forecasts with the performance of a first order323

auto-regressive model (e.g. Ho et al 2012). Initial conditions are taken from the324

last year before the beginning of the hindcasts, that is the last year with suppos-325

edly known conditions. The time constant involved in the auto-regressive model is326

estimated from the fit of the autocorrelation function of the considered time series327

taken in the long-term control run by a decreasing exponential (e.g. Mignot and328

Frankignoul 2003).329

Finally, while the metrics presented above focus on the ensemble mean, it is also330

important to consider the dispersion of the hindcasts around this mean, in order to331

estimate their reliability. A forecast system is considered as reliable when the fore-332

cast probabilities of a certain variable match the observed ones. These questions333

have been extensively tackled for seasonal forecasts (e.g. Weisheimer et al 2011;334

Batté and Déqué 2012), and much less for the decadal predictions (Corti et al 2012;335

Ho et al 2013). Here, since our analysis only uses one prediction system, the error336

primarily comes from uncertainty in initial conditions. In this respect, the spread337

of the set of predictions can be used as a measure of the prediction error. This338

ensemble spread is compared to the RMSE of the forecast ensembles with respect339

to DATA or NUDG. For a prediction to be reliable, or trustworthy, the time-mean340

ensemble spread about the ensemble mean should equal the time-mean RMSE of341

the ensemble mean forecast. The system is said overdispersed if the spread signif-342

icantly exceeds the RMSE. In this case, the probabilistic forecasts are unreliable343

as the individual forecasts may produce too different results. On the contrary, if344

the spread is significantly smaller than the RMSE (system underdispersive), es-345

pecially at short forecast ranges, it may indicate that the initial perturbation of346

the probabilistic forecast is too weak to realistically sample the uncertainty of the347
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system. The system can then be characterized as overconfident, and it is in any348

case also poorly reliable. Note nevertheless that caution is required when assessing349

the reliability in DEC3, given the very low number of members.350

3 Global and tropical SST prediction skill351

3.1 Global SST prediction skill352

Fig. 1a shows the time series of detrended global-mean SST anomalies averaged353

over the forecast years 2-5 in the DEC3 ensemble mean and the corresponding354

non-initialized hindcasts HIST. Outputs from the NUDG simulation and ERSST355

are also shown. These time series highlight the decadal climate variability at global356

scale and the cooling signatures of the major volcanoes which have erupted over357

the last 50 years: Mt Agung in 1963, El Chichon in 1982 and Mt Pinatubo in358

1991. Because of the strong negative radiative forcing of these volcanic eruptions,359

ACC of the hindcasts with both NUDG and the DATA is not significantly dif-360

ferent from that obtained with the non-initialized hindcasts (Fig 1b). The global361

mean SST indeed primarily responds to external forcing, and this figure illus-362

trates the weak added value of initialization for predicting this climate quantity363

over the period considered here (which includes rather strong volcanic eruptions).364

Consistently with Mehta et al (2013), volcanic eruptions are one of the important365

sources of decadal prediction skill for global SST. When computed against NUDG366

and ERSST (the dataset used for the nudging) ACC remains significant at all367

lead times. SODA and more clearly ORAS4 yield lower scores. This illustrates the368

uncertainty in available datasets, and how it hampers hindcast verification. Note369

that the AR1 predictive method started from DEC3 and computed with respect to370
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NUDG is not skillful. This is consistent with an important role of external forcing,371

which may appear after the date when the hindcast was launched.372

Fig. 1e further illustrates the influence of non-linear external forcing in the373

DEC9 predictive system. Because hindcasts are launched every 5 years only in374

this set, their specific timing with respect to the volcanic eruptions listed above is375

very important. More precisely, one should note that the start dates used in DEC9376

(following the CMIP5 protocol) are in phase or slightly leading the eruptions. As377

a result, for the forecast range 2-5 years for example, two start dates (1982-1985378

and 1992-1995) are very strongly influenced by the eruptions (since the radiative379

impact typically lasts 3 years, Robock (e.g. 2000)). This highly contrasts with the380

forecast range 4-7 years, which is, for each start date, only impacted by the last381

year of the volcanic radiative effect (see also Figure 10 in Germe et al (2014)). As382

a result, the main source of predictability for global SST is partly lost for the fore-383

cast range 4-7 years and the correlation skill drops. Impact of the main volcanic384

eruptions in the last 60 years falls again in the time window of the predictions at385

lead times 6-9 years, thereby contributing to enhance the correlation skill again.386

Such specific sampling issue does not occur in DEC3 (Fig. 1b). A subsampling387

analysis of the start date frequency in DEC3 confirms that the drop of skill from388

forecast ranges 3-6 years until 5-8 years, followed by a recovery at the forecast389

range 6-9 years essentially comes from the specific choice of start dates every 5390

years starting from 1961 (Fig. 2).391

Benefits of the system’s initialization in bringing together the different mem-392

bers are yet visible from the fact that the spread of the initialized hindcasts is ini-393

tially smaller than for non-initialized hindcasts (Fig 1c.). Afterwards, it increases394

with forecast time, towards the level of the non-initialized hindcasts spread, il-395
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lustrating the decreased influence of initialization with forecast time. Eventually,396

the spread of DEC3 is even slightly larger than that of HIST. Note however that397

differences are not significant. The spread of HIST hindcasts is slightly lower than398

the RMSE with respect to the NUDG simulation, suggesting that the potential399

non-initialized forecast system is overconfident (underdispersive). This feature is400

worse for the initialized system (Fig 1c.). This lack of reliability is reduced in the401

