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Influence Learning for Cascade Diffusion Models:
Focus on Partial Orders of Infections

Sylvain Lamprier · Simon Bourigault ·
Patrick Gallinari

Abstract Probabilistic cascade models consider information diffusion as an
iterative process in which information transits between users of a network.
The problem of diffusion modeling then comes down to learning transmission
probability distributions, depending on hidden influence relationships between
users, in order to discover the main diffusion channels of the network. Various
learning models have been proposed in the literature, but we argue that the
diffusion mechanisms defined in most of these models are not well-adapted
to deal with noisy diffusion events observed from real social networks, where
transmissions of content occur between humans. Classical models usually have
some difficulties for extracting the main regularities in such real-world set-
tings. In this paper, we propose a relaxed learning process of the well-known
Independent Cascade model that, rather than attempting to explain exact
timestamps of users’ infections, focus on infection probabilities knowing sets
of previously infected users. Furthermore, we propose a regularized learning
scheme that allows the model to extract more generalizable transmission prob-
abilities from training social data. Experiments show the effectiveness of our
proposals, by considering the learned models for real-world prediction tasks.
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1 Introduction

Recently, a huge amount of research has focused on Social Networks and So-
cial Media sites, whose importance continuously grows, as the data they pro-
duce become more and more numerous and valuable. They today stand as
inescapable sources of social data for several generic problems, such as Com-
munity Detection, Collaborative Recommendation or Link Prediction. In this
context, the study of temporal content propagation (or information diffusion)
corresponds to a very active topic, which may be useful for several concrete
tasks. It aims at studying how a given content spreads through the network,
via interactions between users, by a so-called word-of-mouth phenomenon.
The study of such a phenomenon firstly emerged in epidemiology and so-
cial sciences contexts, for predicting and understanding spreads of diseases or
marketing innovations. The emergence of social networks opened a very large
number of new related research directions. Classical diffusion models, such as
the independent cascade model (IC) [4,20] or the linear threshold model (LT)
[10], have been applied to social data for capturing the dynamics of observed
propagation through networks. In the ground of such general models, many
different prediction tasks have recently emerged, such as Diffusion prediction
- predicting which (or how many) users will be reached by a given content
knowing its initial locations in the network [10,14] -, Buzz detection - estimat-
ing the impact of a content over the network [17]-, or Leader identification -
identifying most influential users of the network [10,14].

In this paper, we focus on cascade models, that are at the heart of the re-
search literature on information diffusion. In a natural way, these probabilistic
models regard the phenomenon of diffusion as an iterative process in which
information transits from users to next ones in the network [20,26,5,23]. In
such a setting, the problem of diffusion modeling comes down to learn proba-
bility distributions depending on hidden influence relationships between users,
in order to discover the main communication channels of the network. These
iterative models, whose probability learning process consider sequences of in-
fections rather than only dealing with some initial and final sets of infected
users, usually leads to discover finer-grained influence relationships, as they
enable to distinguish transitive influences in the network.

Various cascade models have been proposed in the literature, each induc-
ing its own learning process to explain some observed diffusion episodes and
attempting to extract relevant probability distributions of content transmis-
sion between users of the social media. The proposed approaches differ on their
way of dealing with observed users’ infection timestamps1. Some classical mod-
els, such as the Independent Cascade Model (IC) [4], iterate over successive
time-steps to simulate diffusion episodes. Other models consider asynchronous
diffusion processes, in which timestamps of infections are driven by some time
delay distributions [19,5,3]. We argue that infection delays are in fact sampled

1 Throughout this paper, we indifferently talk of infection or contamination to denote the
fact that the propagated content has reached a given user of the network.
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at near random in diffusion on real-world networks, at least on those where
content transmissions occur between human nodes, and then, time regularities
are very difficult to extract from such temporally linked data. While this is
needed for some applications where dated infection predictions are required,
the consideration of diffusion delays may greatly disturb the learning process
when the main concern is to extract the transmission relationships of a social
media (e.g., for tasks such as best influencers identification, buzz detection,
final infections prediction, diffusion-based community detection, etc...).

Therefore, we propose to relax the problem of diffusion by designing a
delay-agnostic learning of IC, which does not consider relative timestamps of
infection during its training phase. We consider a likelihood defined on partial
orders of infections rather than on exact infection time-steps as classically
done in [20]. By focusing on infection sequences during its learning phase, our
Delay-Agnostic IC model is able to better extract the regularities of real-world
social data and capture the main diffusion channels of the studied networks.

The paper is organized as follows: Section 2 presents our model and its
learning process. Section 3 compares our model to several baselines on real
and artificial datasets. Section 4 reviews related works. Section 5 concludes
the work.

2 A Delay-Agnostic Diffusion Model

2.1 Background and notations

Traditionally, information diffusion in a network is observed as a set of diffusion
episodes D = (D1,D2, . . . ,Dn), where each diffusion episode is a sequence of
related events, associated with their timestamps of occurrence. A diffusion
episode describes the diffusion of a given content in the network2. For instance,
it can correspond to a sequence of users’ infections by some information at
different timestamps: A set of users who “liked” a specific YouTube video,
posted a given url, replied to a given message, etc. . . It describes to whom and
when an item spreads through the network, but not how diffusion happens:
the information of who infected who is unknown in such observed inputs.

Given a social network composed of a set of N users U = (u1, ....,uN), a
diffusion episode D is then defined as a set of infected users associated with
their timestamp of infection: D = {(u, tD(u))|u∈U ∧tD(u)<∞}, where tD : U →
N gives infection timestamps for users infected by the diffusion in concern, or
∞ for non infected ones. Timestamps returned by tD are relative timestamps
given the one of the first infected user (i.e., the source of diffusion, for which
tD then equals 0). In the following, we note UD

v the set of users having been
infected before user v in the diffusion D: UD

v = {u ∈U |tD(u) < tD(v)}. We also

2 The extraction of diffusion sequences from the data, which may be not straightforward
with non-binary participations to the diffusion or in the case of a polymorphic diffused
content, is not of our concern here. We assume diffusion episodes already extracted by a
preliminary process.
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note UD
∞ the whole set of users that have finally been infected by D and ŪD

