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Abstract

We show that a 750 GeV di-photon excess as reported by the ATLAS and CMS experiments can be 
reproduced by the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) without the need 
of any ad-hoc addition of new states. The scalar resonance is identified with the spin-0 partner of the 
Dirac bino. We perform a thorough analysis of constraints coming from the mixing of the scalar with 
the Higgs boson, the stability of the vacuum and the requirement of perturbativity of the couplings up 
to very high energy scales. We exhibit examples of regions of the parameter space that respect all the 
constraints while reproducing the excess. We point out how trilinear couplings that are expected to arise 
in supersymmetry-breaking mediation scenarios, but were ignored in the previous literature on the subject, 
play an important role.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the first presentation of LHC Run 2 data, both experiments ATLAS and CMS presented 
an excess in the di-photon mass spectrum for comparable invariant masses. The CMS analysis 
observed its largest excess in the di-photon mass spectrum based on 2.6 fb−1 of pp collisions at 
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√
s = 13 TeV for an invariant mass of 760 GeV with a local significance of 2.6 σ and a global 

significance of smaller than 1.2 σ [1]. Similarly, the ATLAS collaboration reported the largest 
deviation from the background hypothesis for an invariant mass of 750 GeV using 3.2 fb−1 of 
data, leading to a local significance of 3.6 σ and a global significance of 2.0 σ taking into account 
the look-elsewhere-effect in the mass range of mγγ ∈ [200–2000] GeV [2].

After updating and refining their analysis, CMS achieved an improved sensitivity by more 
than 20% and added a new data set which was taken with B = 0 T reaching as well a comparable 
3.3 fb−1. The modest excess at 750 GeV for the combined 8 and 13 TeV data remained with 3.4 σ

(local) and 1.6 σ (global) significance [3]. ATLAS updated their 8 TeV analysis and confirmed 
the modest excess at 750 GeV in the Run I data set with a significance of 1.9 σ . Thus, the recent 
updates strengthen the hint for a new physics signal.

For the Spin-0 hypothesis and under the assumption of �/m� = 0.014 × 10−2 (with m� the 
scalar singlet mass) the combined dataset of CMS with 3.3 fb−1 (13 TeV) and 19.7 fb−1 (8 TeV)

gives the production cross-section times branching ratio into two photons to be

σ 13 TeV · Bγγ ≈ 3.7 ± 2 fb, (1.1)

while one analysis of the ATLAS data gives [4]

σ 13 TeV · Bγγ ≈ 12 ± 2 fb. (1.2)

An interpretation of this excess is that it is due to the production and subsequent decay of a 
scalar resonance of mass 750 GeV; while there have been many alternatives proposed (too many 
to mention here), we shall restrict to that case here as the most obvious and least tuned option 
in perturbative theories. The existence of such a particle with a mass close to the electroweak 
scale implies a new hierarchy problem that cannot obviously have an anthropic explanation, and 
this naturally strengthens the case for low-energy supersymmetry. However, the observed rate of 
diphoton production via the resonance is too large compared to what is expected from a heavy 
Higgs companion of the light Standard Model (SM)-like one, and in particular it is very difficult 
to justify in the Minimal Supersymmetric Standard Model (MSSM) (see e.g. [5–7]1). In fact, the 
interpretation of the excess is challenging for most previously proposed supersymmetric exten-
sions of the Standard Model, and of the perturbative models proposed since the announcement 
almost all invoke additional vector-like fermions and/or bosons. For an early review see [11]. In 
this work we shall show, on the other hand, that a previously proposed supersymmetric exten-
sion of the Standard Model called the Minimal Dirac Gaugino Supersymmetric Standard Model 
(MDGSSM) [12] contains all of the ingredients to explain the excess.

Since the proposal in [13] of extending the MSSM with extra states in the adjoint represen-
tation of the Standard Model to allow Dirac gaugino masses, this possibility has been subject 
to many studies due to their theoretical and phenomenological advantages: they allow simpler 
models of supersymmetry-breaking due to preserving an R-symmetry; their masses are supersoft 
[14] and supersafe from collider searches [15–17]; they ameliorate the SUSY flavour problem 
[18–20]; and contain new couplings which aid the naturalness of the Higgs mass [12,21–26]. 
Indeed, multiple realisations have been proposed that differ by the fate of R-symmetry, the pres-
ence or absence of additional states and interactions [14,22–24,27–63] (for a short introduction 

1 Note that although there have been several attempts to fit the excess in just the MSSM, such as in [8,9], they require 
a large fine-tuning of masses/parameters to be on resonance, and even then there remain questions about the viability of 
the scenario from e.g. vacuum stability constraints. In [10] it is unlikely that the enhancement of the chargino loop is 
valid once the width of the singlet is taken into account.



K. Benakli et al. / Nuclear Physics B 911 (2016) 127–162 129
see for example [64]). Here we consider the case of the MDGSSM which was introduced with a 
minimal content of extra states to automatically preserve unification of gauge couplings while al-
lowing the new couplings to the Higgs to enhance naturalness and allow the boundary conditions 
to be unified at a high energy scale.

We will show that it is one of the most promising models when it comes to reproduce the 
diphoton excess. Without any ad-hoc addition, all the necessary ingredients are already present 
in the MDGSSM:

• There is a singlet supermultiplet S introduced to give the Bino a Dirac gaugino mass. It is 
straightforward to identify its scalar (or pseudoscalar) component with the 750 GeV reso-
nance.

• There are extra vector-like charged states, subsequently called “fake leptons” [65] as they 
carry the same quantum numbers as the Standard Model leptons. They were introduced in 
order to restore the automatic gauge coupling unification that was spoiled by the addition of 
the adjoint representations of the Standard Model gauge group. In this work, these states will 
increase the coupling of the scalar resonance to photons at one loop.

• There is an octet supermultiplet O required to give the gluino a Dirac mass. This contains 
colour-octet scalars which will generate a coupling of the singlet resonance to gluons at one 
loop (via trilinear scalar couplings), required for its production in gluon fusion.

One of the important constraints to impose on any new scalar S candidate to explain the 
excess is a bound on its mixing with the Standard Model Higgs. This mixing is not only induced 
at one-loop, but can be present already at tree level. The supersymmetric operator describing the 
Dirac gaugino bino mass leads to a modification of the U(1)Y D-term as

D1 = D
(0)
Y → D1 = −2m1DSR + D

(0)
Y with D

(0)
Y = −g′∑

j

Yjϕ
∗
j ϕj (1.3)

where SR is the real part of S and ϕj a scalar field with charge Yj under U(1)Y . Upon elimination 
of the auxilliary fields, this implies an interaction of the form:

g′m1DSR(|H 0
u |2 − |H 0

d |2), (1.4)

thereof a tree-level induced mixing. However, this is typically compensated by the presence in 
the superpotential of a term of the form:

W ⊃ λSSHuHd. (1.5)

A precise evaluation of this mixing at the tree and one-loop level needs to be carried out carefully 
if one tries to identify the scalar S in models of Dirac gauginos with a 750 GeV resonance.

Our parameter space is constrained by the requirements of stability of the vacuum avoiding 
existence of directions in the phase space of the model taking the fields expectation values to 
charge- and colour-breaking vacua. This is important as we shall see that trilinear terms will 
play an important role in generating the required amount of scalar production and decay into 
di-photons. Among the trilinear terms considered here some have not been explicitly discussed 
in the existing literature while they are expected to be generically present in the model. This is 
the case for example of soft terms mixing three adjoint scalars that we will show that they are 
generated in models of gauge mediation.

We shall keep couplings small enough to preserve perturbativity up to the GUT scale. This re-
striction can be of course relaxed if one allows for Landau poles below the GUT scale. However, 
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as one of the virtues of the MSSM was to predict perturbative unification of gauge couplings, and 
was one of the motivations for introducing the MDGSSM, we shall place emphasis on finding 
regions of the parameter space which respect this condition.

To find the parameter space relevant for the diphoton excess we shall use the most sophisti-
cated tool available: the code SARAH [66–71] and its SPheno [72,73] output. This is able to 
calculate the masses of all particles to full one-loop order, and two-loops in the gaugeless limit 
for the neutral (pseudo)scalars [74–76]. It can calculate renormalisation group equations of all 
couplings to two-loop order, including the masses and tadpoles in Dirac gaugino models as given 
in [77]. A guide to its use for studying the diphoton excess was described in [11]; we make some 
small modifications described in section 5.1. In particular, this will allow us to obtain the produc-
tion and decays of our resonance at 8 and 13 TeV while simultaneously accurately computing its 
mass and assuring that the light Higgs mass is correct, and verifying that the mixing between the 
singlet and the Higgs is small (also computed at two loops). We shall find that quantum correc-
tions to the spectrum of particles are not just important but essential for understanding how the 
model describes the excess.

Finally, we note that there have been three previous attempts to relate models with Dirac gaug-
ino masses with the diphoton excess. In [78] as in this work the scalar component of S was the 
putative resonance; however, the entire coupling was driven by (1.4) which required very large 
Dirac gaugino masses (which would potentially flatten the Higgs potential). In [79] the candidate 
is a neutral component of a scalar doublet R0

u introduced in the MRSSM to preserve R-symmetry, 
but the model required the R-symmetry to be broken to fit the excess and the Dirac nature of the 
gauginos played little role. As we were preparing to submit this work, [80] appeared, where the 
pseudoscalar component of S plays the role of the resonance; it couples entirely via superpo-
tential couplings to coloured and charged fermions and thus requires large Majorana gaugino 
masses and charginos close to the threshold of 375 GeV to generate the couplings to photons and 
gluons. Here we will not require Majorana masses,2 and will include only ingredients already 
allowed in the MDGSSM.

The paper is organised as follows. In section 2, we summarise the MDGSSM field content 
and interactions. To generate a large gluon coupling we require trilinear scalar adjoint couplings, 
the generation of which we describe in section 3 along with some observations on adjoint scalar 
masses. We discuss the constraints on the model in section 4; in particular, this includes a detailed 
study of vacuum stability, and an analysis of the constraints on colour octet scalars which are 
important and interesting in the context of this model. Our numerical results are provided in sec-
tion 5: we consider four different scenarios which vary depending on the origin of R-symmetry 
violation, and give benchmark points to illustrate how our model reproduces the signal. Our 
results are summarised in the conclusions.