DEC9 system (Fig 1f) for which the RMSE is reduced. We recall that DEC9 differs402

from DEC3 in terms of start dates frequency and ensemble size. Fig. 2 shows that403

the reduction of the RMSE in DEC9 does not arise from a decrease in the start404

date frequency. It is thus due to the increase in the number of members which405

indeed is expected to yield a better estimate of RMSE through a more accurate406

estimation of the ensemble mean. Nevertheless, Fig. 2 also shows that a reduction407

of the start date frequency yields more noisy and therefore less robust statistics,408

which can lead to spurious results. The RMSE of DEC3 is larger than that of409

HIST, whatever the reference set (Fig 1c.) This feature is reduced in DEC9, prob-410

ably as a result of the better estimation of the RMSE. Still, this result is relatively411

surprising, given the expected added value from initialization to correct part of412

the errors in the unforced model response and put the model in phase with the413

unforced variability, thereby decreasing the RMSE similarly for DEC3 and DEC9.414

These differences are nevertheless not significant, and this feature disappears for415

other regions investigated below.416

Fig. 3 shows the potential ACC skill score of the HIST and DEC3 ensembles417

computed grid-pointwise for detrended SST for the lead times 1 year, 2-5 years418

and 6-9 years. The added-value of initialization for the first lead time is clearly419

illustrated on the top panel: for a lead time of 1 year, SST is skillfully predicted420
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over all oceanic regions in the initialized hindcasts. For longer lead times, fewer421

regions remain skillfully predicted in the initialized runs. The subpolar North At-422

lantic, the extratropical North Pacific, the northern Indian Ocean and the western423

tropical Pacific, as well as localized areas of the Southern Ocean stand out. In424

the CCSM4 experimental decadal prediction system, Karspeck et al (2014) found425

that the subpolar North Atlantic was the only region where the initialized predic-426

tions outperform the non-initialized ones. The maps shown here are a bit more427

encouraging, but they only show potential skill. Note that the maps computed428

against ERSST rather than NUDG are very similar (not shown). In the following,429

we focus on specific regions and discuss both the potential and actual prediction430

skill, including uncertainty arising from observational datasets.431

3.2 Tropical SST prediction skill432

In the tropical band, forecasting skill is investigated using individual forecast years,433

instead of multi-year averages. Both potential and actual SST predictions are skill-434

ful for the first lead time only (Fig. 4b). The non-initialized ensemble, on the other435

hand, is never significantly skillful (ACC is always negative), indicating that the436

prediction skill at 1 year lead time has been enabled by the initialization of the437

coupled model. For this first lead time, RMSE of DEC3 is smaller (but not signif-438

icantly) than that of HIST, further highlighting the impact of initialization. This439

effect is lost for longer forecast ranges, with the spread of DEC3 reaching the level440

of HIST. All statistics (both actual and potential) thus nicely highlight a predic-441

tion skill of 1 year over the tropical band, thanks to the better initial conditions,442

an effect that is lost afterwards. Actual and potential ACC skills also loose signifi-443
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cance after the first lead time, but the decrease is more gradual in DEC9, this may444

be due to sampling effects. Furthermore, DEC9 is roughly reliable for the first two445

lead times. As above, a subsampling analysis of the start dates frequency in DEC3446

shows that these improvements of DEC9 performances over DEC3 comes from the447

increase in the number of members (not shown). However, for lead times longer448

than 3 years, the evolution of skills with the lead time in DEC9 is, again, very449

noisy. This ACC recovery at lead time 7 years in DEC9 (Fig. 4e) gives another450

illustration of possible spurious predictions and conclusions when too few start451

dates are used. Another sampling impact is noticeable in the RMSE of DEC9 with452

two peaks at lead time 4 and 9 years, separated by the start date frequency of 5453

years (Fig. 4f).454

Further analysis shows that skill at lead time 1 is also found when considering455

the tropical Atlantic or the tropical Pacific separately (Fig. 3 right). In the tropical456

Pacific, the skill of year 1 in this region is consistent with the literature: in theory,457

ENSO is believed to be predictable on the order of 1 or 2 years in advance be-458

cause of the self-sustained nature of the tropical Pacific coupled ocean-atmosphere459

system (e.g. Neelin et al 1998). In practice, however, this predictability is reduced460

because of the influence of stochastic atmospheric forcings, such as surface wind461

bursts in the western equatorial Pacific (e.g. Kleeman and Moore 1997; Perigaud462

and Cassou 2000; Fedorov et al 2003). Thus, ENSO predictability is usually lim-463

ited to a few months, reaching two years only in some specific studies (Luo et al464

2008; Volpi et al 2013). This general result seems to hold for our specific forecast465

system.466
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4 Prediction skill in the North Atlantic Ocean467

As indicated above, the North Atlantic Ocean is often found to be the most pre-468

dictable region of the world’s ocean when compared to non-initialized predictions469

(e.g. Hazeleger et al 2013b; Corti et al 2012; Kim et al 2012; van Oldenborgh et al470

2012; Doblas-Reyes et al 2013). We focus first on the North Atlantic variability,471

by looking at the linearly detrended SST average over the Atlantic region [0-60◦N]472

(Fig. 5). Note that this index slightly differs from the canonical definition of At-473

lantic Multidecadal Oscillation (AMO, e.g Sutton and Hodson 2005) as it is not474

low pass filtered. It is only computed using a four-year running mean, as forecast475

ranges of 4 years are considered. It is used here to characterize the Atlantic Mul-476

tidecadal Variability (AMV). The variability in HIST is strongly dominated by477

the model’s bidecadal variability described in Escudier et al (2013) and Ortega478

et al (2015b). This internal variability is partly phased by external forcings, as479

shown in Swingedouw et al (2013, 2015). However, according to these studies, the480

Mt Agung eruption (1963) induces a phasing of the AMOC (see below) only 15481

years later and thus of the North Atlantic SSTs after about 20 years, i.e. from482

the mid-1980s. This phasing can indeed be seen around the end of the period in483