∞

those that have not.
Cascades are richer structures than diffusion episodes, as they explain how

a given diffusion happened. A cascade C = (SC,UC,TC) corresponds to a trans-
mission tree starting from sources of diffusion SC ⊆ U and reaching a set of
infected users UC ⊆ U (with SC ⊆UC), given a set TC of timestamped trans-
mission events between users from UC. Note that, while several transmission
events to a same given destination user might succeed during the diffusion pro-
cess, the cascade structure only contains the first transmission event (u→ v)
that succeeded from any user u to the destination user v (which happens at the
infection’s timestamp of user v, as reported in diffusion episodes). For a given
observed diffusion episode D, the set of possible cascade structures that gen-
erated D is thus given by C D = {C = (UD

1 ,UD
∞ ,TC)|∀v ∈ (UD

∞ \UD
1 )∃u ∈UD

v ,(u→
v) ∈ TC ∧ (@u′ ∈ U \ {u},(u′ → v) ∈ TC)}, i.e., each infection is explained by a
unique transmission from a previously infected user. Several different cascade
structures are possible for a given observed sequence of infections. Cascade
models usually perform assumptions on these latent diffusion structures for
building their influence graphs.

Cascade models aim at defining an influence oriented graph G = (U ,I ),
where I corresponds to the set of influence relationships between users of the
network. Depending to the available data and the task, I can be restricted to
relationships from a given known graph of possible influences (the graph of the
social network for example), or can be defined as a complete graph allowing
influences between all possible pairs of users (see discussion about this point
in section 3). In the following, Predsu and Succsu respectively correspond to
the sets of predecessors and successors of a user u w.r.t. relationships in I
(users that can influence or be influenced by u). Iu,v ∈I then corresponds to
the directed influence relationship from a user u ∈ Predsv to a user v ∈ Succsu.
It is weighted by a function Pu,v : N→ [0,1] defining the probability of infection
Pu,v(t) of user v by user u after a time delay t. Note that we focus here on
probabilities that do not depend on previous attempts of diffusion: Success or
failures of diffusion between users are independent events.

2.2 Delay-Agnostic IC

The goal of the learning process of a cascade model is then to estimate diffusion
probability distributions for each relationship among a given set of users U .
As pointed out in the introduction, two main kinds of models can be found in
the literature to infer these distributions.

On the one hand, time-step based approaches, such as those used for learn-
ing diffusion probabilities in IC [20], focus on diffusion events belonging to
contiguous steps (defining then a probability function that only returns non-
null values when the time-delay argument t equals 1). This enables to easily
define a likelihood of generating cascades of observed time-steps of infections,
since a user can only be infected by a user from the previous step (assuming
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that she has been infected by at least one user from the previous step and
not by users from preceding ones)[20]. However, assuming that infections can
only be observed along contiguous time-steps is a very strong assumption that
does not hold in real-world settings: influences between some pairs of users
may require more time than between others without being less likely. More-
over, such a model is greatly dependent on the step size that is defined to
discretize time and gather infections: with too large steps, a too large amount
of users are gathered together which greatly biases the model since diffusion
is assumed to only hold between users from two successive steps. With too
short steps on the contrary, the process contains several empty steps, which
induces a large amount of non-explained infections (infections of users from a
step following an empty one cannot be explained by the model) and widely
reduces the diffusion expectation (episodes with a possible diffusion along a
given relationship are more rare). Even if empty steps were ignored during the
learning process (empty steps can indeed be removed to enable more explana-
tions of user’s infections during the learning of the model), it still remains that
a short step usually reduces the possibilities of latent cascade structures to a
unique straight chain of infections. This greatly limits the ability of learning
models that well explain the observed infections of users. Figure 1 depicts this
dependency with regards to the selected time step size (empty steps are ig-
nored in that figure). With average step sizes, a large variety of latent cascade
structures can be considered to explain the infections. With extreme values of
time steps however, the variety of possible latent structures is reduced to a
single structure (a chain with short steps and a single group with long steps).
This greatly reduces the freedom of the learning scheme and then, the effec-
tiveness of the model to represent the main communication channels of the
network.

t=0sec

t=70sec

t=100sec

t=500sec

Observed Diffusion Episode Possible Cascade Structures for Different Sizes of Time-step

Step=1sec Step=1min Step=2min Step=10min

Fig. 1 Possible cascade structures for the IC model w.r.t. step size for a given diffusion
episode (empty steps are removed for low step sizes).

On the other hand, approaches such as NetRate [5] or the Continuous-Time
Independent Cascade model (CTIC ) [18] include time delays in the probability
distributions they define. In that way, the NetRate model defines decreasing
probability functions w.r.t. the time argument t (the greater interval between
current time and the timestamp of the infection of a given user, the lower
her probabilities to diffuse to other users) [5]. The CTIC model learns delay
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parameters additionally to diffusion abilities for each pair of users to define
an asynchronous diffusion framework [18]. Such models overcome the bias in-
duced by the definition of discrete timesteps. However, regularities over infec-
tion timestamps are very difficult to extract from real-world social networks:
if regularities may exist regarding the influence of particular users on the ac-
tivities of others, whose extraction already corresponds to a complex problem,
observing tendencies of time delays between sparse activities of pairs of users
appears quasi impossible with large social media. In these models, time delays
between infections having a great impact on learned influence probabilities,
prediction performances in real-world settings may suffer from this great vari-
ability of the influence delays.

We argue that including time information in the learning process usually
leads to difficulties in extracting diffusion regularities. Moreover, being able to
estimate infection timestamps is not essential for many applications, such as
buzz prediction, opinion leaders identification or predictions tasks of content
diffusion where the focus is given to final infections (who is finally infected, how
many users are finally infected, etc...). Based on these two main observations,
we propose to relax the problem of diffusion by considering a delay-agnostic
model, which exploits infection orders instead of exact infection timestamps.
Assuming that the time delay between activities of two related users follows a
uniform distribution over the observation window, we consider that the prob-
ability of observing the infection of a given user depends on influences from all
of its previously infected predecessors. It allows us to learn more about influ-
ence tendencies in the network than time explicit models. Note that, although
it does not fully use infection timestamps information from the data to gain
some generalization ability, our model can still be used to predict probabilities
of infections orders and remains relevant for applications where one may be
interested in which users are the most likely to be impacted by an advertise-
ment first. Furthermore, time-delays can be learned afterward, in the ground
of influence probabilities extracted by our relaxed model.