2. The minimal Dirac gaugino model

2.1. Model content and Lagrangian

In this section we review the main ingredients of the Minimal Dirac Gaugino Supersymmetric 
Standard Model (MDGSSM) introduced in [12].

2 Except for our final scenario, which contains a double peak structure that can mimic a large width resonance – as 
discussed in e.g. [81–84].
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Table 1
Chiral and gauge multiplet fields in the model.

Names Spin 0 Spin 1/2 Spin 1 (SU(3), SU(2),U(1)Y ) R-charge

Quarks Q Q̃ = (ũL, d̃L) (uL,dL) (3, 2, 1/6) 1
Uc Ũ c

L
Uc

L
(3, 1, −2/3) 0

(×3 families) Dc D̃c
L

Dc
L

(3, 1, 1/3) 0

Leptons L (ν̃eL,ẽL) (νeL, eL) (1, 2, −1/2) 1
(×3 families) Ec Ẽc Ec (1, 1, 1) 0

Higgs Hu (H+
u ,H 0

u ) (H̃+
u , H̃ 0

u ) (1, 2, 1/2) 1
Hd (H 0

d
,H−

d
) (H̃ 0

d
, H̃−

d
) (1, 2, −1/2) 1

Gluons W3α λ3α g (8, 1, 0) 1
[≡ g̃α]

W W2α λ2α W±,W0 (1, 3, 0) 1
[≡ W̃±, W̃0]

B W1α λ1α B (1, 1, 0 ) 1
[≡ B̃]

DG-octet O O χg (8, 1, 0) 0
[≡ g̃′]

DG-triplet T {T 0, T ±} {χ0
T

,χ±
T

} (1, 3, 0 ) 0
[≡ {W̃ ′ ±, W̃ ′ 0}]

DG-singlet S S χS (1, 1, 0 ) 0
[≡ B̃ ′]

Higgs-like Ru Ru R̃u (1, 2, −1/2) 1
leptons Rd Rd R̃d (1, 2, 1/2) 1

Fake Ê(×2) Ê
ˆ̃
E (1, 1, 1) 0

electrons Ê′(×2) Ê′ ˆ̃
E′ (1, 1, −1) 2

2.1.1. Field content
The MDGSSM field content can be seen as the minimal set providing the MSSM gauginos 

a Dirac mass while preserving two-loop unification and perturbativity of gauge couplings. We 
summarised it in Table 1. In addition to the chiral multiplets transforming under the adjoint 
representations of the gauge groups, it includes new fields charged under the lepton number 
global symmetry. They consist of extra Higgs-like doublets3 Ru, Rd as well as two pairs of 
vector-like right-handed electron superfields E′

1,2 in (1, 1)1 and Ẽ′
1,2 in (1, 1)−1. Such states 

are compatible with an (SU(3))3 Grand Unification gauge group. This is the minimal set which 
enables a “natural” unification (unification without mass thresholds tuning) similar to the MSSM.

The adjoint chiral multiplets contain new complex adjoint scalars, S, T and O:

S = SR + iSI√
2

T = 1

2
√

2

(
TR + iTI

√
2(T+R + iT+I )√

2(T−R + iT−I ) −(TR + iTI )

)

3 The hypercharges are opposite with respect to the Higgs doublet in the MSSM to match the MRSSM notation for the 
same fields.
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O(a) = O
(a)
R + iO

(a)
I√

2
(2.1)

where the SR, O(a)
R , TR, T−R, T+R and the SI , O

(a)
I , TI , T−I , T+I are real scalars and pseudo-

scalars, respectively.

2.1.2. Lagrangian
The superpotential for these fields can be written as

W = WYukawa + WDG + WRV (2.2)

where WYukawa contains the usual MSSM Yukawas part

WYukawa = Y
ij
u Uc

iQj Hu − Y
ij
d Dc

iQj Hd − Y
ij
e Ec

iLj Hd (2.3)

WDG contains the R-symmetric (according to the choice of R-charges in Table 1) contributions 
of the non-MSSM fields4

WDG = (μ + λSS)HdHu + √
2λT HdTHu

(μR + λSRS)RuRd + 2λT RRuTRd

+ (μ
Ê ij

+ λ
SÊc ij

S)ÊiÊ′
j + λSEij SEc

iÊ′
j (2.4)

+ λSLRiSLiRd + 2λT LRiLiTRd − Y
Êi

RuHdÊi

− Y
ij
LFV Li · HdÊj − Y

j
EFV RuHdEc

j ,

while WRV gathers the R-symmetry violating terms

WRV = LS + M̂1

2
S2 + κ

3
S3 + M̂2tr(TT) + M̂3tr(OO)

+ λST Str(TT) + λSOStr(OO) + κO

3
tr(OOO) − Y

Ê′iRdHuÊ′
i

−→
R-symmetry

0 (2.5)

In this work we shall, as in [12], consider scenarios where R-symmetry is preserved by the 
superpotential (and thus these terms vanish). However we shall also consider the possibility that 
they do not vanish – so the superpotential violates R, in particular λSO will play an important 
role in the following.

For simplicity and to avoid lepton-flavour-violation constraints, we shall only the terms of 
the first three lines of (2.4) to appear with sizable couplings; the contributions of the last two 
must be small enough to be negligible for the purpose of this work, so we shall set them to zero 
throughout.

For the soft SUSY-breaking terms, from the MSSM we retain only the bilinear terms – i.e. 
conventional mass-squared terms and the Bμ term. All the scalar trilinear and Majorana gaugino 
mass terms violate R-symmetry; while for Bμ we suppose that, since R-symmetry is a chiral 
symmetry, we are breaking R-symmetry in the Higgs sector – and in fact it is only in combination 
with the superpotential terms μ, λS, λT that the R-symmetry is violated. Hence in principle we 
can have an entirely R-preserving supersymmetry-breaking sector.

4 Note that our coupling λT is normalised differently to [12,22,85], to match the normalisation used in SARAH.



K. Benakli et al. / Nuclear Physics B 911 (2016) 127–162 133
The soft SUSY breaking terms beyond those of the MSSM consist of5:

• Dirac gaugino masses:

Wsupersoft =
∫

d2θ
√

2θα

[
mD1SWY α + 2mD2tr(TW2 α) + 2mD3tr(OW3 α)

]
. (2.6)

• Soft terms associated with the adjoint scalars

−Lscalar soft
adjoints = m2

S |S|2 + 1

2
BS(S2 + h.c.) + 2m2

T tr(T †T ) + (BT tr(T T ) + h.c.)

+ 2m2
O tr(O†O) + (BO tr(OO) + h.c.)

+ [TSSHu · Hd + 2TT Hd · T Hu + 1

3
κAκS3 + tSS + h.c.

]
+ [TSOStr(O2) + TST Str(T 2) + 1

3
TO tr(O3) + h.c.

]
(2.7)

The terms on the last line have generally been neglected, but will play an important role in 
this work.

• Soft terms involving the new vector-like leptons:

−Lscalar soft
vector-like = m2

Ru
|Ru|2 + m2

Rd
|Rd |2 + [BRRdRu + h.c.]

+ Êi(m
2
Ê
)ij Ê

j + Ê′i (m2
Ê′)

j
i Ê

′
j + [Bij

Ê
ÊiÊ

′
j + h.c.]

+ [T ij
SESÊiÊ

′
j + TSRSRdRu + h.c.] . (2.8)

Let us highlight that in an R-symmetry conserving model, one cannot simultaneously have the 
trilinears TSE (respectively TSR) from (2.8) and the superpotential couplings λSE (respectively 
λSR) from (2.4) as each term requires a different R-charge for the fields Ê and Ê′ (respectively 
Ru and Rd ) to be R-invariant.

2.1.3. Scalar mass matrix
We use the notation

m̃2
S = m̃2

SR + λ2
S

v2

2

m̃2
T = m̃2

T R + λ2
T

v2

2
, (2.9)

where the effective masses for the real parts of S and T read:

m̃2
SR = m2

S + 4m2
1D + BS, m̃2

T R = m2
T + 4m2

2D + BT . (2.10)

Then, at tree level the scalar mass matrix in the basis {h, H, SR, T 0
R} is [23]:⎛

⎜⎜⎜⎝
M2

Z + hs
2
2β hs2βc2β hS hT

hs2βc2β M2
A − hs

2
2β HS HT

hS HS m̃2
S λSλT

v2

2

hT HT λSλT
v2

2 m̃2
T

⎞
⎟⎟⎟⎠ (2.11)

5 We suppress gauge indices while retaining generation indices and denote the complex conjugation of fields by upper 
versus lower indices.
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where we have defined:

h = v2

2
(λ2

S + λ2
T ) − M2

Z (2.12)

which vanishes when λS and λT take their N = 2 values,

hS = −2
vS

v
m̃2

SR, hT = −2
vT

v
m̃2

T R (2.13)

and

HS = g′m1Dvs2β, HT = −gm2Dvs2β .

(2.14)

This matrix is diagonalised by the mixing matrix Sij . Of particular interest will be S11 which 
measures if the lightest scalar eigenstate is Standard Model Higgs like, and S13 which measures 
the proportion of the scalar singlet SR in this lightest eigenstate.

3. Generating trilinear and quartic couplings

Previous studies of Dirac gaugino models have generally neglected the phenomenology of 
adjoint self-coupling terms, with an exception being a superpotential term κ

3 S3 used in [22] to 
generate μ/Bμ as in the NMSSM, and a recent brief discussion in [61]. In the case of super-
potential terms such as λSO these can be neglected when considering an R-symmetric visible 
sector; however, trilinear soft couplings such as TSO, TO (see (2.7)) are always allowed. It is 
therefore interesting to consider what values we expect from models of supersymmetry-breaking 
mediation.

Starting with a spurion analysis where supersymmetry is broken by either a D-term D or 
F-term F , then if the mediating dynamics is at a scale M the terms in our effective Lagrangian 
should be given by powers of D

M
, F

M
, D

M2 , F

M2 with appropriate factors of couplings and κl ≡
1/16π2. Furthermore, quartic and higher-order couplings – which are “hard” SUSY-breaking 
parameters – are always generated, but do not lead to quadratic divergences because they appear 
suppressed by powers of the scale M which is the cutoff of our effective theory. Important in this 

work are the quartics such as L ⊃ λ4S

24 S4 which must have size λ4S ∼ κ
p
l

(
D

M2

)q

for some integer 
p, q (or similarly for F-terms with even q); taking p = 1, q = 1 for a D-term we naively have a 
quadratic divergence in the scalar mass proportional to λ4S but this yields m2

S ∼ κlλ4SM2 ∼
κ2
l D � M2, while for q = 2 we have κ2

l
D2

M2 . In fact, this tells us that the case q = 1 is special 
because it implies a much larger correction at one loop than the direct mass, and could therefore 
destabilise the calculation. We shall return to this below.