Fig 5a and is confirmed by a positive correlation between the North Atlantic SST484

from HIST and from ERSST for the period [1987-2005] (not shown). Before this,485

the variability in HIST is strong and completely un-phased with data.486

Both potential and actual prediction skill are significant for all forecast ranges487

for DEC3, contrary to HIST (Fig 5b). The statistical prediction based on an AR1488

process is also significantly correlated with the NUDG, but only for the forecast489

range 1-4 years, which is consistent with previous findings showing that dynami-490
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cal predictions out-perform statistical predictions based on persistence over large491

parts of North Atlantic for longer lead times (e.g. Ho et al 2012). This suggests492

that the additional skill potentially coming from ocean dynamics, beyond the ther-493

mal inertia, is noticeable after about 1-4 years ahead (e.g. Matei et al 2012). We494

also note that ACC computed against NUDG is generally slightly higher than the495

ones computed against DATA, in particular for shortest forecast ranges, and it496

shows a skill decrease with forecast time. The degradation in the North Atlantic497

SST multi-year skill is even more clearly seen in DEC9, and it has also been found498

in recent studies using start dates every 5 years, in particular with the ENSEM-499

BLES decadal re-forecasts ensemble (van Oldenborgh et al 2012; Garćıa-Serrano500

and Doblas-Reyes 2012) and the CMIP5 ensemble (Kim et al 2012). This is less501

obvious from yearly start dates, but it was reported in the DePreSys system by502

Garćıa-Serrano et al (2012). In DEC9, significance of actual skill is lost at forecast503

ranges longer than 4-7 yrs.504

As for ACC (Fig 5b), RMSE of the initialized hindcasts (with respect to the505

NUDG simulation) is significantly smaller than for the non-initialized ones for506

all forecast ranges (Fig 5c). The difference is no longer significant when RMSE507

is computed against all other datasets, except for ORAS4. This can indicate a508

weak impact of initialization or a weak signal to noise ratio. In DEC9, RMSE is509

reduced as compared to DEC3, but given the reduced degrees of freedom, it is not510

significantly different from that of HIST, even when assessed against NUDG (Fig511

5f). Furthermore, as above, while DEC3 is strongly overconfident (underdisper-512

sive), DEC9 is a more reliable prediction system thanks to the increased number513

of members.514

Fig. 6 compares the prediction skill of SST anomalies in the North Atlantic515
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midlatitude ([30◦N - 60◦N]) and low-latitude ([0 - 30◦N]) regions respectively. As516

for the total North Atlantic SST variability, correlation with the NUDG simulation517

is significant at all lead times for the extratropical North Atlantic, both in DEC3518

(Fig. 6b) and in DEC9 (not shown). Furthermore, the correlation skill score with519

NUDG is almost constant for all forecast ranges, as in Fig. 5. On the contrary,520

for the low-latitude part, the potential skill score is significant and significantly521

different from non-initialized hindcasts only until the forecast range 2-5 to 3-6522

years in DEC3 (Fig. 6d and in DEC9, not shown). As discussed in Garćıa-Serrano523

et al (2012), this finding illustrates that the added-value from initialization in the524

AMV skill during the second half of the hindcast is likely dominated by midlati-525

tudes in the SST area average. The skill of the AR1 model is also very different526

in the two regions: while it is pretty skillful at midlatitudes, it does not provide527

any skillful information at lower latitudes. This suggests that the long prediction528

skill at midlatitudes is linked to the long persistence of SST anomalies. It is con-529

sistent with the observed autocorrelation functions shown for the two regions in530

Garćıa-Serrano et al (2012). This difference between low and mid-latitudes skill531

as a function for short and long forecast ranges can be carried over to actual532

prediction skill in DEC3, although details in the significance of ACC depend on533

the dataset and forecast range that is considered for verification. On the contrary,534

ACC significance decays with forecast time at lower latitudes. The picture is con-535

sistent but more noisy in DEC9, in particular in the northern region (not shown).536

Fig. 7(a and b) shows the correlation maps of the observed SST averaged over537

the northern Atlantic [0-60◦N] with SST anomalies in observations and NUDG.538

All time series have been averaged over four consecutive years prior to computing539

the correlation. These maps compare the representation of the observed variability540
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averaged over the North Atlantic in the nudged simulation and in the observations.541

The patterns are both well significant over the whole North Atlantic, except pri-542

marily along the Gulf Stream path, similarly to what is found in other studies543

(e.g. Marini and Frankignoul 2013). The pattern in the bottom panel (Fig. 7c) is544

different with observations and NUDG: in the non-initialized simulations (HIST),545

correlation against the AMV variability is only significant equatorward of 15◦N546

and in the western subtropical part of the North Atlantic. This suggests that547

SST variability in the extratropical North Atlantic mainly relies on the internal548

variability rather than the response to radiative forcing Comparing Fig. 7(b) and549

Fig. 7(c) shows the nudging efficiency to bring North Atlantic variability close to550

observations. Nevertheless, at subpolar latitudes, the NUDG pattern shows non551

significant areas, unlike what is found in ERSST (Fig. 7a and b). These areas are552

quite small, but they indicate that locally, the nudging is not always sufficiently553

strong with respect to the model’s deficiencies and internal variability to constrain554

the SST anomalies. As previous studies have suggested that this area is crucial555

for predictability in the north and tropical Atlantic (e.g Dunstone et al 2011),556

this may explain the lack of actual predictability in our model. Specific reasons557

for this poor constraining of SST in this region is probably linked to the strong558

internal variability of this area in the model Escudier et al (2013); Ortega et al559

(2015a) and/or a particular sensitivity to external radiative forcing as in other560

CMIP5 models (e.g. Garćıa-Serrano et al 2014). The correlation of the predicted561

SST at forecast range 2-5 years with the observed North Atlantic variability (Fig.562