Our Delay-Agnostic IC model (DAIC ) grounds in the classical IC model,
but uses a learning process which considers that any previously infected user
can explain a newly observed infection. Considering the same example of dif-
fusion episode as in figure 1, figure 2 represents the various possible diffusion
cascade structures that could explain the observed successive infections with
our model. This highlights the greater freedom of our learning process, which
considers each possible structure with equivalent prior probability.

Our model thus focuses on infection probabilities knowing sets of all already
infected users. Therefore, our concern is to set time-independent probabilities
on relationships of the graph: A diffusion probability value θu,v has to be set
for each pair of users (u,v) with Iu,v ∈ I . It corresponds to the probability
that user u propagates a given content to user v before the end T of the
diffusion process3: θu,v =

∫ T
t(u) Pu,v(t) dt. The influence graph can then be fully

3 The ending time of diffusion T is arbitrarily set to the infection time-stamp tD(u) of the
latest contaminated user u in the longest diffusion episode D.
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t=0sec

t=70sec

t=100sec

t=500sec

Observed Diffusion Episode Possible Cascade Structures for DAIC

Fig. 2 Possible cascade structures for a given episode with our delay-agnostic model.

described in our model by these pairwise final transmission probabilities θu,v,
whose learning is described below.

2.3 Influence Learning

As we stated that time intervals between successive infections should not be
considered during influence relationships learning, we focus on infections (or
non-infections) of users knowing previously infected users in training diffusion
episodes. In our setting, as in the classical IC, a newly infected user has a
unique chance to infect each of her non-infected successors. However, we con-
sider here that each of these infection events can happen at anytime in the
future (before the end of the observation window T ) rather than at the next
time-step only. Then, in a similar way as in [20] but without restricting to
influences from users whose infection time-stamp falls in a previous contigu-
ous arbitrarily-sized time-step, we consider that the infection of each user in a
diffusion episode is due to at least one transmission success from a previously
infected user. Given a set of potentially influential users I ⊆U (a set of previ-
ously infected users), the probability P(v|I) of observing the infection of a user
v knowing this set is therefore defined as:

P(v|I) = 1− ∏
u∈I∩Predsv

(1−θu,v) (1)

Then, rather than attempting to explain all observed time-stamps of infec-
tion, our proposal is to only consider partial orders of infection during influence
learning. Considering the pairwise transmission probabilities θu,v as the set of
parameters θ of the model, we define P(UD

∞ |θ) as the probability of observing:

– The infection of each user v infected in the diffusion episode D, knowing
the infection configuration of all users at its time-stamp of infection tD(v);

– The non-infection of each user that does not belong to the set of infected
users in the diffusion episode D, knowing all finally infected users UD

∞ in D.

Therefore, P(UD
∞ |θ) is defined as:

P(UD
∞ |θ) = ∏

v∈UD
∞

P(v|UD
v ) ∏

v∈ŪD
∞

(1−P(v|UD
∞ )) (2)



8 Sylvain Lamprier et al.

Also, we consider the following log-likelihood L (θ ;D) of the parameters θ for
all diffusion episodes from the training set D :

L (θ ;D) = ∑
D∈D

log(P(UD
∞ |θ)) (3)

= ∑
D∈D

∑
v∈UD

∞

log(PD
v )+ ∑

v∈ŪD
∞

∑
u∈UD

∞∩Predsv

log(1−θu,v)

where PD
v is a shortcut for P(v|UD

v ). This log-likelihood is however very dif-
ficult to optimize directly, due to the definition of PD

v as given by formula
1. Nevertheless, if we knew which attempts of infection succeeded in the ob-
served diffusion process, the optimization problem would become much more
easier. Success or failures of influence attempts thus stand as latent factors of
the problem. Therefore, following a similar learning methodology as described
in [20], we propose to employ an Expectation-Maximization (EM) algorithm
considering the following expectation function4:

Q(θ |θ̂) = ∑
D∈D

Φ
D(θ |θ̂) + ∑

v∈ŪD
∞

∑
u∈UD

∞∩Predsv

log(1 − θu,v) (4)

where ΦD(θ |θ̂) corresponds to the expected value, for a given diffusion episode
D, of the first term of the log likelihood function, which stands for the log
likelihood computed on infected users only. It is computed with respect to
the conditional probabilities of success of diffusion between users under the
current estimate of the parameters θ̂ . Knowing that a user v is infected with
an estimated probability P̂D

v (which is computed via formula 1 with current
estimations of transmission probabilities θ̂), the conditional probability P̂D

u→v
that the diffusion from a given previously infected user u ∈ Predsv succeeded
is given by:

P̂D
u→v =

θ̂u,v

1− ∏
u′∈UD

v ∩Predsv

(1− θ̂u′,v)
=

θ̂u,v

P̂D
v

(5)

Then, we can formulate the expectation ΦD(θ |θ̂) as:

Φ
D(θ |θ̂) = ∑

v∈UD
∞

∑
u∈UD

v ∩Predsv

θ̂u,v

P̂D
v

log(θu,v) + (1−
θ̂u,v

P̂D
v

) log(1− θu,v) (6)

Canceling the derivative of Q(θ |θ̂) w.r.t. parameters θ allows us to easily
maximize it at each step of the EM algorithm. For each Iu,v ∈I , we get:

θu,v =

∑

D∈D+
u,v

θ̂u,v

P̂D
v

|D+
u,v| + |D−u,v|

(7)

4 Note that the second term of formula 3 remains unchanged since this part does not
depend on any latent factor and can be considered as it in the optimization process.
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This update formula is similar to the one of [20] but with different definitions
of positive and negative sets of diffusion episodes for a pair of user (u,v):

D+
u,v ={D ∈D |tD(u) < tD(v)∧ tD(v) < ∞} (8)

D−u,v ={D ∈D |tD(u) < ∞∧ tD(v) = ∞} (9)

While D+
u,v corresponds to the set of positive examples of diffusion between

user u and user v (diffusion episodes in which an influence can have occurred
between user u and user v since they are both infected and the infection of
u precedes the one of v), D−u,v contains diffusion episodes corresponding to
examples of no diffusion (or negative examples of diffusion) between these two
users (u is infected, v is not). Such sets definition allows our model to be more
realistic by assuming influences between all ordered pairs of infected users
in a diffusion episode, while avoiding difficulties induced by low time-related
regularities in cascade models such as NetRate or CTIC.