As a first observation, if the mediation is by gravity, then M should be identified with the 
Planck scale (unless there is significant sequestering) and we should only consider the leading 
order terms. We would therefore require the quantum gravity theory to give us the terms TSO, TO

at leading order D/M, F/M and the quartics must, by the above reasoning, be negligible.
On the other hand, in the case of low-scale supersymmetry breaking – where it was argued 

in [86] that this requires Dirac gauginos – 
√

F ∼ √
D ∼ M ∼ TeV, and we generate all terms 

at a similar order, which would include TSO, TO . However, the phenomenology is significantly 
changed by the presence of higher-dimensional operators and the goldstino couplings [55] and, 
since it is difficult to reconcile with perturbative unification, we shall not discuss this further 
here.
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Finally, for gauge mediation M could be as small as 
√

F or 
√

D but there is no a priori upper 
limit on M until we choose a particular quantum gravity embedding. The Dirac gaugino masses 
are expected to be generated at one loop and be of order κl

D
M

or κl
F 2

M3 . For F-term breaking the 

standard gauge-mediation soft mass-squareds for the squarks/sleptons are of order κ2
l

F 2

M2 , while 

in D-term breaking they may be suppressed. Therefore if we imagine that κl
D
M

∼ TeV, then for 

terms κl
D2

M3 to be significant we would need D ∼ M2 and furthermore M ∼ 100 TeV.

3.1. Adjoint couplings in gauge mediation

One of the most interesting issues in the construction of gauge mediation models with Dirac 
gaugino masses has been that of the adjoint scalar masses: in the simplest realisation, only a 
B-type mass-squared L ⊃ − 1

2B��2 is generated at leading order in D/M2, and not a conven-
tional mass-squared L ⊃ −m2

� |�|2. This happens for one pair of vector-like messengers Q, Q̃
having charges under a hidden U(1) of +1, −1, where the U(1) obtains a D-term. This was 
noticed from the earliest models [30,87] with the original proposed solution being to add a su-
persymmetric mass for the adjoint – which would also violate the R-symmetry and generate 
Majorana masses for the gauginos, with a see-saw effect. However, an alternative solution was 
found to be to introduce additional messenger states with non-diagonal couplings to either the 
adjoints (in the D-term case) [33,36] or an F-term spurion [31,33,36]; in the D-term case this 
requires the couplings to violate the U(1)-charges. In [36] examples were given where the ratio 
of B-type to conventional masses is arbitrary. The general ansatz was to couple the adjoint to 
messenger fields Qi, Q̃j and to possible F-term spurions X via superpotential couplings

W ⊃ MQiQ̃i + λ
ij̃

Qi�Q̃j + μ
ij̃

XQiQ̃j (3.1)

and D-terms via charges ei, ẽi which we can write as a matrix eij (QiQ
∗
j − Q̃iQ̃

∗
j ).

More recently, the issue has been re-examined. One suggested approach, dubbed “Goldstone 
gauginos,” is to promote the adjoints to be the Goldstone bosons of a broken symmetry [59,
60]; however, this solution would lead effectively to no higher-order interactions for our adjoint 
scalars and we do not consider it here. More in the spirit of the earlier works, the issue was 
rephrased in the language of effective operators in [38,52,61], where it was claimed that the 
explanation for the absence of conventional mass-squared terms for the adjoints at leading order 
is that the operator responsible for the generation of a leading-order mass-squared term should 
be

L ⊃
∫

d4θ
1

M2
[ψ†eqV ψ + ψ̃†e−qV ψ̃]�†�, (3.2)

where ψ, ψ̃ are a pair of fields charged under the hidden U(1) with charges ±q which obtain 
vevs (and thus generate a contribution to the hidden D-term). The above operator is generated 
by including terms in the superpotential that mix the messengers Q, Q̃ with other pairs of fields 
N, Ñ which are neutral (or at least have different charges) under the hidden U(1), so that the 
vevs of ψ, ψ̃ generate messenger mixing terms. This is clearly nearly equivalent to the above 
ansatz, and can be written in the form

W ⊃ MijQiQ̃j + λiQi�Q̃i (3.3)

where we now write the mass terms as violating the U(1) charges instead.
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If we start with the case of no couplings/mass mixing terms that violate the U(1) D-term 
charges, we shall first give a simple proof that the conventional mass term |�|2 vanishes at 
leading order for any number of messengers, and then look at higher-order terms. Considering 
first the visible gauge group to be U(1), we have the effective potential contribution from the 
messenger scalars (since the fermion potential is independent of D):

V =
∫

ddq

(2π)d
tr log(q2 +M2

Q + De) + tr log(q2 +M2
Q̃

− De)

≡ V+ + V−. (3.4)

Here M2
Q = (M + λ�)(M† + λ†�), M2

Q̃
= (M† + λ†�)(M + λ�) are the supersymmetric 

mass-squared matrices. Now, if we take the couplings to preserve the U(1) charges then we can 
write

V+ = De

∫
ddq

(2π)d
tr

(
1

q2 +M2
Q

)
− 1

2
D2e2

∫
ddq

(2π)d
tr

(
1

q2 +M2
Q

)2

+O(D3)

→ 16π2V = D2e2tr

(
logM2

Q/μ2
)

+O(D4) (3.5)

since the eigenvalues of M2
Q and M2

Q̃
are equal. Next, by taking the derivative with respect to 

� we find only a holomorphic function of �:

16π2 ∂V

∂�
= D2e2tr

(
[M + λ�]−1λ

)
+O(D4)

→ V = D2e2

16π2

[
tr

(
logMM†/μ2

)
+ Ṽ (�) + Ṽ (�)

]
+O(D4). (3.6)

As an example, consider the simple model of a single messenger where the matrices become 
numbers; then we have

Ṽ (�) = −
∞∑

n=1

1

n

(−λ�

M

)n

. (3.7)

This potential manifestly has trilinear and quartic couplings, although at order D2

M3 , D
2

M4 respec-
tively. Indeed, if we continue with the ansatz (3.1) then it is easy to see that there are no terms of 
linear order in D, because M2

Q = (M + λ�)(M + λ†�†) = M2
Q̃

and

V = D

∫
ddq

(2π)d
tr

{(
[q2 +M2

Q]−1 − [q2 +M2
Q̃

]−1
)

e

}
+O(D2). (3.8)

Hence to have large cubic interactions we should start from ansatz (3.3). In this way, in order to 
have an interesting phenomenology we require either D ∼ M2 with both at a low scale, or we 
require (as proposed in [52]) that

B� < m2
� ∼ aD + b

D2

M2
(3.9)

with some cancellation between the two terms so that we can have m� ∼ TSO . Note that once 
we take this ansatz with non-zero mixing between the messengers and [M, e] = 0 we typically 
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generate trilinear terms in the potential – but also tadpoles. The issue of tadpoles is then eas-
ily circumvented by embedding the coupling of the singlet adjoint S to the SU(3) and SU(2)

adjoints into the generator T Y = 1√
60

diag(2, 2, 2, −3, −3). This then also means that the cou-
plings of the singlet adjoint S are related to those of T and O; for example, for TSO , if we have 
calculated the coupling for U(1) messengers as being L ⊃ 1

6T��3, then we have

TSOδab = T� tr(T Y T a
3 T b

3 )

= 1√
15

T�δab (3.10)

where T a
3 , T b

3 are SU(3) generators. However, exploring sets of messengers which give these 
desired properties with sufficiently large trilinear couplings and exploring the vacuum stability 
of the total system would be very interesting, but is beyond the scope of this work.

4. Constraining the MDGSSM from the diphoton excess

We analyse in this section various theoretical and experimental constraints lying on the general 
model presented above. We start by considering the basics of production and decay of the scalar 
singlet and then study the most relevant collider constraints on our model. We finally investigate 
the requirements we need to impose in order to remain perturbative up to the GUT scale and 
avoid the appearance of Charge or Colour Breaking Vacuua.

4.1. Production and decay in the MDGSSM

In the narrow width approximation in which the mediating � singlet is automatically on-shell, 
we can approximate the cross section of the complete process pp → � → γ γ as follows:

σ(pp → � → γ γ ) = 2J + 1

sm��

[
Cgg�(� → gg) +

∑
q

Cqq�(� → qq)

]
�(� → γ γ ) .

(4.1)

Assuming a spin-zero particle of mass m� produced resonantly via gluon fusion, we arrive at

σ(pp → � → γ γ )13 TeV ≈ K13 × 4.9 × 106 fb
�gg

�

�γγ

�

�

m�

(4.2)

σ(pp → � → γ γ )8 TeV ≈ K8 × 1.1 × 106 fb
�gg

�

�γγ

�

�

m�

,

taking C8 TeV
gg = 174 and C13 TeV

gg = 2137 as values arising from the parton distribution functions 
[81], respectively. An important aspect of our calculation is that for a more realistic estimation, 
we have taken into account the K-factors K8,13 for the full NnLO production of H + jet compared 
to the tree-level process. We have estimated K8 � 1.9 from the comparison of the leading-
order effective vertex from MadGraph and the Higgs Cross-section working group value for 
a Standard-Model-like Higgs of 750 GeV at 8 TeV. We will take conservatively the same value 
for K13.