7 d) largely resembles the one found for HIST (panel c): it is hardly significant in563

the extratropical North Atlantic and the significant domain extends only slightly564

poleward as compared to HIST. In other words, the nudging works correctly in the565
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North Atlantic but it yields a gain of predictability only between 15◦N and 30◦N566

in the North Atlantic. It does not constrain sufficiently the subpolar SSTs. At the567

forecast range 6-9 years (Fig. 7 e), though, areas of significant correlation in the568

northern and eastern subpolar Atlantic emerge. This is consistent with enhanced569

actual predictability seen in Fig. 6b. This cannot be due to external forcing in the570

model, as the structure in HIST is very different. Oceanic dynamics is a plausi-571

ble explanation, as it may bring the DEC structure closer to the one of NUDG572

in spite of a lack of predictability in the subpolar North Atlantic. Predictability573

gained thanks to oceanic dynamics in the North Atlantic has already been invoked574

by previous studies (e.g. Matei et al 2012). Another candidate is the effect of the575

initialization in correcting the model’s response to external forcing, identified as576

one of the premises of decadal climate prediction (Meehl et al 2014), and its persis-577

tence along the hindcast period (Fig. 6b). In IPSL-CM5-LR probably both effects578

are at play.579

Given the impact of the AMOC on the North Atlantic temperatures (e.g.580

Knight et al 2005), we also attempt to evaluate its prediction skill. The major lim-581

itation for this assessment is the poor consistency of reanalyses in terms of AMOC582

variability (Reichler et al 2012; Pohlmann et al 2013). As an illustration, the time583

series of the maximum of the AMOC at 48◦N from the ORAS4 and SODA reanal-584

yses have a correlation coefficient of 0.24 over the common period [1961-2012], and585

0.25 at 26◦N. Both values are significant at the 90% level (1-sided) but explain586

only 6% of the covariance. Correlation for the absolute maximum in latitude is587

close to 0. Swingedouw et al (2015) have evidenced the influence of the volcanic588

forcing on the timing of bi-decadal variability in the North Atlantic in data and589

simulations. In particular, volcanic eruptions were found to induce an acceleration590
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of the AMOC with a delay of roughly 15 years after the eruption. Swingedouw591

et al (2013) showed that the SST nudging still plays an important role, as they592

translate the role of atmospheric forcing such as the persistent NAO events in the593

1980s and 1990s. This might explain the slightly delayed AMOC maximum around594

the end of the 1990s in NUDG as compared to HIST (Fig. 8 a and b), but this595

effect is weaker in the present analysis than in Swingedouw et al (2013) as only596

one realization of NUDG is used here.597

Fig. 8 shows that our system has no skill in predicting the AMOC reconstructed598

by either of these reanalyses. By contrast, potential predictability as measured us-599

ing ACC is significant at all lead times (Fig. 8b), in agreement with the long600

AMOC internal predictability (Persechino et al 2013). Although these values start601

higher than for the non-initialized hindcasts at the first two forecast ranges, the602

difference is not significant. The same conclusion holds for the RMSE although603

initialization has also helped to reduce the spread of the initialized hindcasts.604

In order to better understand the impact of the initialization on the North605

Atlantic ocean and its predictability, we investigate the predictability of vertically606

averaged ocean heat content in DEC3 (Fig. 9). In the North Atlantic midlatitudes,607

there is practically no actual skill for the heat content integrated down to 300m or608

below which is consistent with the lack of actual SST skill in the same region (Figs.609

6b, 7d,e). The potential skill is significant for all forecast ranges. It is higher than610

the skill obtained for non-initialized hindcasts until the forecast range 2-5 years,611

but the difference is not significant. As for the AMOC, the ocean heat content is612

found to be strongly impacted by the model’s internal variability, characterized613

by a 20 year time scale.614
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5 Prediction skill in the North Pacific Ocean615

Prediction skill of the tropical Pacific was discussed in section 3.2. The northern616

Pacific Ocean is usually one of the regions with the lowest actual skill in near-617

term temperature forecasting (Guemas et al 2012; Kim et al 2012; Branstator and618

Teng 2012; Bellucci et al 2013), although hints of improved predictability in the619

North Pacific temperatures by initialization have been found by Mochizuki et al620

(2010), Chikamoto et al (2013) and Magnusson et al (2012). After a trend anal-621

ysis, Bellucci et al (2014) suggest that the poor skill in the extra-tropical North622

Pacific reflects the inability of the models to correctly reproduce the observed ratio623

between forced and unforced variability in this region, where the warming trend624

only explains a small fraction of the total variability. Fig. 3 nevertheless reveals625

potential prediction skill in our system in the North Pacific midlatitudes. One can626

identify three skilful regions in the North Pacific in our model, at lead-time 2-5627

years (middle right panel): Firstly, a skilful region is found between 5◦N and 15◦N628

in the western Pacific, which also appears in HIST, thereby suggesting that it is629

associated to external forcing. A second skilful region is found between 15◦N and630

30◦N in the western to central Pacific. This region is not skilful in HIST. Thus it631

has been positively affected by the initialization. It looses skill at lead time 6-9632

years (Fig. 3 bottom right). Consistently, ACC for SST averaged over the low lati-633

tudes ([0− 30◦N]) in the Pacific is only significant when computed against NUDG634

(potential predictability), and only over the forecast range 1-4 years (not shown).635

This is less than what was described for the tropical to subtropical North Atlantic636

above. As discussed previously, this is due to the dominant influence of ENSO in637

the Pacific, poorly predictable beyond one year, while the tropical Atlantic ben-638
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efits from the influence of subpolar latitudes and cross-equatorial heat transport639

by the AMOC. Finally, the maps also show a skilful region between 30◦N and640

45◦N extending almost through the whole Pacific basin, which is still significantly641

correlated with NUDG at forecast range 6-9 years, while no skill is found in HIST.642

This region bears similarity with the skilful region highlighted in Kim et al (2012,643

2014); Doblas-Reyes et al (2013). Fig. 10 confirms that in our system, the po-644

tential skill averaged over the northern extratropical Pacific from 30◦N to 45◦N is645

significant for all forecast ranges and significantly different from the skill obtained646

for non-initialized hindcasts. Interestingly, actual prediction skill is also significant647

for all lead times so that although scores are slightly lower, actual prediction skill648

practically equals potential skill in this region. Furthermore, the actual skill is at649

least as good as for the Atlantic (Fig. 5b 6b). Note that the shape of the ACC evo-650

lution with increasing forecast ranges 1-4 years, as computed against NUDG and651