2.4 Improving Robustness with Priors

In our learning model, assumptions are performed on who influenced whom
in the observed diffusion episodes. This is done by considering at each step
that at least one previous user infected the newly infected one and then, the
probability that a diffusion attempt succeeded from user u to user v depends
on all diffusion probabilities θu′,v from users u′ ∈ Predsv infected before v. This
is induced for each diffusion episode D and each pair of users (u,v) by the
ratio (θ̂u,v/P̂D

v ) used in equation 6 (see previous section). While this setting
appears rather realistic, it leads to biases resulting from imbalanced repre-
sentations of users in the training episodes set. Indeed, it is easy to see that,
employing the update formula 7, rare examples of diffusion without (or with
few) counter-examples5 in the training set may hide other positive examples
on some episodes, even those corresponding to more frequent and therefore

more reliable observations. To illustrate this, with PD(i)
v the estimation of the

infection probability of v in episode D (computed using formula 1) at the i-th
iteration of the learning process, let us consider the following proposition:

Proposition 1 For every diffusion D ∈D and every user v ∈UD
∞ , if it exists

at least one user u ∈UD
v ∩Predsv such that |D−u,v|= 0, then we have:

lim
n→+∞

PD(n)

v = 1

The demonstration of this proposition is given in appendix A. It represents
a situation where some infections clearly hide others in the training set D :

5 In our setting, a counter-example of diffusion from user u to user v is an episode contained
in D−u,v (see formula 9): an episode where u is infected but v is not.
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it suffices that at least one relationship Iu,v to any user v has no counter-
example in the training set for getting the probability of the infection of v
converge to 1 for each diffusion episode where u is infected before v. In that
case, the infection of user u is enough to fully explain the infection of v. Looking
at the update formula (eq. 7), it follows that no other relationship to v can
benefit from having its source infected before v in such episodes. Such positive
examples of potential influence are lost for the learning of their transmission

probability. Going deeper in the analysis of such a problematic case, with θ
(n)
u,v

the transmission probability from user u to user v at the i-th iteration of the
learning process, the following proposition can be stated:

Proposition 2 For every relationship Iu,v ∈I such that |D−u,v|> 0, if it exists

in each D ∈ D+
u,v at least one user u′ ∈UD

v ∩Predsv such that |D−u′,v| = 0, then
we have:

lim
n→+∞

θ
(n)
u,v = 0

The demonstration of this proposition is given in appendix B. It indicates
that, if a pair of users (u,v) gets at least one negative example of diffusion
(i.e., D−u,v is not empty), any other users with no counter-example of diffusion
to v can make the transmission likelihood θu,v converge to 0. This can be easily
deduced from the previous proposition and the update formula (eq. 7), see the
appendix.

Then, users participating to a unique diffusion episode may highly perturb
the learning process: all infections happening after theirs can be fully explained
by transmissions from them if the corresponding relationships exist in I . For
instance, imagine a blog where a user v posted a message after u in 99 discussion
flows, but missed one discussion in which u participated. Now, consider also
that in each one of these 99 positive episodes, another different user, who only
appears in this episode, posted a message before v. Then, although owning
99 positive examples over 100, the transmission probability θu,v converges to
0, since all the benefits that could have been extracted from these positive
examples have been canceled by very rare, and therefore very poorly reliable,
participations of users. Figure 3 depicts such a situation with four diffusion
episodes starting from the black user. While the grey user is present in 3 over
4 episodes after the black user, the influence probability from the black user
to the grey one converges to 0, since all of their positive examples of diffusion
can be explained by isolated users.

While the proposition 2 presented above depicts an extreme case (while
rather frequent in real datasets), that do not cover every problematic situa-
tion related to imbalanced representations of users in the training set, it is
representative of over-training problems induced by the fact of considering an
infection probability such as the one defined in 1. This problem can be also
observed in the learning of classical IC as defined in [20]. It is increased here
since users’ participations to a diffusion episode impact the whole information
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0.25

0.25 1.0

0.0

Set of observed
diffusion episodes

Resulting probabilities

Time

Fig. 3 Influence probabilities learned by our delay-agnostic IC from a set of four diffusion
episodes. The influence probability from the black user to the grey one converges to 0,
although several positive examples of diffusion have been observed between these two users.

one can extract from this episode rather than only having an impact on the
corresponding time-steps as it would be the case with the classical IC.

To cope with this identified problem, we propose to consider prior distri-
butions of the transmission probabilities we define, leading then the model
to focus on more reliable diffusion channels. Our optimization problem thus
becomes a maximum a posteriori estimation, where the estimator is given by:

θ
∗(D) = argmax

θ
∏

D∈D
P(UD

∞ |θ) ∏
θu,v∈θ

f (θu,v) (10)

= argmax
θ

L (θ ;D)+ ∑
θu,v∈θ

log( f (θu,v)) (11)

where f (θ) stands for the prior applied to the transmission probabilities θ

of the model. As various prior distribution functions could be considered, an
exponential distribution appears a relevant choice since it favors sparse sets of
parameters, which well fits with our task of extracting the main communication
channels of the network: in proportion w.r.t. the total number of directed edges
between users in the network, the set of relationships with high transmission
rates is usually very sparse. With an exponential distribution function f , the
maximization problem given by formula 11 can be easily simplified to the
following formulation:

θ
∗(D) = argmax

θ

L (θ ;D)−λ ∑
θu,v∈θ

θu,v (12)

where λ corresponds to the parameter of the considered exponential distribu-
tion function. Such maximization allows us to cancel the bias mentioned above
w.r.t. imbalanced user occurrences in the training set, as it enforces the model
to focus on the main diffusion channels by favoring sparse parameter schemes.
Following the optimization methodology detailed in the previous section, we
get the following second degree polynomial to solve at each maximization step
of the EM algorithm for each update of parameter θu,v according to current

parameters θ̂ :
λθ

2
u,v−βθu,v + γ = 0 (13)
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where β = (|D−u,v|+ |D+
u,v|+λ ), γ = ∑

D∈D+
u,v

θ̂u,v

P̂D
v

and whose discriminant ∆ is equal

to: β 2−4λγ. Since |D+
u,v| ≥ γ, we get:

∆ ≥ (|D−u,v|+ |D+
u,v|+ λ )2−4λ |D+

u,v|
= (|D−u,v|− |D+

u,v|+ λ )2 + 4|D−u,v||D+
u,v|

≥ 0

Then, the polynomial in formula 13 has always at least one solution:

θu,v =
β −
√

∆

2λ
(14)

which can be used at each maximization step of the EM algorithm, to find the
estimator given by formula (12).