Let us first consider the coupling to two gluons. Considering our real scalar candidate SR, the 
process SR → gg is a priori generated by loops of squarks, scalar octet and gluinos. The width 
is given by
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�(SR → gg) = α2
3mSR

8π3

∣∣∣∣∣∣
∑
f

Cf

gSff√
τf

AS
1/2(τf ) +

∑
φ

Cφ

gSφφ

2
√

τφmφ

AS
0 (τφ)

∣∣∣∣∣∣
2

(4.3)

→ �(SR → gg)

mSR

� 3 · 10−5

∣∣∣∣∣
∑ gSff√

τf

AS
1/2(τf ) + gSφφ

2
√

τφmφ

AS
0 (τφ)

∣∣∣∣∣
2

,

where we used αs(mSR
) ∼ 0.09, we have defined τi ≡ 4

m2
i

m2
SR

, the sums runs over all scalars and 

fermions, and

f (τ) ≡
⎧⎨
⎩

(sin−1(1/
√

τ))2 τ ≥ 1

− 1
4

[
log 1+√

1−τ

1−√
1−τ

− iπ

]2

τ < 1

AS
0 = τ(τf (τ) − 1)

AS
1/2 = 2τ

(
1 + (1 − τ)f (τ))

)
.

Cf and Cφ indicate the corresponding colour factors, gSff and gSφφ are the couplings with the 
singlet of the fermions and scalars participating in the triangular loops. The loop functions AS

0
and AS

1/2 have a maximum at the resonant mass mSR
/2 ∼ 375 GeV. We will therefore generically 

require masses close to this scale in order to enhance the cross-section. The main contributions 
to the loop will be:

• D-term-induced couplings between the squarks and the singlet, generated by the Dirac 
masses operator of Eq. (2.6). Theses couplings are proportional to the hypercharge of the 
squarks and the Dirac mass m1D . They are sizeable only for large Dirac mass m1D .

• Soft terms trilinears couplings from (2.8) between the adjoint scalar octet and the singlet. 
They give a sizeable contribution but unfortunately are strongly constrained from vacuum 
stability bounds.

A priori, one could have expected a contribution from the Dirac gluinos. However, we observed 
that pure Dirac gluinos do not contribute at all to the amplitude. This remark is of crucial im-
portance for the pseudo-scalar SI which can only couple to gluons through fermions loops as 
we assume CP-conserving interactions. If no Majorana masses for the original gluinos are in-
troduced, the pseudo-scalar is practically not produced. However, if we allow for the presence 
of an additional Majorana mass term, the pseudo-scalar SI can then participate in the � → γ γ

cross-section, potentially leading to a “double-peak” scenario, as we will see later.
We now turn to the amplitude to diphotons. This is given for our scalar by

�(SR → γ γ ) = α2mSR

64π3

∣∣∣∣∣∣
∑
f

gSff√
τf

Q2
f AS

1/2(τf ) +
∑
φ

gSφφ

2
√

τφmφ

Q2
φAS

0 (τφ)

∣∣∣∣∣∣
2

(4.4)

→ �(� → γ γ )

mSR

� 2.7 · 10−8

∣∣∣∣∣
∑ gSff√

τf

AS
1/2(τf ) + gSφφ

2
√

τφmφ

AS
0 (τφ)

∣∣∣∣∣
2

,

where Qf and Qφ are the corresponding electric charges of the fermions and scalars running in 
the loops. In order to have an idea of the enhancement we need from the square term, let us find 
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the smallest value of �γγ leading to a σ(SR → γ γ ) � 2 fb. In the limit in which �gg dominates 
the decay width, we can use Eq. (4.2) to get

�γγ

mSR

� 2.1 × 10−7, (4.5)

which is an order of magnitude larger than the numerical factor in (4.4). The key issue will there-
fore be to populate the sums in the square terms of (4.4) since the amplitude will very roughly 
scale as N2, with N the number of particles participating in the loop. The main contributions 
will come from

• D-term-induced couplings between the sleptons and the singlet, they are again proportional 
to the hypercharge of the sleptons and to the Dirac mass m1D . They are therefore sizeable 
only for large Dirac mass.

• Superpotential-induced couplings between the fake leptons and the singlet from the terms 
of (2.4) in section 2. They are the main contributions in our model.6

• Soft terms trilinears couplings from (2.8) between the fake sleptons and the singlet. They are 
again strongly constrained from vacuum stability bounds.

An important remark here is that the two last contributions are mutually incompatible in presence 
of a preserved R-symmetry as we already stressed in Section 2.1.2.

4.2. Constraints from Higgs mass mixing and 8 TeV data

A crucial property of the singlet S is that it will in general mix with the Higgs eigenstates. 
This is in our case an undesirable feature since it will lead to tree-level decays of S into tops, W , 
Z or Higgs which could easily overcome the one-loop decay into photons.

4.2.1. Analytical estimate
Building on the notations introduced in the previous sections, we can use the minimisation 

condition of vS on the off-diagonal element hS of the scalar mass matrix given in (2.13) to find 
(see [88])

hS = v[vSλ2
S − g′m1Dc2β + √

2λSμ + λSλT vT ]
= v[√2λSμ̃ − g′m1Dc2β ] , (4.6)

where we used the effective mass parameter

μ̃ = μ + 1√
2
(λS vS + λT vT ) . (4.7)

From this basic analytical calculation, we see that we can minimise the tree-level mixing by 
choosing:

λS ∼ gY m1Dc2β√
2μ̃

. (4.8)

In general, this relation will be modified at one-loop, but the property that one value of λS is 
favoured will remain and is easily observable in our coming Figures.

6 Notice that since the coupling λS is usually small in most of the scenarios we will consider, the Higgsinos contribution 
will also be small.
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Fig. 1. Higgs mass and mixing between h and SR as a function of λS and tanβ . The thin black lines represent the 2%
and 4% mixing contour lines. The anomalies around tanβ ∼ 2.5 corresponds to the region where the two-loop effective 
potential used to determined the Higgs mass suffers from the so-called “Goldstone boson catastrophy” (see [75] for more 
details).

4.2.2. Experimental bounds and naturalness
Such a mixing with the Standard Model Higgs will modify the Higgs sector observables. 

From [89] we find the latest constraint on the 125 GeV Higgs global signal strength μaverage to 
be

μaverage = 1.09+0.11
−0.10 . (4.9)

In our case this is modified by a factor of |S11|2, where S is the mixing matrices of the scalar 
sector; the above constraint gives us

1 − |S11|2 ≤ 0.24 ↔
∑
k =1

|S1k|2 =
∑
k =1

|Sk1|2 ≤ 0.24. (4.10)

This condition is in fact satisfied quite easily, as can be seen from Fig. 1 where we show the 
contours for the Higgs mass and the mixing matrix element S31 as a function of tanβ and λS . 
An important comment regarding this Figure is that a 125 GeV Higgs boson also favours small 
mixing.

More stringent constraints arise from the non-observation of any excess in the 8 TeV data for 
the ZZ, and hh, dijets and WW channels: σ LHC8

hh < 39 fb [90], σ LHC8
ZZ < 12 fb [91], σ LHC8

Zh <

19 fb [92], σLHC8
W+W− < 40 fb [93,94]. Assuming dominant production of the singlet via gluon 

fusion, we can approximate a scaling factor of σ 13 TeV/σ 8 TeV ≈ 5, which lead to the following 
bounds under consideration of σ 13 TeV · Bγγ ≈ 3.7 ± 2 fb:

�(SR → hh) � 53
�(SR → ZZ) � 16
�(SR → Zh) � 26

�(SR → WW) � 54

⎫⎪⎪⎬
⎪⎪⎭× �(SR → γ γ ) ×

(
3.7 fb

σ 13 TeV · Bγγ

)
(4.11)
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which gives the most stringent constraints on the mixing between S and h. The di-Higgs channel 
is proportional to the tree-level mixing term without passing through the mixing, because the ver-
tex is given by hs/v (plus smaller terms proportional to the mixing matrix elements S13, S31); 
we have

�(SR → hh)

mSR

�
(

hs

v

)2 1

32πm̃2
SR

√
1 − 4m2

h

m̃2
SR

� 0.01 ×
(

m̃2
SR

v2

)(
hs

m2
SR

)2

� 0.1 × |S13|2, (4.12)

which gives a constraint of S13 � 0.01. On the other hand the constraints for Z and W decays 

come purely through the mixing matrix; defining x ≡ m2
V

m2
SR

for a vector boson V we have a decay 

rate

�(SR → V V ) = |csV V |2
128πmV

x−3/2(1 − 4x + 12x2)
√

1 − 4x (4.13)

and

chZZ = g2
Y + g2

2

2
v = 2M2

Z

v
, chW+W− = g2

2v

2
� 2M2

W

v
, ctW+W− = 2g2

2vT . (4.14)

Neglecting vT and mixing with the triplet as small effects, we can then write

�(SR → ZZ)

mSR

� 0.09|S13|2

�(SR → WW)

mSR

� 0.17|S13|2. (4.15)

Translating these into constraints, we see that it is the Z decays which are most important.
Notice that the only loop decays included in this paper are SR → γ γ and SR → gg (as they 

do not have a tree-level contribution). A priori in the negligible mixing region, one should also 
consider the other diboson loop decays (in particular to Zγ ). However, almost all of the new 
fields contributing to the loop decays will be SU(2) singlets so that the decay to diphoton will 
be the dominant diboson decay channel. The only exceptions are the new doublets Ru and Rd

which should mostly decay to WW , ZZ and Zγ . Due to the interference with the tree-level 
processes the loop contribution to these processes is not currently calculated in SARAH; their 
implementation is eagerly awaited in future work, but here we note that they will not have a 
significant impact on our results as described in [11].

Finally, the VEV of T gives a contribution to the W boson mass and the electroweak precision 
data give bounds on it. One must examine the induced correction ρ to the Veltman ρ-parameter:

ρ ≡ M2
W

c2
θW

M2
Z

= 1 + ρ , (4.16)

with ρ given analytically at tree-level by ([88])

ρ ∼ 4v2
T

v2
, (4.17)
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Fig. 2. One-loop (104 · ρ) in scenario Ra obtained from the benchmark point of Table 2 by varying λT and m2D . We 
have taken mT = 450 GeV. The black lines give the contours for mH = 122, 125 and 128.

where v is the usual Standard Model Higgs VEV. In order to be below the experimental con-
straints, we need ρ � (4.2 ± 2.7) × 10−4, ([88] – see also [24,54] –). At tree level, we have

vT � v2

2m̃2
T R

[
−gm2Dc2β − √

2μ̃λT

]
, (4.18)

with m̃2
T R = m2

T + 4m2
2D + BT , therefore, small ρ require large triplet Dirac and soft masses. 