DATA contrasts with the skill of the statistical AR1 process. The latter yields a652

significant correlation only for the shortest forecast range, and it decreases quickly653

afterwards. This suggests a role of the oceanic circulation on this predictability654

beyond thermal inertia. RMSE of DEC3 is not significantly different from HIST,655

and neither is the spread (Fig. 10c). In general, DEC3 appears to be reliable, with656

the ensemble mean RSME matching the ensemble spread, while DEC9 can be657

rather considered as overdispersive.658

The correlation between SST averaged over this region ([30◦N-45◦N]) and the659

first empirical orthogonal function of annual mean SSTs between 20◦N and 75◦N660

amounts to -0.94 (significant at the 95% level, not shown) in the control simulation.661

This indicates that the SST average shown in Fig.10 can be taken as a measure of662

the negative phase of the Pacific Decadal Oscillation (PDO) in IPSL-CM5A-LR,663
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in a manner similar to the definition in Mantua et al (1997). Fig. 11 shows that in664

observations, SSTs averaged in the area also project on the typical PDO pattern665

(a), and that this is well represented in NUDG (b). However, the spatial pattern666

associated in the model with the observed variations of SST in the North Pacific667

([30◦N-45◦N], Fig. 11c) is not a PDO-like pattern. It rather bears similarity with668

the second least damped mode of North Pacific SST variability found by Newman669

et al 2007. The predicted pattern related to the observed time series (d and e)670

captures some of the positive anomalies in the central North Pacific, but not in671

the latitude band between 30◦N and 45◦N. Furthermore, the predicted pattern is672

positive in the whole subtropics, near the eastern coast and in the north. This also673

resembles the second least-damped mode of North Pacific SST variability found674

by Newman (2007), except for the tropical and eastern subtropical part. Newman675

(2007) and Newman (2013) suggested that the observed PDO represents the sum676

of several stochastic phenomena rather than a single physical process, and they677

showed that long term predictability in the North Pacific is primarily due to the678

second least-damped mode. The fact that the observed PDO time series projects679

onto this mode in the historical simulation may explain the relatively long pre-680

dictability in the North Pacific found in the model. The North Pacific climate has681

experienced several climate shifts over the past decades, in particular in 1976/1977682

(e.g. Trenberth and Hurrell 1994; Mantua et al 1997; Deser et al 2004; Yeh et al683

2011), in 1988/89 (Hare and Mantua 2000; Trenberth and Hurrell 1994) and in684

1998/99 (Minobe 2000; Di Lorenzo et al 2008; Ding et al 2013). In the context of685

the PDO being represented by the sum of several stochastic processes, Newman686

(2007) explain that these shifts may only be predictable within the timescale of687

the most rapidly decorrelating noise, i.e. around 2 years. The ERSST curve in Fig.688
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10a shows how these shifts translate in terms of SST averaged of the North Pa-689

cific midlatitudes. The three transitions are reasonably reproduced in the NUDG690

simulation, and the 1976 and the 1998 ones are reasonably predicted 2-5 years691

in advance. This may again be explained by the dominance in the model of one692

specific mechanism for the PDO, as opposed to what is found in Newman (2007).693

The late 1980’s event is rather well predicted with a 1 year lead time (not shown),694

while it is missed with at a 2-5 years forecast range. Note also that in the model,695

SST average between 30◦N and 45◦ in the Pacific is strongly correlated with the696

SSTs in the North Atlantic low-latitudes (r=0.45, significant at the 95% level,697

not shown). Although this statistical link is not realistic (see for example Marini698

and Frankignoul (2013)), it may also explain the relatively long predictive skill699

detected in the North Pacific in our model.700

We turn now to the investigation of the OHC, a key variable for ocean memory701

and thus predictability. Ocean heat content integrated down to 300m over the ex-702

tratropical Pacific shows surprisingly good potential prediction skill, as compared703

to literature (Fig. 12). Initialized predictions are potentially skillful for all forecast704

ranges, and ACC measured against SODA (i.e. actual skill) is significant and sig-705

nificantly different from non-initialized hindcasts up to the forecast range of 5-8706

years. For ORAS4 and EN3, ACC is in general significant as well, although not707

significantly different from the skill obtained in HIST. Time series for the fore-708

cast range 2-5 years (Fig. 12a) confirm the relatively good reconstruction of the709

ocean heat content variability in NUDG with respect to EN3. These performances710

are overall striking and good and contrast with the general idea that decadal pre-711

dictability over the North Pacific is quite low. Nevertheless, Chikamoto et al (2013)712

reported prediction skill over almost a decade for subsurface temperatures in the713
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North Pacific, which is in agreement with our actual skill assessment. The potential714

predictability of our system suggests that even longer skillful forecasts might be715

achieved in the future. Interestingly, once again, the AR1 statistical model yields716

significant prediction skill for lead times 1-4 years, but the ACC drops rapidly as717

forecast times increases. This clearly suggests a role of ocean processes for the long718

predictability detected in ocean heat content in IPSL-CM5A-LR.719

6 Results on salinity720

In a perfect model framework, Servonnat et al (2014) showed a good ability of721

SST nudging in reconstructing SSS variability in the tropics. It is therefore in-722

teresting to evaluate the prediction skill of this variable in the same region for723

our set of experiments (Fig. 13). Note however that given the lack of long-term724

satellite measurements, SSS reconstructions and reanalysis are subject to much725

higher uncertainty than temperature, so that actual prediction skill (or the lack726

of) has to be interpreted with care. Potential prediction skill of SSS over the tropi-727

cal band (20◦S-20◦N) is significant for the first three forecast years, but both ACC728

and RMSE are significantly different in DEC3 and HIST only the first year. SSS729

has thus been impacted by the nudging in the Tropics, as described in (Servon-730

nat et al 2014) and given its relatively longer persistence than SST (e.g. Mignot731

and Frankignoul 2003), it is potentially predictable over relatively longer forecast732

ranges too. The AR1 model yields potential skill for 1-year lead time. In terms733

of actual prediction skill, ACC is low but significant only when computed against734