Proposition 3 Solution given by formula (14) is a consistent probability lying
in [0,1], which can be used as an update rule at each maximization step of
formula (12).

Following proposition 3, whose demonstration can be found in appendix
C, we use the new update formula at each maximization step of the learning
process. However, while the use of a prior distribution on parameters to be
learned allows us to avoid the convergence of transmission probabilities for
rare users to high values, it leads to lowering the diffusion expectation of any
information through the network. Therefore, we propose to end the learning
process by a classical update (with formula 7), which allows us to benefit from
an unbiased basis, resulting from successive updates with priors (with formula
14), while determining influence probabilities that lead to as important spreads
of diffusion as observed in the training set of episodes.

3 Experiments

This section aims at evaluating the proposed model DAIC, by comparing it
with related state of the art approaches.

3.1 Baselines

The following baselines are considered in our experiments:

– IC: the classic independent cascade model our works grounds in. Weights
are learned as defined in [20].
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– Netrate: as IC, Netrate [5] is a cascade model which defines influence prob-
ability distributions on the network to model information propagation. It
nevertheless considers time-dependent distributions rather than defining
static influence probabilities: influence weights used to parametrize proba-
bility laws are learned to fit observed infection timestamps. Note that we
only report here results obtained with the exponential version of the Ne-
tRate model, as other distributions laws proposed in [5] (i.e., power and
rayleigh laws) lead us to similar results.

– CTIC: As defined in [18], CTIC is a continuous-time version of the IC
model. As NetRate, it uses exponential distributions to model delays of dif-
fusion between users, but rather than a single parameter for each relation-
ship, delays and influence factors are considered as separated parameters,
which leads to more freedom w.r.t. observed diffusion tendencies. Delays
and influence parameters are learned conjointly by an EM-like algorithm.

While most of the cascade approaches, such as IC or CTIC, make the as-
sumption that the graph on which the propagation occurs is known, the social
graph defined by an online social network (friends, followers, subscriptions...)
is often incomplete, irrelevant [23] or unknown. Nevertheless, most of graph-
based models (including all our baselines) remain valid if we consider complete
graphs of the set of users. All of our experiments reported in the following are
therefore obtained with complete graph structures. During the learning pro-
cess however, it is possible to drastically reduce computational requirements by
only considering relations that own at least one positive example of diffusion
in the training set6.

3.2 Diffusion Prediction Task

As by nature, diffusion probabilities between users are hidden in real-world
data, the evaluation of the proposed model cannot be directly done by compar-
ing inferred communication channels (or estimated probabilities in our case)
with exact ones, as it is done in several studies with artificial data (see [20] for
instance). Therefore, we propose to assess the performances of our proposals
on real-world data by considering a related prediction task, in which the dif-
fusion models are used to predict final infections from initial observed ones.
This corresponds to the natural task of predicting the spread, over a network,
of a diffusion starting from a set of source users. More specifically, the goal
is to know which users are likely to be infected at the end of an observation
time-window.

Defining final infection probabilities for every user of the network is rather
complex with cascade models, as their iterative process requires, for comput-
ing infection probabilities at a given step, to consider every possible infection

6 Relation u,v is considered only if there exists at least one diffusion episode in the training
set where u is infected before v. With all approaches studied hereafter, relationships with no
positive example would obtain a null weight anyway. They can therefore be ignored during
the learning step.
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distributions on the previous step, which induces an intractable complexity.
Therefore, evaluations are performed on results of monte-carlo simulations of
diffusion following the process of the cascade model in concern:

– IC : At each time-step (of the same size that was used for learning), each
newly infected user attempts to contaminate each not infected one. The
success of a contamination depends on the probability set for the relation-
ship between both corresponding users. The process stops when no new
contamination has been observed at a given time-step or when or the ob-
servation window is exceeded.

– CTIC : Simulations for CTIC are performed in a similar way as for IC, ex-
cept that new infections do not occur between consecutive time-steps: for
each infection success, a continuous time-delay is sampled from an expo-
nential distribution, parametrized during the learning step for the specific
relationship between users in concern.

– NetRate: NetRate discretizes the observation window in different time-steps
(100 in our experiments) and, for each of them, samples infections accord-
ing to the probabilities for users to be infected at this time-step knowing
preceding infections and time-dependent distributions defined on the cor-
responding relationships.

– DAIC : The approach proposed in this paper, which is detached from any
temporal consideration, performs diffusion simulation same manner as IC,
but without associating timestamps to infections. What is iteratively built
here is simply a set of infected users, with newly infected ones having the
possibility of contaminating every other one in the network.

Results obtained from diffusion simulations are evaluated by classical recall
(Rec) and precision (Prec) measures, where the recall considers the ratio of
users infected in a test episode that have been retrieved as infected in the
simulation and the precision renders the ratio of correct infection predictions.
Finally, for each simulation, we consider a F1 evaluation measure that proposes
a compromise between precision and recall:

F1 =
2×Prec×Rec

Prec + Rec
(15)

3.3 Experiments on Synthetic Data

In order to well understand performances of the different approaches, we first
performed a preliminary set of experiments on artificial datasets with known
properties.

Contrary to experiments on real world data, considering artificial data
allows us to assess the ability of the models to extract correct diffusion distri-
butions, since the probabilities of diffusion that have been used to draw the
data are known. With such data, comparisons between true θ ∗u,v and inferred
θu,v probabilities of diffusion for pairs of users (u,v) are then possible by the
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mean of a given distance measure. We propose to consider a measure of the
mean squared error (MSE) computed over every pair of users of the network:

MSE =
1

|U |× (|U |−1) ∑
(u,v)∈U 2,u6=v

(θ
∗
u,v−θu,v)

2 (16)

This section first introduces the synthetic data used in these experiments
and then presents some experimental results on these data, for both influence
probabilities extraction (in term of MSE) and diffusion prediction tasks (in
term of F1).