This requirement can often be at odd with naturalness which prefers smaller triplet masses. In-
deed, radiative corrections induced by the adjoint triplet scalars to m2

Hu,d
are [88]:

δm2
Hu,d

⊃ − 1

16π2
(2λ2

T m2
T ) log

{
�

TeV

}
, (4.19)

with � the UV cut-off, m2
Hu,d

, m2
T the squared masses for Higgses and scalar triplet T , and λT

the coupling defined in (2.4). For � at the Planck scale, requiring a fine-tuning T = δm2
H /m2

H

better than 10% finally gives us

mT � 1

λT

450 GeV . (4.20)

In Fig. 2, we show the allowed region for λT and m2D for mT = 450 GeV. ρ has been obtained 
at one-loop using the Spheno [72,73] code generated by SARAH (see Refs. [66–70]). We see that 
the Higgs mass prefer large values of λT but that the following three requirements are perfectly 
compatible: (1) a 125 GeV Higgs, (2) a natural mass for the triplet and (3) a parameter ρ

smaller than the current constraints.

4.3. Bounds on colour octets

In this work we shall be interested in the case when either the scalar or pseudoscalar colour 
octets are lighter than a TeV. Even though such light scalars should be copiously produced in 
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Fig. 3. Pair production cross-section of octets at tree-level, at 8 TeV (blue, lower curves) and 13 TeV (red, upper curves). 
The bands indicate a variation of a factor of 2 each way relative to the values obtained in MadGraph. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

pairs at both 8 and 13 TeV, as shown in Fig. 3, their decays are loop suppressed and this inhibits 
single production.

Since current limits place all squarks above about 800 GeV, then, as first discussed in [32,95], 
the octets decay only to gluons and quarks – in particular almost entirely top quarks. This means 
that the possible signatures are four jets, dijet/ditop searches, and four tops. Up until relatively 
recently the constraints on them were rather weak, with dijets providing no constraint, and a 
mild constraint from ditops [96]. However, now the four top channel is particularly important: 
[97] placed a limit of 32 fb at 8 TeV, and [98] found 370 fb for Standard-Model-like kinematics, 
or 140 fb with and EFT pointlike interaction, at 13 TeV.

To interpret the implications of these searches for our model, we could in principle do a full re-
casting along the lines of [99]; however, for simplicity we shall consider instead the cross-section 
times branching ratio approach, taking the most conservative values of twice the tree-level cross-
section (i.e. a K-factor of 2) and a limit at 13 TeV of 140 fb. To compute the branching ratio into 
four tops, we require the widths into gluons and tops; while expressions were given for these 
originally in [32,95], those papers used complex octets, which is not appropriate for our case 
where the necessarily large (� 2 TeV) gluino mass causes a large splitting. Instead we require 
the expressions presented in [55], which we shall not reproduce here but to which we refer the 
reader.

The first important observation is that the pseudoscalar octet does not couple to gluons, and 
so pair production of pseudoscalar octets yields only four-top events, and by our above crite-
ria excludes pseudoscalars below about 880 GeV by the 13 TeV data. These are therefore less 
interesting for our analysis.

On the other hand, the scalar octet couples to squarks via its D-term coupling, and so couples 
to gluons. Since it couples to all coloured squarks, this can potentially be large. However, to 
be very conservative, we show production times branching ratio of four-tops via scalar octets 
in Fig. 4 at 8 and 13 TeV with the limits shown using a K-factor of 2, as we vary the octet 
mass and for three different values of the Dirac gluino mass, where the first two generations of 
squarks are decoupled (i.e. heavy and degenerate). To produce these, we take left-handed stops 
and sbottoms of 1200 GeV, right-handed stops of 800 GeV, and decoupled right-handed sbottoms 
(at 4 TeV). We neglect all squark mixing (which is a good approximation in this model). Since the 
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Fig. 4. Four-top production times branching ratio from scalar colour octets as a function of the octet mass, for gluino 
masses of 2.5 TeV (upper curve, blue), 3 TeV (middle curve, orange) and 3.5 TeV (lower curve, purple). The exper-
imental limit is shown as the dashed red horizontal line. The left plot is computed for 

√
s = 8 TeV, and right is for √

s = 13 TeV. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

couplings involve a cancellation between left- and right-handed squarks, this is very conservative: 
if we took heavier left-handed squarks, we would enhance the gluon rate relative to the top rate 
(because it has a contribution from sbottoms as well as stops) weakening the bounds.

We conclude that for 2.5 GeV gluinos, the octet scalars must be heavier than 500 GeV; but for 
3 TeV gluinos there is no constraint.

4.4. Perturbativity and Landau poles

The field content of the MDGSSM, and more precisely the two pairs of vector-like electrons 
Ê and Ê′ as well as the doublet Ru, Rd , have been chosen to have one-loop unification by com-
pleting the 80 +30 +10 set of adjoint multiplets into a complete GUT representation of (SU(3))3

(see [12]). We have furthermore checked numerically that gauge couplings remain safely pertur-
bative at two-loops up to the GUT scale, consistently with the results of [12].

Once the GUT scale is determined, we require perturbation theory to be valid up to the GUT 
scale. We choose as perturbativity requirement that all Yukawa couplings should remain smaller 
than 

√
4π . As we will see now, this gives strong constraints on the Yukawa couplings. At one-

loop, the beta functions for λSE , λSR , λSO , λS and λT form a coupled system given by:

βλS
= 1

16π2
λS[4λ2

S + 3λ2
T + 2λ2

SR + 2λ2
SE + 4λ2

SO − 3

5
g2

1 − 3g2
2 + 3y2

t + . . . ]

βλT
= 1

16π2
λT [2λ2

S + 4λ2
T − 3

5
g2

1 − 7g2
2 + 3y2

t . . . ]

βλSE
= 1

16π2
λSE[2λ2

S + 4λ2
SE + 2λ2

SR + 4λ2
SO − 12

5
g2

1 + . . . ]

βλSR
= 1

16π2
λSR[2λ2

S + 2λ2
SE + 4λ2

SR + 4λ2
SO − 3

5
g2

1 − 3g2
2 + . . . ]

βλSO
= 1

16π2
λSO [2λ2

S + 4λ2
SE + 2λ2

SR + 6λ2
SO − 12g2

3 + . . . ] ,

where the dots contain the contributions from the other couplings. Before studying this system 
numerically, we point out some peculiarities of these expressions:
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Fig. 5. Perturbativity bounds on our model, around the first benchmark point from Table 2, obtained from the requirement 
that no couplings overtake 

√
4π before the GUT scale. We consider λSR = λSE . Left plot: Bounds for (from left to right) 

λSE = 0.7, 0.5, 0.3, 0.1 in the λS/λT plane, all points above the curves are excluded. Right plot: Bounds for (from left 
to right) λT = 0.9, 0.7, 0.4, 0.1 in the λS/λSE plane, all points above the curves are excluded.

• The gauge couplings contribute negatively to the beta function, increasing the stability. In 
particular, λSO is strongly stabilised.

• In the limit λS → 0, λT completely decouples from the other Yukawa couplings.
• The perturbativity of the coupling λS will be critical as: (1) the gauge couplings and top 

Yukawa already give a positive contribution ∼ 1.1 to its beta function; (2) all the other 
Yukawas feed into its beta function and conversely λS feeds into all the beta functions.

We have numerically constrained the initial values for λSE , λSR , λSO , λS and λT at the low 
scale (SUSY scale), so that they remain perturbative up to the GUT scale. We use the two-loop 
RGEs generated by the public code SARAH (see Refs. [66–70] and Ref. [88]).

In Fig. 5, we study the case of λSO = 0, which will be relevant for the two R-conserving 
scenarios Ra and Rb. The perturbativity bounds are shown in the planes λS/λSE and λS/λT . As 
expected, we obtain the strongest constraints for λS , especially in the large λSE case, which is 
the one of interest in this paper. Furthermore, we recover that for λS → 0, λT is insensitive to the 
other Yukawa couplings. Adding the parameter λSO further constrains the Yukawa couplings. 
This is shown in Fig. 6 where we present the perturbativity bounds on λSE and λSO for various 
values of λS and λT . We see that for λSO ∼ 0.65, one should take λSE < 0.65 to be safely 
perturbative. Furthermore, as expected from the one-loop beta functions, λSO has an increased 
stability thanks to the strong gauge coupling contribution, allowing values up to 1.4 for low λSE . 
Notice in the right-hand plot of Fig. 6 that in the limit λS → 0, we recover that λT decouples 
from the other Yukawas.

4.5. Vacuum stability

We now turn to the constraints from vacuum stability; since we have significant trilinear scalar 
couplings then this is of crucial importance. The tree-level scalar potential can be decomposed 
into four main contributions:

V = Vg + VW + Vsoft + Vhard , (4.21)
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Fig. 6. Perturbativity bounds on our model around the first benchmark point from Table 3, obtained from the requirement 
that no couplings overtake 

√
4π before the GUT scale. We consider λSR = λSE . Left plot: in the λSO/λSE plane with 

from left to right (λS = 0.3, λT = 0.7) and (λS = 0.05, λT = 0.85); all points above the curves are excluded. Right plot: 
in the λSO/λT plane with from left to right (λS = 0.3, λSE = 0.65) and (λS = 0.05, λSE = 0.65); all points above the 
curves are excluded.

with Vg , containing the D-term contributions, VW the superpotential contributions and Vsoft the 
soft SUSY-breaking terms. The final term Vhard consists of “hard” dimensionless quartic terms 
that are generated at the SUSY-breaking scale and look like hard SUSY-breaking terms discussed 
in section 3.