ORAS4. NUDG is indeed significantly correlated with ORAS4 at the 90% con-735

fidence level (r = 0.70), suggesting that SSS has been reconstructed with some736
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agreement as compared to ORAS4. Note that these results primarily come from737

the tropical Pacific, while potential skill is only significant for the first two lead738

times in the tropical Atlantic. Séférian et al (2014) found similar results in the739

tropical Pacific for the nutrient primary productivity.740

We now examine the prediction skill, both potential and actual, of the SSS in741

the North Atlantic ([30◦N-60◦N] Fig. 14 ). As indicated by the weak correlation742

between NUDG and the DATA (Table 2, top), SSS has not been properly recon-743

structed in these regions as compared to reanalysis. SSS typical variability in all744

simulations is much stronger than in the DATA (Table 2, top, first column), prob-745

ably as a result of the strong bi-decadal variability in this region in the model.746

Nevertheless, SSS has been influenced by the nudging, as correlations between747

HIST and NUDG are also very weak. Note that the same applies to SST (Fig.748

6a). In the North Atlantic, the resulting SSS variability both in the NUDG and749

DEC3 time series is strongly correlated with the corresponding SST. It was also750

the case in the non-initialized runs HIST. This strong link between SST and SSS751

in the North Atlantic in this model has been extensively described in Escudier et al752

(2013). The correlation of SST and SSS in the NUDG shows that SST nudging753

has strongly impacted the SSS through the 20-yr cycle. Significant skill score and754

correlation of the DEC3 time series of SST and SSS for the forecast range 2-5 years755

shows that this phasing in the NUDG carries on in the hindcasts and yields po-756

tential predictability for the SSS in the northern North Atlantic. Given the role of757

SSS anomalies for deep convection and the AMOC, this type of mechanism for SSS758

predictability is encouraging for AMOC predictability. Unfortunately, actual pre-759

diction skill is not significant. Nevertheless, since SSS is not properly constrained760

in this region in data and reanalysis, large uncertainties remain concerning large-761
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scale SSS observation products. Reasons for these discrepancies are beyond the762

scope of the present study.763

In the model, SSS and SST are not as tightly linked in the North Pacific as764

in the North Atlantic. Nevertheless, the salinity is also affected by the nudging,765

as seen from the weak correlations between HIST and NUDG time series (Table766

2). The high (although not significant at the 90% confidence level) correlation be-767

tween NUDG and DEC3 can thus be attributed to the SSS internal persistence,768

with makes it potentially predictable in the model.769

7 Conclusions770

Two decadal prediction ensembles, based on hindcasts performed with the same771

model and the same simple initialization strategy have been analyzed. The initial-772

ization consists of surface nudging to ERSST anomalies, with a relatively weak773

nudging strength, namely 40 W.m−2.K−1. The first ensemble consists of 3 mem-774

bers of hindcasts launched every year between 1961 and 2013. The second ensemble775

consists of 9 members launched every 5 years between 1961 and 2006. The focus776

of this study has been on assessing multi-year prediction skill of the ocean in these777

two decadal prediction ensembles.778

The first important outcome of this study is precisely the difficulty to assess779

the actual skill, because of data uncertainty. For SST, ACC and RMSE measured780

from one observational dataset (ERSST) and two reanalysis (ORAS4 and SODA)781

led in general to similar conclusions in terms of predictability horizon, but with782

different values for the ACC and the RMSE. For the salinity and the ocean heat783

content, EN3, ORAS4 and SODA could also lead to different predictability hori-784
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zons. For the AMOC, the three reconstructions considered here were found to785

be very weakly correlated. Understanding the reasons for these particularities are786

beyond the scope of this study. We suggest nevertheless that forthcoming assess-787

ments of decadal predictions should be performed against several -at least more788

than one -datasets, as a measure of the uncertainty of the data.789

A second major conclusion is the importance of increasing the number of mem-790

bers and start dates in decadal prediction systems. This idea is not new (e.g. Kirt-791

man et al 2013) and in the literature, the issue of the small size of ensembles has792

been overcome by using multi-model ensembles (e.g. van Oldenborgh et al 2012;793

Bellucci et al 2014). We showed here that 3 members are usually not enough to794

estimate consistently the ensemble mean, and thus yield biased estimates of the795

RMSE. Increasing the ensemble size to 9 members helps in reducing this problem.796

It leads to overall more reliable predictions, as the ensemble mean is more accu-797

rately estimated, so that the RMSE is reduced and it becomes comparable to the798

spread. Probabilistic skill scores yield similar conclusions (not shown), although799

the estimation of a probability density function with 9 members could only be800

tested with a start date interval of 5 years (DEC9) and should be considered with801

care. Increasing the number of start dates also appeared crucial in order to obtain802

robust prediction skill scores. With only 8 or 9 start dates to verify against, pre-803

diction scores are very noisy and thus poorly trustworthy. The major influence of804

non-linear effects of external forcing as well as background decadal variability has805

been illustrated.806

A third particularity of the present study as compared to previously published807

evaluations of decadal prediction systems is the parallel assessment of both poten-808

tial and actual prediction skill. Computing skill scores against observations and809
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reanalysis datasets is of course crucial for practical applications. From a techni-810

cal point of view, this is also important in order to evaluate the efficiency of the811

initialization strategy. However, from a pure scientific point of view, potential pre-812

diction skill gives a robust insight in the maximum predictive horizon which can be813

expected for a particular forecast system, thereby suggesting possible mechanisms814

responsible for the predictability, and areas where specific efforts on measurement815

systems and/or model improvements should be made. In the case of DEC3, par-816

ticularly long potential prediction skill has been found for the AMOC, the upper817

300m ocean heat content and the SSS in the North Atlantic, and could be in-818

terpreted in terms of the internal mode variability of the IPSL-CM5A-LR model.819