Synthetic Datasets Our concern in this section is to understand how behave
the different approaches w.r.t. the variability over the delays between succes-
sive infections. Starting from a scale-free network of 100 users obtained from
the Barabási-Albert algorithm (with each new created node connected to 2
existing ones), influence probabilities are uniformly sampled on these connec-
tions between users to obtain an influence graph that can be managed by the
IC model. Then, we uniformly sampled source users for each diffusion episode
to built (1 to 3 source users per diffusion) and performed a diffusion simu-
lation. Note that other settings for data generation have been considered for
the construction of the network (including using real-world networks) and the
sampling of the diffusion episodes (including using influence probabilities re-
sulting from real-world diffusion observations, obtained by using probability
learning schemes proposed by the baseline diffusion models presented above).
However, no significant difference have been observed in the results, since what
differs between the models is their way of time consideration. We therefore fo-
cus on the impact of the variance of time delays on the performances of the
approaches.

Following IC, each newly infected user attempts to contaminate all its suc-
cessors in the network according to the probability set on the corresponding
relationship. If the contamination attempt succeeds, a delay is chosen to de-
termine the timestamp of the infection in concern. The delay δ D

u,v is chosen for
the relationship u,v and the diffusion episode D in concern:

δ
D
u,v = 1 + γu,v + ξ

D
u,v (17)

where γu,v corresponds to the min delay for any diffusion from u to v and
ξ D

u,v stands for an additional delay that can vary for this relationship over the
different considered episodes D. These two delays are sampled from exponential
distributions:

γu,v ∼
1
µ

e
−

x
µ ξ

D
u,v ∼

1
σ

e
−

x
σ (18)

with µ the mean minimal delay for any relationship of the network and σ

the mean additional delay over any relationship u,v and any diffusion episode
D. While µ allows us to control the variability of the delays over the different
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relationships, σ permits to manage the variability of the delays of any diffusion
over the various considered episodes and then, enables the evaluation of the
approaches for different temporal regularity settings. Note lastly that infections
occurring outside of the observation window (i.e., with a timestamp exceeding
1000 in our experiments) are not included in the datasets.
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Fig. 4 MSE of the learned diffusion probabilities w.r.t. true distributions, for the experi-
mented models on artificial diffusion data drawn with different delay parameters µ (on the
left) and σ (on the right).
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Fig. 5 F1 scores for the experimented models on artificial diffusion data drawn with different
delay parameters µ (on the left) and σ (on the right).

Results Figure 4 presents MSE results for models IC, NetRate, CTIC and
DAIC on artificial datasets built with different settings of infection delay
sampling (see formula 17). Curves on the left plot MSE scores w.r.t. the µ pa-
rameter that controls the variation of delays between relationships. For these
curves, we set σ = 10−5, which leads, for every relationship, to a very stable de-
lay over the generated diffusion episodes. Curves on the right plot MSE scores
w.r.t. σ which controls the variation of delays over relationships and diffusion
episodes. For these curves, we set µ = 10−5, which leads to minimal delays for
low values of σ . Plotted results are average scores considering 10 datasets for
each setting, each containing 1000 episodes for training the models and 1000
other ones for measuring the performances.
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When both µ and σ tend to 0 (starting point of both figures), every delay
is equal to 1. That is, infections occur between consecutive timestamps, which
corresponds to the setting of the classical Independent Cascade Model. For
this setting, we can indeed observe that IC performs rather well, as its more
restrictive process allows it to obtain better results than our proposal (DAIC )
which has to perform influence assumptions over many more relationships. It
nevertheless appears that time dependent cascade models such as CTIC or
NetRate perform better than IC in that cases, due to their better generaliza-
tion abilities (classical IC considers very fewer relationships during training
than other approaches). Our proposal DAIC, which considers that infections
can be explained by any previous infection independently from its age, is not
well fitted for this setting and therefore infers less accurate probabilities than
other approaches, which favors explanations by recent previous infections. As
expected, performance of IC however collapses when infections can occur be-
tween non-successive timestamps (see on every figure, when µ or σ increases),
since such long term influences are not considered by its learning process.

From the curves on the left, it may be noticed that CTIC behaves better
than NetRate w.r.t. variations of delays over the different relationships. Its
independent consideration of time delays and influence rates allows it to still set
good influence levels even for relationships with long delay tendencies (which
cannot be done with NetRate). As it can be observed from the curves on the
right, this also allows it to be more robust w.r.t. variations of delays on each
relationship over the different diffusion episodes.

However, from both sets of curves, as values of µ and σ increase, our
proposal DAIC appears to behave better than these two state of the art ap-
proaches. Its effectiveness level is more stable, as delay variations have, by the
nature of the model, no effect on it. The increase of all error MSE scores with
values of µ or σ greater than 100 may be partly explained by the fact that
corresponding diffusion episodes contain less infections, as longer delays induce
less infections included in the observation window, and then less positive ex-
amples of diffusion are available for learning the models. Nevertheless, another
reason is that with such values, delays can cover the whole observation window
and then, every observed infection may have been induced by any other pre-
vious one, independently from delays between them. Since this matches with
the setting of our proposal, we can observe that our delay-agnostic learning
of IC better resists with great variations of delays than CTIC and NetRate,
which greatly suffer from their time dependent learning process in such cases.
Note that, while CTIC is able to set quasi-uniform delay distributions when
required, its process still tends to converge towards models favoring explana-
tions by more recent infections.

Figure 5 presents F1 results obtained by diffusion simulations performed
by IC, NetRate, CTIC and DAIC on the same datasets as for MSE curves.
Models are also learned and experimented on two distinct sets of 1000 diffusion
episodes for each dataset. It is interesting to observe the strong correlation be-
tween observations that can be done from these curves compared to those from
figure 4, corresponding to MSE errors w.r.t. ground truth diffusion probabil-
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ities. This validates that experimental results obtained for a task of diffusion
prediction well render the accuracy of the diffusion probabilities extracted by
the models: While CTIC is quite more robust w.r.t. variations of delays than
other existing approaches, our proposal DAIC catches up, and then overcomes,
the prediction accuracy levels of this state of the art model when values of µ

and σ increase.

To summarize, while CTIC performs better with regular delays, our delay-
agnostic proposal leads to better effectiveness results when delays between
infections tend to be drawn from uniform distributions. This corresponds to
what we expected to observe on well formatted artificial data. Let’s see now
what happens on real-world data.

3.4 Experiments on Real-World Data

3.4.1 Real-world datasets

|U | |I | |D | ∑
D∈D

|UD
∞ |
|D |

Digg 4587 689414 20172 8.26
ICWSM 2270 4773 20027 2.21
Enron 1557 2628 1867 3.30

Twitter 4165 2267310 4815 22.54
Memetracker 30907 1298787 6724 20.21

Table 1 Some statistics about our real datasets.