We have

Vg = 1

2
D2

1 + 1

2
D2aD

a
2 + 1

2
D3aD

a
3

where

D1 = −2m1DSR + D
(0)
Y with D

(0)
Y = −g′∑

j

Yjϕ
†
j ϕj

Da
2 = −√

2m2D(T a + T a†) + D
a(0)
2 with D

a(0)
2 = −g2

∑
j

ϕ
†
j Ma

j ϕj

Da
3 = −√

2m3D(Oa + Oa†) + D
a(0)
3 with D

a(0)
3 = −g3

∑
j

ϕ
†
j Ma

j ϕj ,

where ϕj are the scalar components of the matter chiral superfields, possibly in the adjoint rep-
resentation and Ma

j is the matrix of the gauge representation of ϕj . Let us leave aside the triplet 
contribution (we are considering a heavy triplet and therefore expect a near-zero VEV for it) and 
focus on the singlet and octet terms. Similarly, we will leave aside the squarks contribution as we 
are not considering large A terms and therefore do not expect them to acquire a colour-breaking 
VEV. We have then

D
(0)
1 = −g′

2
(R†

uRu − R
†
dRd) − g′(|Êi |2 − |Ê′

i |2)

D
a(0)
2 = −g2(R

†
u

σ a

2
Ru + R

†
d

σ a

2
Rd)

D
a(0)
3 = −g3O

†
b (T a)bcOc ,

with (T a)bc = (−if abc) and f abc the SU(3) structure constants.
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We now turn to the superpotential contributions (we suppress the i indices for Ê′
i and Ê′

j

and the “·” denotes SU(2) indices contraction by ε tensors) and find:

VW = μ2
r (R

†
uRu + R

†
dRd) + μ2

E(|Ê|2 + |Ê′|2)
+ λ2

SE

[
|Ê′Ê|2 + |S|2(|Ê|2 + |Ê′|2)

]
+ λ2

SR

[
|Ru · Rd |2 + |S|2(|Ru|2 + |Rd |2)

]
The only “hard” SUSY-breaking terms that will be of relevance to us will be a quartic octet 

coupling:

Vhard ≡λO

4
|Oa|4 + λH

SO |S|2|Oa |2 (4.22)

which is of course not the only such possible term but is the most important.
After adding the soft and hard SUSY-breaking terms, we obtain

V = VE + VSE + VSR + VS + VR + VO + VSO , (4.23)

with

VE = (m2
Ê

+ μ2
E)|Ê|2 + (m2

Ê′ + μ2
E)|Ê′|2 + λ2

SE |Ê′Ê|2 + g′ 2

2
(|Ê|2 − |Ê′|2)2

+ BE(ÊÊ′ + h.c.)

VS ⊃ m2
S |S|2 + 2m2

1DS2
R + 1

2
BS(S2 + h.c.)

VR ⊃ (m2
R + μ2

r )(R
†
uRu + R

†
dRd) + λ2

SR|Ru · Rd |2 + BR(Ru · Rd + h.c.)

+ 1

8

[
gY

2 (R†
uRu − R

†
dRd)2 + g2

2(R†
u

σ a

2
Ru + R

†
d

σ a

2
Rd)2

]
VO ⊃ 2m2

O tr(O†O) + 2m2
3Dtr(O†

ROR) + (BO tr(OO) + h.c.)

+ g2
3

2

[
(O

†
b (T a)bcOc)(O

†
b (Ta)

bcOc)
]
+ √

2g3m3D(O + O†)aO
†
b (Ta)

bcOc

+ (TO tr(O3) + h.c.) + λO

4
|Oa|4 , (4.24)

and the mixed contributions

VSE = 2gY m1DSR(|Ê|2 − |Ê′|2) + λ2
SE |S|2(|Ê|2 + |Ê′|2) + TSE(SÊÊ′ + h.c.)

VSR = gY m1DSR(R†
uRu − R

†
dRd) + λ2

SR|S|2(R†
uRu + R

†
dRd)2 + TSR(SRu · Rd + h.c.)

VSO = TSO(Str(OO) + h.c.) + λH
SO |S|2|Oa|2 .

4.5.1. Charge-breaking minima
First, we investigate the S, Ê, Ê′ sector, which can drive charge-breaking minima when they 

all acquire a vev. The relevant tadpoles (for just one pair of Ê, Ê′) are
∂V

∂S
� m2

SS + BSS + m2
1D(S + S) + gY

√
2m1D(|Ê|2 − |Ê′|2) + λ2

SES(|Ê|2 + |Ê′|2)
+ TSEÊÊ′

∂V

∂Ê
= Ê(m2

Ê
+ μ2

E + λ2
SE |S|2 + gY m1DSR) + Ê′(BE + TSES) + λ2

SEÊ|Ê′|2

+ gY
2Ê(|Ê|2 − |Ê′|2)
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∂V

∂Ê′
= Ê′(m2

Ê′ + μ2
E + λ2

SE |S|2 − gY m1DSR) + Ê(BE + TSES) + λ2
SEÊ′|Ê|2

− gY
2Ê′(|Ê|2 − |Ê′|2) . (4.25)

The study of the vacuum space of the model is divided into two regimes depending on the size of 
m1D : relevant for this paper is the case that mDY is not large, in which case the most dangerous 
direction is the “classic” D-flat direction |Ê|2 = |Ê′|2. When S, Ê, Ê′ develop vevs, we can 
decompose the complex fields into real and imaginary parts; without loss of generality we can 
put Ê = Ê′ ≡ 1√

2
ER , S = S ≡ 1√

2
sR . Solving then the equation for the singlet tadpole, we find 

the potential

V
∣∣
sR

= E2
R

4(λ2
SEE2

R + m2
SR)

[
λ4

SE

(
E2

R + 1

2

(
2m2

ER + m2
SR − T̂ 2

SE

)2
− 1

4

(
T̂ 4

SE − 2T̂ 2
SE(m2

SR + 2m2
ER) + (m2

SR − 2m2
ER)2

)]
(4.26)

where we defined

T̂SE ≡ TSE/λSE

m2
SR ≡ m2

S + BS + 4m2
DY

m2
ER ≡ m2

Ê
+ m2

Ê′ + 2BE + 2μ2
E. (4.27)

Clearly we observe that we have appearance of a charge-breaking vacuum if

T 2
SE

λ2
SE

> 2m2
ER + m2

SR . (4.28)

However, it is only lower than our vacuum if the weaker condition

T 2
SE

λ2
SE

> 2m2
ER + m2

SR + 2
√

2mERmSR (4.29)

is satisfied, or equivalently

mER <
1√
2

(TSE

λSE

− mSR

)
. (4.30)

The analogous constraints also apply for the pseudoscalar direction, and also for the S, Ru, Rd

sector.

4.5.2. Colour-breaking minima
A crucial part of our analysis is the presence of trilinear couplings of the singlet to the octet, 

which generate a coupling to gluons. However, just as the couplings to the selectron-like states 
allow charge-breaking minima, the octet scalar couplings permit colour-breaking minima. The 
analysis is identical for OR or OI with the opposite sign for TSO , so let us choose OR . The 
tadpole equations read

0 = (m2
S + 1

2
λH

SOO2
R + 1

2
λ2

SOO2
R)sR − O2

RTSO

2
√

2

0 = OR

(
m2

OR + λO + λ2
SO

4
O2

R + 1

2
(λH

SO + λ2
SO)s2

R − 1√
2
TSOsR

)
(4.31)
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where now m2
OR ≡ m2

O + BO + 4|mD3|2. We therefore see that the supersymmetric terms are 
equivalent to putting λO = λ2

SO , λH
SO = λ2

SO ; in an analysis identical to the previous subsection 
we find that an additional vacuum exists when

T 2
SO > (λO + λ2

SO)m2
SR + 4(λH

SO + λ2
SO)m2

OR, (4.32)

but that the minimum is only lower than the colour-preserving one when

T 2
SO >

(
2
√

λH
SO + λ2

SOmOR +
√

λO + λ2
SOmSR

)2
, (4.33)

or equivalently, when λSO = 0,

mOR <
1

2
√

λH
SO + λ2

SO

(
TSO − mSR

√
λO + λ2

SO

)
. (4.34)

If we choose to break R-symmetry only in the Higgs sector via a Bμ-term, then λSO = 0. In 
this case, we need to rely on λH

SO and λO only to stabilise the potential, leading to very strong 
constraints on the trilinear TSO . For instance, if we have λH

SO, λO ∼ O(0.04) and a 400 GeV 
scalar octet, the trilinear TSO must be smaller than 310 GeV to ensure that the colour-preserving 
vacuum is stable.

5. Finding a di-photon excess in the MDGSSM

5.1. Prelude

While the MDGSSM has a large set of free parameters, the most relevant ones can be divided 
into three roughly independent sets controlling different features:

1. Higgs and singlet masses and mixing: m1D , mS , BS , tanβ , μ, λS and λT .
2. Singlet decay/production amplitude to gg: TSO, mO, BO , mq̃ , where mq̃ is the soft masses 

for right (or left)-handed squarks.
3. Singlet decay amplitude to γ γ : TSE, TSR, λSR, λSE supplemented with soft masses and B

terms for the fields Ê, Ê′, Ru and Rd .

The first set is dedicated to reproducing the measured Higgs boson mass as well as a 750 GeV 
scalar singlet. The value of λS need to be adjusted to have a small mixing between both scalars, 
which is necessary both for the diphoton cross-section and for having mH ∈ [122, 128]. The 
second set can be then used to enhance the production rate of singlet through gluon fusion. 
The trilinears TSO are crucial in this respect as they allow the scalar octet to participate in the 
loop-induced coupling Sgg, greatly increasing the singlet production rate. Finally, the last set 
of parameters is used to increase the diphoton amplitude. The superpotential Yukawa couplings 
λSE and λSR from (2.4) are constrained to be below 0.7 to avoid the appearance of Landau poles 
before the GUT scale. The trilinears are mainly constrained by enforcing that the scalar fields Ê, 
Ê′, Ru and Rd does not get a charge-breaking vacuum expectation value.

We will investigate various scenarios that we can classify according to the presence or not of 
the R-violating terms (2.5):

• R-symmetry preserving models (modulo, as discussed in section 2, a Bμ-term), which do 
not include the terms (2.5) and have R-charges for the fake leptons such that only the super-
potential couplings λE and λSR to S are allowed. We distinguish the models
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– Ra: where we will consider large Dirac mass m1D , so that the coupling to gluons proceeds 
through squarks loops.

– Rb: where instead consider small Dirac masses but light scalar octet, so that the coupling 
to gluons proceeds through scalar octet loops.

• R-symmetry violating models, for which we can have additionally the terms (2.5) and the 
trilinears TSE and TSR . We consider
– /Ra : A generalisation of scenario Ra with λSO and the trilinears TSE and TSR included.
– /Rb: Similar to the model /Ra , but we further tolerate the presence of a Majorana gauginos 

mass terms. This allows to simultaneously produce the scalar SR and pseudo-scalar SI

singlet and have a “double-peaks” resonance set-up.