Even if this does not translate in terms of actual skill it gives hope for future820

systems using more efficient initialization techniques, and provides physical expla-821

nation for predictive skill.822

For linearly detrended SST, both potential and actual prediction skill is of the823

order of 10 years at the global scale, and this is essentially due to the non-linear824

response to external forcing. Regionally, the horizon of the potential skill is 1 year825

in the tropical band, 10 years at mid latitudes in the North Atlantic and in the826

North Pacific and 5 years at low latitudes in the North Atlantic. These results are827

generally consistent with previously published single and multi-models analysis,828

even yielding longer predictability in the North Pacific midlatitudes. This is a par-829

ticularly important result given the relatively simple initialization strategy used830

here, namely a weak nudging to observed SST anomalies. This score may come831

from the model’s specific spatial pattern associated to the observed SST variability832

in the North Pacific, and/or spurious correlation between SST variability in the833

North Atlantic and North Pacific. Regarding the North Atlantic, we have shown834
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that the nudging helps phasing the SST but in hindcast mode, it is not strong835

enough to constrain it with respect to the strong internal variability of the model.836

Few studies analyzed in detail the prediction skill of integrated ocean heat content837

in such systems. Here, we find surprisingly high actual skill for this variable in the838

extratropical North Pacific. Over the North Atlantic, it has no actual skill, and839

neither does the AMOC, but we also underlined very strong discrepancies among840

the different datasets for this variable, illustrating the difficulties to observe or841

reconstruct this large-scale feature. The particularly long prediction skill obtained842

in surface and subsurface over the extratropical North Pacific will deserve a dedi-843

cated future study.844

Surface SST nudging also proved relatively efficient to induce significant poten-845

tial predictability of sea surface salinity in the tropics for about three years, which846

is longer than the prediction skill on SST. In the extratropical North Atlantic,847

our analysis also showed distinctive behavior resulting from a dominant internal848

mode of variability at the 20-year timescale in our model. SST nudging indeed849

exerts a strong influence on SSS, which induces a strong phasing of this variable850

in the nudged simulation. This leads to a surprisingly long potential predictability851

of SSS in the extratropical North Atlantic. Comparison with other systems should852

be performed in order to better understand the robustness and the reasons for853

this result. Although the mechanism is encouraging, this effect did not induce sig-854

nificant actual skill for SSS. Given promising results regarding the realism of this855

20-year timescale in the North Atlantic (e.g. Swingedouw et al 2015), next steps856

on the path of investigating the performance of surface initialization will consist of857

testing SSS and surface wind stress initialization. Data uncertainty is presently a858

strong limitation regarding the use of SSS for decadal prediction initial conditions859
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but hope may come from recent satellite missions.860
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significant correlations at the 90% level are marked with the black1242

dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621243
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ORAS4 (a1) and SODA (a2). The yellow line on panel (b) and (c)1245

shows the skill scores (ACC and RMSE) of the AMOC computed1246

against the reconstruction proposed by Latif et al (2006), using a1247

dipole of SST between the Northern and Southern Atlantic. . . . . . 631248

9 Same as Fig. 1 for the oceanic heat content integrated down to 300m1249

and averaged over the North Atlantic sub polar region [30◦N-60◦N].1250

The purple bars in panel (a) and purple lines in panel (b) and (c)1251

correspond to the heat content computed from the EN3 dataset. . . 641252

10 Same as Fig. 1 for SST averaged over the region [30◦N-45◦N] in the1253

Pacific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651254

11 Correlation of observed ERSST time series averaged between 30◦N1255

and 45◦N in the Pacific against the SST field in (a) ERSST (b-1256

c) NUDG and HIST respectively, (d-e) DEC3 at forecast range 2-1257
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significant correlations at the 90% level are marked with the black1260
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12 Same as Fig. 9 averaged over the Pacific extratropical region [30◦N-1262

45◦N]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671263

13 Same as Fig. 4 (left), but for the SSS (average over the latitude1264

band [20◦S-20◦N]). The purple bars in panel (a) and purple lines in1265

panel (b) and (c) are from EN3 dataset. . . . . . . . . . . . . . . . . 681266

14 Same as Fig. 1 for SSS averaged over the region [30◦N-60◦N] in the1267

Atlantic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691268
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Initialization strategy ens. size Start dates length(yrs) Name Remark

Non-initialized 3 yearly (1961-2013) 10 HIST independent long-term historical simulations:

HIST1, HIST2, HIST3

continuous surface nudging 3 yearly (1961-2013) 10 NUDG independent long-term nudged simulations:

NUDG1, NUDG2, NUDG3

surface nudging 3 Every 5 years

(1961-2006) (CMIP5)

10 DEC1 launched from NUDG1

surface nudging 3 Every 5 years

(1961-2006) (CMIP5)

10 DEC2 launched from NUDG2

surface nudging 3 Yearly (1961-2013) 10 DEC3 launched from NUDG3

surface nudging 9 Every 5 years

(1961-2006)

10 DEC9 from DEC1+DEC2+DEC3

Table 1 table summarizing the hind cast simulations used in this study. We specify in par-

ticular the initialization strategy, the number of members of the ensemble, the start dates

frequency, the length (in years) of each hindcasts. The final columns gives some additional

remarks for clarity.
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Atlantic - [30◦N-60◦N] std (psu) EN3 ORAS4 SODA HIST NUDG DEC3 SST

EN3 / ERSST 0.025 1 0.05 0.77 0.23 0.08 -0.27 0.35

ORAS4 0.028 - 1 0.17 0.14 0.10 0.17 -0.34

SODA 0.032 - - 1 0.42 -0.20 -0.47 0.19

HIST 0.065 - - - 1 -0.57 -0.66 0.80

NUDG 0.094 - - - - 1 0.79 0.64

DEC3 0.081 - - - - - 1 0.69

Pacific - [30◦N-45◦N] std EN3 ORAS4 SODA HIST NUDG DEC3 SST

EN3 / ERSST 0.016 1 0.72 0.60 0.32 0.27 0.29 -0.10

ORAS4 0.027 - 1 0.86 0.36 0.26 0.32 0.06

SODA 0.019 - - 1 0.23 0.14 0.14 0.44

HIST 0.016 - - - 1 0.24 -0.12 -0.02

NUDG 0.022 - - - - 1 0.51 0.06

DEC3 0.022 - - - - - 1 0.42

Table 2 correlation between SSS time series in different regions in the reanalysis (ORAS4 and