Five real-world datasets are considered in our experiments:

– Digg: The Digg collaborative news portal allows users to post links to
stories (articles, blog posts, videos...). Other users can then ”digg” these
stories. Stories appear or not on the front page of Digg, on the basis of
the amount of ”diggs” they have. We use stories as propagated content in
diffusion episodes, each ”digg” given by a user being considered as a user
contamination. We used the Digg stream API to collect the complete Digg
history (every single story posted, all diggs, and all comments) during a
one month time window.

– ICWSM: The International AAAI Conference on Weblogs and Social Me-
dia 2009 (ICWSM ) published a corpus containing 44 millions blog posts
collected over a 1-year period [2]. Diffusion episodes are composed of sets of
posts which cite a same source blog. A diffusion episode then corresponds
to a set of users (authors of the corresponding posts) associated with their
infection timestamps (timestamps of the posts).

– Enron: The well-known Enron corpus gathers emails from about 150 per-
sons, mostly senior managers of the Enron American corporation. Various
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mail addresses are often used for a same person in this corpus. For sim-
plicity, we consider different addresses as different users in the following.
The corpus initially contains a total of about 500000 messages. From these,
we define diffusion episodes as proposed in [11], by considering sequences
of messages that form a conversation about a particular topic. These con-
versations are extracted by selecting messages that contain at least two
common words and whose sender corresponds to a recipient of a previous
message in the sequence.

– Twitter: This corpus has been built by collecting messages from the stream-
ing API of the online social network Twitter. First, we collected 5000 users
that posted tweets with words ”Obama” or ”Romney”. Then, we followed
all their posts during 2 weeks of the US presidential elections (the two
weeks before the election day). Diffusion episodes are formed by consider-
ing tweets containing the same hashtags. Diffusion episodes with less than
5 users are finally removed to only keep significantly propagated hashtags.

– Memetracker: The Memetracker corpus, described in [13], contains diffu-
sion episodes of short phrases (memes) extracted from news websites and
blogs collected during the 2008 US presidential campaign.

Table 1 gives some statistics about the datasets. In this table, |U |, |I | and
|D | respectively correspond to the number of users, the number of relationships
and the number of diffusion episodes. The last column corresponds to the
average episode size (number of infections). Note that episodes of Twitter and
Memetracker corpora contain much more users than those of others.

3.4.2 Results

Digg ICWSM Enron Twitter Memetracker
IC 0.036 0.097 0.033 0.013 0.012
NetRate 0.102 0.358 0.105 0.027 0.048
CT IC 0.119 0.482 0.132 0.032 0.061
DAIC0 0.127 0.665 0.162 0.026 0.073
DAIC5 0.128 0.665 0.164 0.035 0.087
DAIC10 0.127 0.665 0.164 0.044 0.082

Table 2 F1 Results. Scores in bold are significantly greater than CTIC ones (99% Student-t
test).

Table 2 reports F1 results obtained on real datasets with the different
approaches. Each result corresponds to an average score obtained over a set
of 1000 diffusion episodes that were not used for learning. We note DAICλ our
approach of delay-agnostic IC, with λ the parameter of the exponential prior
distribution used in the update formula 14.

In order to learn the parameters of IC, a step-size has to be chosen to fit
with sequences of infections observed in the datasets. This time-step size is
difficult to determine with real-world datasets: if too short, it leads to a lot
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of empty infection ties, if too long, most users are gathered in the same time-
steps. In both cases, this results in a very low amount of positive examples
of diffusion. In our experiments, we set the step-size of IC for each dataset
as the average delay between two consecutive infections in the training set.
This heuristic usually allows one to obtain a reasonable amount of positive
examples of diffusion IC can ground in. Nevertheless, we observe from table
2 that a classical learning of IC presents important difficulties in determining
correct infection probabilities in real-world settings, the F1 scores it obtained
being greatly lower than those of every other approach for each dataset. It even
tends to scores close to 0 for Twitter and Memetracker datasets, which means
that for these datasets nearly not any correct infection could be predicted,
partly due to the impossibility to find a step-size that fits well for a sufficient
amount of training diffusion episodes (no regularities in infection time delays).

Except on the Twitter dataset, our proposal of delay-agnostic learning ob-
tains significantly better results than other approaches. It confirms our claim
that real-world time delays of infection should be considered to follow an uni-
form distribution, an infection at the end of an episode being as likely resulting
from an influence by an early infected user as by a recent one. Whereas mod-
els such as CTIC could be regarded as more realistic, since favoring short
delay transmissions, such a setting usually leads to over-fitted distributions,
as observed delays in the training set rarely hold for prediction. Moreover,
rare users have a strong negative impact on the learned probabilities, as they
induce unconstrained infection explanations. While our proposal cannot be
used to predict time-stamps of infection (which is, from our point of view,
quasi-impossible in general settings with real-world data), it leads to a better
identification of the main channels of influence of the network. By only con-
sidering partial orders of infections during the learning process rather than
attempting to explain full diffusion episodes with exact infection time-stamps,
it focuses on who infected whom by emitting diffusion assumptions without
favoring any source according to its infection time.

On the Twitter dataset however, it appears that the benefit resulting from
this possibility for any infection to be explained by any previously infected
user is greatly limited by the unbalanced observations bias mentioned in sec-
tion 2.4. In this corpus indeed, a lot of diffusion episodes contain very rare
users (some of them participating only once in the training set), which in-
duces a loss of generalization ability of the model. Using an exponential prior
on transmission probabilities, as proposed in the update formula 14, allows us
to cope with this bias and to obtain good results despite great disparities in
user’s infection frequencies. On datasets with long diffusion episodes, such as
the Twitter and Memetracker corpora, considering an exponential prior on the
preliminary steps of the learning process (as described in section 2.4) allows
one to significantly improve the prediction accuracy. On such datasets with im-
portant spreads of diffusion, the observation of infections of rare users is more
likely (which induce some noise for the learning process). Our regularization
proposal appears to greatly reduce their impact on the prediction accuracy
performances. Note at last that the optimal regularization parameter λ to use
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in the exponential prior distribution may vary over each dataset: for instance,
best performances are obtained on Twitter with λ = 10, while on Memetracker
λ = 5 performs better. It can nevertheless be easily tuned by a cross-validation
process, by selecting the λ value that allows the best generalization ability on
a validation set of diffusion episodes.