In the following we shall present results of a numerical investigation of the parameter space of 
the MDGSSM for various scenarios. To do this we used the package SARAH to produce SPheno
code to calculate the spectrum, production rate and decays. We created a new model file for the 
MDGSSM including the adjoint couplings λSO, TSO . However, we found that modifications to 
the SPheno code were necessary:

1. We use pole masses instead of DR-masses for the selectrons and octet scalars in the calcu-
lation of loop couplings with the neutral scalars. This is because these masses are the most 
important for the gluon and photon couplings of our 750 GeV candidate, and can differ by 
more than a factor of two; as described in [11], using the DR masses is less accurate and so 
we employ pole masses just for these particles.

2. To facilitate our search for valid parameter points, we produced two different versions of the 
code. The first solves the tadpole equations for mass-squared parameters m2

Hu
, m2

Hd
, m2

S, m2
T

taking vS, vT as inputs; while this is the appropriate choice for implementing the loop correc-
tions to the scalar masses correctly, it is, however, difficult to choose the vacuum expectation 
values vS, vT (since loop corrections can rapidly change the values of m2

S, m2
T by several 

orders of magnitude). We therefore use this version of the code to check the results of our 
second code, which was specially modified to first solve the two-loop tadpole equations nu-
merically for vS, vT , and then compute the tadpoles and masses using these values as inputs, 
solving for m2

S, m2
T again along the same lines as the first code. While this is computationally 

expensive (computing the two-loop corrections to the neutral scalar tadpoles twice for each 
point) it is the most efficient way to correctly identify points – and not miss points where, 
for example, m2

S may be identified as tachyonic at “tree level”.

5.2. R-Symmetry conserving Scenarios

Consider first the scenarios Ra and Rb where we include only the R-symmetry conserving 
adjoint couplings. Under these constraints, the singlet production proceeds mainly by gluons 
fusion through loops of squarks (controlled by gY m1D) and (pseudo-)scalar octets (controlled by 
the trilinear TSO ).

5.2.1. Squark-induced gluon fusion
We start with scenario Ra and present in Table 2 a benchmark point satisfying all the 

previously-mentioned constraints while retaining a sizeable γ γ cross-section.
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Table 2
Benchmark point for our scenario. We further have, Bμ = 2.52 TeV2, the heavy left-handed squarks (as well as right-
handed sbottom) have masses around 2.25 TeV. The two first generation of right-handed squarks have masses at 975 GeV 
(Ra) or 1300 GeV (Rb), left-handed sleptons have masses at 1.5 TeV. We have m2D = 1200 GeV (Ra) or 900 GeV (Rb), 
and m3D = 2.5 TeV (Ra) or 3 TeV (Rb).

Parameter Ra Rb
Higgs mass μ 925 GeV 450 GeV

tanβ 3 5
λT 0.7 0.85√

m2
T

500 GeV 1000 GeV

Singlet masses and 
mixing

m1D 1250 GeV 100 GeV√
m2

S
500 GeV 775 GeV

BS −2.442 TeV2 −2002 GeV2

λS 0.29 0.05

Singlet decay/production 
amplitude to gg

TSO 200 GeV 300 GeV√
m2

O
1300 GeV 1025 GeV

mt̃R
500 GeV 1200 GeV

Singlet decay 
amplitude to γ γ

λSR = λSE 0.7 0.7
m2

E
= m2

Ru,d
102 GeV2 1502 GeV2

μE = μRu,d
/1.4 325 GeV 65 GeV

m
l̃R

250 GeV 500 GeV

Outputs Pole mass Higgs 125.5 GeV 124.9 GeV
Pole mass SR 750.1 GeV 755.7 GeV
Pole mass OI /OR (Ra/Rb) 945.5 GeV 390.0 GeV
Pole mass t̃R 820.3 GeV 1165.0 GeV
Pole mass l̃R 418 GeV 513 GeV

Pole mass ˜̂
E 397 GeV 382 GeV

σ(SR → γ γ ) 3.20 fb 3.18 fb
ρ 0.97 × 10−4 3.17 × 10−4

vS 151.4 GeV 643.5 GeV

The main aspects of this scenario are the following:

• We limit the R-symmetry breaking to the Higgs sector, and therefore choose R-charge of 
the fake fields to allow λSE, λSR superpotential terms but not trilinears TSE /TSR and the 
corresponding B-terms.

• The loop coupling to gluons will proceed through squark loops, with singlet/squarks cou-
pling enhanced by a large Dirac mass m1D.

• The loop coupling to photons have numerous contributions through loops of fake fields (both 
fermions and scalars) and sleptons.

• Finally, because of the large Dirac mass, one need a sizeable negative BS to ensure that the 
scalar singlet has a mass of 750 GeV.

Notice that a satisfying feature of this scenario is that we do not need to fine-tune the mass of the 
fields participating in the loop coupling between S and γ γ .

Regarding the scalar singlet production, gluon fusion proceeds mainly through loops of 
800 GeV right-handed stop and TeV right-handed first two squarks generations, while left-
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Fig. 7. SR → γ γ cross section in fb as a function of the one-loop mass for the right-handed squarks. The lower two parts 
show the amplitudes to γ γ and to gg.

handed squarks are heavier at 1.75 TeV. As a consequence, the mass of the right-handed stop 
is a critical parameter in enhancing σγγ , we illustrate this dependence in Fig. 7 where we plot 
the SR → γ γ cross-section as a function of the stop one-loop mass, by varying around the 
benchmark point of Table 2. We see that the cross-section decreases very rapidly with the stop 
mass.

Regarding the scalar singlet decay to diphoton, it proceeds both through loops of light right-
handed sleptons (we consider left-handed sleptons above the TeV) controlled by gYm1D and 
loops of fake leptons, Ê, Ê′, Ru and Rd which are controlled by a unified Yukawa λSR = λSE =
0.7. Furthermore, the fake sleptons also contribute with couplings controlled by gYm1D . In order 
to maximise the overall contribution, one has to take care that no cancellations occur between 
the various contributions (particularly for the D-term-induced couplings, which are proportional 
to the hypercharge of the scalar participating in the loop). Referring to Table 1 we see that one 
possible choice is light Ê, Rd and right-handed sleptons and heavier Ê′, Ru and left-handed 
sleptons.

In order to have sizable contributions from the (fake) sleptons, we need a reasonably large 
singlet Dirac mass m1D ∼ 1250 GeV, this has the added benefit that it also enhances the squark 
contributions to the scalar singlet production rate. On the other hand, it increases the tuning of 
λS necessary to have a small mixing and additionally implies that we have either a small tanβ or 
a somewhat large μ term as can be seen from Eq. (4.6).

Overall, Fig. 8 presents the cross-section obtained in the λS /μE plane by varying around 
the benchmark point of Table 2. Roughly speaking, this figure combines on the abscissa the 
constraints from mixing with on the ordinate the requirement that the particles participating in 
the loop have masses close to half that of the resonance.7

We see from Fig. 8 that the main requirement in our model is that we must consider values of 
λS tuned at the level of a few percent. We can see that the constraint from the ratio �ZZ/�γγ is 
significantly weaker than the requirement on the cross-section.

7 Notice that the fake lepton mass obtains a sizeable contribution from the vev of S through the λSE term.
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Fig. 8. SR → γ γ cross section in fb as a function of the μE and λS . The plot is based on the benchmark point of Table 2. 
The black contour shows the most constraining ratio from (4.11) while the red contours shows the pole mass for the fake 
leptons. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

5.2.2. Octet-induced gluon fusion
Let us now consider the case Rb where we take a light scalar octet. Following the discussion 

of the previous section, its mass is not constrained as long as we take a large Dirac gluino mass. 
We will therefore focus on m3D = 3 TeV. Since m3D contributes at tree-level in the mass of the 
scalar octet, we require large negative BO ∼ −4m3D in order to have it close to the resonant 
mass of 375 GeV. While this is a new source of tuning, the fact that the scalar octet provides a 
sufficient coupling between the gluons and singlet means that we no longer need a sizeable Dirac 
mass m1D as in Ra. As a consequence, the tuning on λS is milder in this scenario, as can be seen 
from Fig. 9. We have presented in Table 2 a benchmark point for this scenario.

As the singlet Dirac mass is small, the sleptons do not contribute to the singlet decay to 
diphotons, in stark contrast with scenario Ra. One relies on loops of fake (s)leptons to increase 
σSR→γ γ . The crucial parameter in this model is therefore the fake leptons mass, as we illustrate 
in Fig. 9.

5.3. R-Symmetry violating scenarios

Although we have successfully demonstrated in the previous section that we are able to ex-
plain the di-photon excess in the MDGSSM with an R-preserving SUSY-breaking sector, we 
would like to discuss as well two interesting R-violating scenarios. While in the first scenario, 
the scalar singlet remains the resonant particle, we allow for a Majorana gaugino mass in the 
second scenario, leading to the possibility of having the scalar and pseudo-scalar singlet almost 
degenerate in mass.

5.3.1. Scenario /Ra: allowing for λSO and TSE, TSE

When allowing for R-violation beyond the Higgs sector, the most obvious and minimal choice 
is to allow for the trilinear terms

−Lscalar soft ⊃ [T ij
SÊiÊ

′ + TSRSRdRu + h.c.] (5.1)
vector−like SE j
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Fig. 9. SR → γ γ cross section in fb as a function of the μE and λS for scenario Rb . The plot is based on the benchmark 
point of Table 2. The black contour shows the most constraining ratio from (4.11) while the red contours shows the pole 
mass for the fake leptons. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

and

WRV ⊃ λSOStr(OO) (5.2)

leading to a stabilising quartic contribution. When introducing the former, upper limits on the 
trilinear couplings TSE and TSR have to be taken into account in order to ensure the absence of 
a (lower) charge breaking minimum. The introduction of the quartic with λSO , however, con-
tributes to stabilising the potential to prevent colour breaking minima and thus allows a further 
increase in TSO (cf. Sec. 4.5) which in turn leads to an enhancement of the partial decay width of 
�S→gg . As indicated in Eq. (4.33) the upper limit on TSO is mainly constrained by the size of the 
Yukawa coupling λSO . As we require perturbativity up to the GUT scale, λSO itself is limited, as 
studied in detail in Sec. 4.4. Taking λS ≈ 0.3 and λT ≈ 0.7 (the latter being motivated to be larger 
to obtain the correct Higgs mass) the size of the Yukawa couplings λSE = λSR and λSO are nat-
urally constrained. Generally, moderate values for both Yukawa couplings are of interest in order 
to provide sizable couplings in the photon and gluon partial decay widths. As demonstrated in 
Fig. 6, right plot, we can choose λSE = λSO = 0.65, while still being perturbative up to the high 
scale. This in turn implies that a trilinear TSO = 1.5 TeV is still in concordance with vacuum sta-
bility, in contrast to the previously studied scenario Ra , where a maximal value of 200 GeV was 
possible. With respect to charge breaking minima, we have checked that TSE = −1 TeV does not 
lead to charge breaking minima within our Benchmark Scenario /Ra , whose further parameters 
are given in Table 3.