SODA respectively), and the HIST, NUDG and DEC3 time series computed from the model

simulations as described in the text at the forecast range 2-5 years. The last column gives

the correlation between the SSS and the SST time series for dataset separately. Significant

correlation at the 90% level with a two-sided student test have been highlighted in bold
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Fig. 1 (a) and (d): Time series of the detrended ensemble mean forecast anomalies averaged

over the forecast years 2-5 (green, DEC3 (a), DEC9 (b)) and the accompanying non-initialized

(grey) experiments of the global-mean sea surface temperature (SST). The green and grey

shadings respectively show the spread of the forecasts. The red line shows the time series from

the nudged experiment. The observational time series from the ERSST dataset are represented

with dark blue vertical bars, where a 4-year running mean has been applied for consistency

with the time averaging of the predictions. The time axis corresponds to the first year of

the forecast period (i.e. year 2 of each forecast). (b) and (e): Correlation of the ensemble

mean with the NUDG reference (thick red and grey lines respectively, for the DEC and HIST

forecast ensembles), along the forecast time for 4-year averages. The figure also shows the

correlation of DEC with ERSST (dark blue), ORAS4 (orange) and SODA (light blue) in thin

lines, together with their counterparts for the HIST ensemble (grey thin lines’, different data

sets not identified with colors). Significant correlations according to a one-sided 90% confidence

level with a t-distribution are represented with a circle, non significant ones with a cross. The

number of degrees of freedom has been computed taking into account the autocorrelation of

the time series, which are different for each forecast time. A filled circle indicates significant

correlations but not passing a two-sided t-test for the differences between the DEC and HIST

correlations. (c) and (f): RMSE of the ensemble mean along the forecast time for 4-year forecast

averages are plotted with solid lines. Circles are used where the DEC skill is significantly better

than the HIST skill with 90% confidence using a two-sided F-test. Dashed lines represent the

ensemble spread estimated as the standard deviation of the anomalies around the multi-model

ensemble mean. Green line is for the spread of the initialized hindcasts (DEC3 (c), DEC9 (e)),

grey dashed lines for the non-initialized ones.
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Fig. 2 (a) Potential ACC skill score of global mean SST with start dates taken with an

interval of 1 to 5 years from 1961 to 2005 in DEC3. Grey lines show the corresponding skill

for the HIST ensemble. (b) as (a) for the RMSE. (c) and (d) Same as (a) and (b) for the skill

scores computed against ORAS4. Hindcasts launched between 1961 and 2005 were used here,

but anomalies were not computed against a common verification period since this would be

too restrictive for the longest start date intervals (see section 2.4 for details).
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Fig. 3 ensemble mean ACC of detrended SST in the HIST (left) and DEC3 (right) hindcasts

against the NUDG simulation, for a lead time of 1 year (top), 2-5 years (middle) and 6-9 years

(bottom). Non-significant correlations at the 90% confidence level are marked with black dots.
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Fig. 4 Same as Fig. 1 for SST averaged over the region [20◦S-20◦N]. In the upper panels,

HIST and DEC time series are considered for a lead time of 1 year. In the middle and bottom

panels, note that the forecast ranges are not 4-year averaged.
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Fig. 5 Same as Fig. 1 for SST averaged over the region [0-60◦N] in the Atlantic
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Fig. 6 Same as Fig. 1 (a) and (b) for SST averaged over the mid latitudes [30◦N-60◦N] (a

and b) and low latitude [0-30◦N] (c and d) in the Atlantic.
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Fig. 7 Correlation of observed ERSST time series averaged between 0 and 60◦N in the Atlantic

against the SST field in (a) ERSST (b-c) NUDG and HIST respectively, (d-e) DEC3 at forecast

range 2-5 years and 6-9 years respectively. All SST fields are linearly detrended and considered

as averages over 4 consecutive years. Non-significant correlations at the 90% level are marked

with the black dots.
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Fig. 8 Same as Fig. 1 for the AMOC maximum at 48◦N verified against ORAS4 (a1) and

SODA (a2). The yellow line on panel (b) and (c) shows the skill scores (ACC and RMSE) of

the AMOC computed against the reconstruction proposed by Latif et al (2006), using a dipole

of SST between the Northern and Southern Atlantic.
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Fig. 9 Same as Fig. 1 for the oceanic heat content integrated down to 300m and averaged

over the North Atlantic sub polar region [30◦N-60◦N]. The purple bars in panel (a) and purple

lines in panel (b) and (c) correspond to the heat content computed from the EN3 dataset.
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Fig. 10 Same as Fig. 1 for SST averaged over the region [30◦N-45◦N] in the Pacific
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Fig. 11 Correlation of observed ERSST time series averaged between 30◦N and 45◦N in the

Pacific against the SST field in (a) ERSST (b-c) NUDG and HIST respectively, (d-e) DEC3 at

forecast range 2-5 years and 6-9 years respectively. All SST fields are linearly detrended and

considered as averages over 4 consecutive years. Non-significant correlations at the 90% level

are marked with the black dots.
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Fig. 12 Same as Fig. 9 averaged over the Pacific extratropical region [30◦N-45◦N].
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Fig. 13 Same as Fig. 4 (left), but for the SSS (average over the latitude band [20◦S-20◦N]).

The purple bars in panel (a) and purple lines in panel (b) and (c) are from EN3 dataset.
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Fig. 14 Same as Fig. 1 for SSS averaged over the region [30◦N-60◦N] in the Atlantic