By including those new R-violating terms, we open up further interesting regions in parameter 
space leading to an enhanced di-photon signal. For illustration we refer to Fig. 10, where the cross 
section σ(gg → S → γ γ ) is shown in dependence of the trilinears TSO and TSE = TSR . In red 
and black solid lines, the partial widths �S→γ γ and �S→gg are depicted in units of ×10−5 GeV. 
As can be seen, the increase of TSO enhances the partial decay width of �S→gg , as it increases 
the coupling of the pseudo-scalar octets (mσ0 = 886.30 GeV) in the loop to the singlet. However, 
this effect is reduced by an increase of the octet mass via loop effects. At the same time, the 
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Table 3
Overview of the input parameters, physical masses, constraints and signal cross section for both R-violating scenarios 
/Ra and /Rb .

Parameter /Ra /Rb

tanβ 2 4
μ 660 GeV 450 GeV
Bμ 2500 GeV 2500 GeV√

m2
S

490 GeV 310 GeV

BS −2.42 TeV2 −0.72 TeV2√
m2

T
1250 GeV 1200 GeV√

m2
O

530 GeV 890 GeV

M3 0 1400 GeV
m1D 1250 GeV 490 GeV
m2D 1000 GeV 1000 GeV
m3D 1600 GeV 2300 GeV

λS 0.29 0.27
λT 0.65 0.70
λSO 0.65 0.65
λSR = λSE 0.65 0.65
TSE = TSR −1000 GeV 0 GeV
TSO 1500 GeV 600 GeV

M
Q̃

2000 GeV 2000 GeV

Mũ 1700 GeV 1500 GeV
M

d̃
2000 GeV 2000 GeV

M
L̃

1500 GeV 1500 GeV
Mẽ 820 GeV 700 GeV

Parameter /Ra /Rb

μE = μRu,d
413 GeV 250 GeV

m11
Ê

2 = m22
Ê

2
4002 GeV2 4002 GeV2

m11
Ê′

2 = m22
Ê′

2
6002 GeV2 4002 GeV2

m2
R̂u

6002 GeV2 4002 GeV2

m2
R̂d

4002 GeV2 4002 GeV2

B11
Ê

= B22
Ê

= B
R̂

88500 22200

mh 124.8 GeV 125.9 GeV
mSR

755.7 GeV 756.5 GeV
mSI

1125.1 GeV 751.0 GeV

mσ0 886.3 GeV 886.3 GeV
mẽ 382.2 GeV 386.7 GeV
me 378.6 GeV 377.2 GeV

mũ 1776.5 GeV 1597.2 GeV
mg̃ 1825.8 GeV 1916.0 GeV

�S→ZZ/�obs
S→γ γ

0.1 0.0

�S→hh/�obs
S→γ γ

0.5 1.2

�S→WW /�obs
S→γ γ

0.3 0.0

�S→gg/�obs
S→γ γ

0.7 4.4

ρ 9.9 × 10−5 2.4 × 10−4

σ(SR → γ γ ) 3.1 fb 4.4 fb

Fig. 10. Variation of TSE = TSR and TSO while taking the remaining parameters fixed as in benchmark scenario /Ra . 
�S→γ γ and �S→gg are depicted in units of ×10−5 GeV in red and black solid lines, respectively. The green shaded 
areas show the signal cross section σ(gg → S → γ γ ) in fb. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Fig. 11. λS–μE plane for benchmark scenario /Ra . In red solid lines the mass of the lightest fake leptons are shown, the 
black solid lines indicate �S→ZZ/�S→γ γ . The green shaded areas indicate the signal cross section σ(gg → S → γ γ )

in fb. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

increase of TSO leads as well to a decrease of the mass of the fake sleptons, which increases 
the partial decay width of �S→γ γ . The production via squarks (mq̃ > 1.7 TeV) is suppressed 
in this scenario. A further enhancement of �S→γ γ is achieved by increasing TSE = TSR . As 
naively expected, the highest cross section is found for higher trilinears, such that we have chosen 
corresponding values (TSO = 1.5 TeV and TSE = −1 TeV) for our benchmark point /Ra , which 
is given in more detail in Table 3. This scenario features light fake sleptons and fake electrons 
which are below 400 GeV thus leading, together with the large TSE , to an enhanced partial decay 
S → γ γ . Similar to the R-conserving Scenario, we account for a mass hierarchy between Ê, Rd

and ẽc and Ê′, Ru and L to prevent cancellations from D-term induced couplings, which could 
still be further increased to allow for an even larger cross section. The coupling to the sfermions 
is further enhanced by a large Dirac mass m1D = 1250 GeV. Choosing a large m3D = 1600 GeV, 
the gluino mass lies above 1800 GeV and is safe from exclusion limits. A large mT = 1250 GeV
guarantees further that the ρ-parameter is below the current limits.

In total, this scenario features a signal cross section of σ(S → γ γ ) = 3.1 fb, and is in 
full agreement with further current experimental exclusion limits, e.g. limits on the ratios of 
�S→XX/�obs

S→γ γ resulting from LHC8 data, as indicated in Table 3.
As for the previous scenarios, we show in Fig. 11 the λS–μE plane around the benchmark 

scenario. A comparable tuning of λS is observed as for /Ra . It could be further relaxed when 
e.g. allowing for smaller m1D masses. Fig. 11 demonstrates as well that the constraints from 
�S→ZZ/�obs

S→γ γ are less constraining than the aimed for signal cross section.

5.3.2. Scenario /Rb: “Double-peak” scenario
In the second R-violating scenario, we want to discuss the possibility of having a degenerate 

scalar and pseudo-scalar singlet. Only when the soft Majorana gaugino mass term M3 is included, 
production via gluon fusion is possible and leads to a sizeable mass splitting between the Majo-
rana gluinos. Having two particles leading to a di-photon signal, a broad parameter space opens 
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Fig. 12. λS–μE plane for benchmark scenario /Rb . In red solid lines the mass of the lightest fake leptons are shown, the 
black solid lines indicate �S→ZZ/�S→γ γ . The green shaded areas show the cross section σ(gg → S → γ γ ) in fb. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

up. As an example we have chosen /Rb as benchmark scenario, whose parameters are given in 
Table 3. For comparison with the previous scenarios we show again the λS–μE plane around the 
benchmark scenario, see Fig. 12. With the pseudo-scalar singlet not being constrained by mixing 
with the Higgs like for the scalar singlet, a large variation in λS is possible as with respect to 
the R-conserving scenarios or /Ra . Also the smaller Dirac mass m1D leads to a reduced tuning 
in this scenario. Besides being less tuned, we clearly demonstrate that the aimed for signal cross 
section (and even higher values) can be easily obtained, which could be even higher by allowing 
for large trilinears TSE, TSR, TSO or a mass hierarchy between Ê, Rd and ẽc and Ê′, Ru and L. 
This clearly demonstrates that such a scenario features various possibilities of creating a sizable 
di-photon signal. In the chosen benchmark point, we feature, e.g., a scalar and pseudo-scalar 
mass of 756.5 GeV and 751.0 GeV, respectively, and a signal cross section of 4.4 fb, while still 
being in agreement with experimental limits like on the ratios of �S→XX/�obs

S→γ γ from LHC8 
data, ρ, or direct searches. Such kind of scenarios could also be able to explain a preference 
for a larger width as is in discussion with respect to the ATLAS analyses, for example.

Generally, these are only two of various scenarios which could be realised in case of allowing 
for R-violation. Again, this demonstrates that the MDGSSM is able to inherently accommodate 
a di-photon signal as currently observed.

6. Conclusions

The MDGSSM is promising as a model that reproduces the di-photon excess observed at both 
LHC experiments, ATLAS and CMS. It automatically contains a singlet with both scalar (SR) 
and pseudoscalar (SI ) components that can both be at the origin of the resonance. It is quite 
easy to fix the mass of one or both of them at 750 GeV. In the latter case, a small splitting will 
simulate the larger width of the resonance for which there is a mild preference in the present 
ATLAS data. Also the model contains new states beyond those of the MSSM, triplets, octets and 
fake leptons, that can be used in the loops to generate both the production of the singlet and its 
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decay to photons. We have shown that there are diverse experimental constraints that are quite 
stringent.

We have found that if the resonance is to be identified with the scalar SR , keeping its mixing 
with the Standard Model Higgs within the experimentally allowed range represents the most 
constraining issue. We have found that a certain amount of cancellation is needed between certain 
parameters and this can be translated in a tuning of the trilinear λS at the level of a few percent. 
Fortunately, this happens to values of λS sitting in a quite natural range, near the values expected 
from an N = 2 supersymmetric origin of the coupling.

We found that while remaining within the assumptions of the MDGSSM – perturbative cou-
plings up to the GUT scale, R-symmetry-breaking only in the superpotential – the signal can be 
easily fit by including new dimensionful trilinear couplings of just the adjoints. The latter have 
not attracted attention in existing literature on Dirac gaugino models, despite the fact that they 
respect R-symmetry and so are always allowed. While they come out typically small in some 
scenarios of supersymmetry breaking, this is not always the case and they are expected to be 
present in the model. We have provided a first comprehensive discussion on this point. We then 
performed numerical scans of large parts of the parameter space using the most advanced tools 
available and in particular the most sophisticated calculation of the Higgs mass (up to two loop 
order). We found different regions of the parameter space of the MDGSSM (and given example 
benchmark points) satisfying all existing constraints while providing a good fit to the observed 
di-photon excess. Moreover, the relevant points have large quantum corrections (in particular to 
the singlet mass and vacuum expectation value) underlining the importance of using numerical 
tools.
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