4 Related work

The recent development of online social networks enabled researchers to sug-
gest methods to explain observations of diffusion across networks. Most of the
proposed iterative models ground in the two fundamental models Indepen-
dent Cascade (IC) [4] and Linear Threshold (LT) [7]. Both are modeling a
user-to-user contamination process : while IC models the spread of diffusion
as cascades of infections over the network, LT determines infections of users
according to thresholds of the influence pressure incoming from the neigh-
borhood of each user. We focus in this paper on IC-like approaches, which
appear better fitted to reproduce realistic temporal diffusion dynamics. While
parameters of these models (transmission probabilities) initially needed to be
set manually, Gruhl et al. defined in [8] a first attempt to automatically learn
them. A few years later, [20] proposed the learning methodology we ground in
here, which appeared to be an improvement of the one of [8], since it replaces
the former “exactly one influencer” assumption by a more realistic “at least
one influencer” one.

Thanks to its simplicity and its ability to explain diffusion data, at least
artificial ones with regular timestamps, IC has served as a baseline for a large
amount of studies in the last decade. It has also been the basis of a lot of
approaches, that proposed extensions for improving its effectiveness or for in-
cluding richer information about the context of the modeled diffusion. [21],
[25], [9] or [12] are instances of extensions including user profiles and infor-
mation content to extract diffusion probabilities. NetInf [6] and then Connie
[16] use greedy algorithms to find subsets of links between users that maxi-
mize the likelihood of observed diffusions under IC-like diffusion hypothesis.
As discussed above, various extensions have also addressed temporal issues,
by proposing models that deal with delays between observed infections, such
as CTIC [18] or NetRate [5].

Nevertheless, as widely discussed in this paper, temporal regularities are
difficult to observe and attempting to capture them may lead to lower effec-
tiveness for extracting main influence channels of the network. Then, recently
various works turned away from such iterative models, making use of classi-
cal statistical learning instead of grounding in graph-based approaches. For
instance, [22] performs extrapolations grounded in relations between the num-
ber of infected users after a short period of time and after a longer one to
predict the final volume of infections. [26] infers the volume of diffusion based
on infection timestamps of specifically selected subsets of users. [24] proposed
a logistic model that considers the density of influenced users at a given dis-
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tance of the source after a given time of diffusion. [1] followed a similar idea
by projecting the network in a continuous space where information diffusion
can be modeled as a heat diffusion process.

Our proposal leads to reconsider the use of cascade models for diffusion
predictions on real world networks, since using a temporally relaxed frame-
work while keeping the finer-grained modelization of the cascade models. Note
that a close “untemporal” version of IC has also been considered in [15], but in
a different context and without experimenting its benefits for influence extrac-
tion from real-world social data. We also defined a useful extension to cope
with biases related to the usual presence of infrequent users in the training
diffusion episodes.

5 Conclusion

In this paper, our contribution is twofold:

– We proposed to use a relaxed learning scheme for the well-known Indepen-
dent Cascade model, whose parameters are learned by considering partial
contamination orders rather than exact observed infection time-stamps.
This shows better performances for the prediction of the spread of diffu-
sion on real social networks than greatly more complex time-dependent
approaches.

– We introduced a regularization mechanism for IC (that can be applied as
well with the classical learning scheme as with our delay-agnostic version),
that leads to more robust models with great effectiveness improvements on
large social networks.

This work enables to reconsider cascade models, and more generally itera-
tive approaches, that lead to finer-grained diffusion explanations and simula-
tions than static models that recently emerged to overcome difficulties of time
consideration. Promising effectiveness results obtained with delay-agnostic IC
let us expect various further developments of the proposed approach. For in-
stance, we are currently working on an embedded version of our delay-agnostic
IC, which is expected to benefit from geometric constraints related to continu-
ous projection spaces to better capture influence regularities in the networks.
Furthermore, as the nature of the propagated information may have a great
impact on its spread of diffusion, we are also currently considering mixtures
of delay-agnostic IC models that depend on the diffused content.

Appendix

A Proof of Proposition 1

Let us denote θ
(i)
u,v the transmission probability from user u to user v at the i-th iteration of

the learning process. Let also denote PD(i)
v the estimation of the infection probability of v in
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the episode D (computed using formula 1 using current transmission probabilities) at the
i-th iteration of the learning process.

First, with Au,v =
|D+

u,v|
|D+

u,v|+|D−u,v|
, let us consider the following lemma:

Lemma 1
∀i ∈ N,∀Iu,v ∈I :

(
θ

(i)
u,v ≤ Au,v

)

Proof. Lemma 1 can be easily deduced from the update formula applied at each step of

the learning process (eq. 7), since we know from (eq. 1) that
θ

(i)
u,v

PD(i)
v
≤ 1 for all Iu,v ∈ I at

every iteration i > 0 of the process. Note that, without loss of generality, for getting the
lemma valid for i = 0, we assume that the probabilities θ are all initialized such that for all

Iu,v ∈I : θ
(0)
u,v ∈]0,Au,v[.

Let’s now consider the following lemma:

Lemma 2
∀Iu,v ∈I : (|D−u,v|= 0 =⇒ ∀i ∈ N : (θ

(i+1)
u,v ≥ θ

(i)
u,v))

Proof. If |D−u,v|= 0, we get, from formula 7:

θ
(i+1)
u,v

θ
(i)
u,v

=
1
|D+

u,v| ∑
D∈D+

u,v

1

PD(i)
j

≥ 1
|D+

u,v| ∑
D∈D+

u,v

1 = 1

where we used the fact that PD(i)
j is included in ]0;1[.

For simplicity, let us now state ID
v = (UD

v ∩Predsv). For every episode D ∈ D and every
user v ∈UD

∞ , we have at any iteration i of the process:

PD(i)
v = 1− ∏

u∈ID
v

(1−θ
(i)
u,v)

= 1− ∏
u∈ID

v ,|D−u,v |>0

(1−θ
(i)
u,v) ∏

u∈ID
v ,|D−u,v |=0

(1−θ
(i)
u,v)

≤ 1− ∏
u∈ID

v ,|D−u,v |>0

(1−Au,v) ∏
u∈ID

v ,|D−u,v |=0

(1−θ
(i)
u,v)

Let state BD
v = ∏

u∈ID
v ,|D−u,v |>0

(1−Au,v). Note that BD
v is a constant over the whole learning

process. Now, let’s consider the case of the proposition, where it exists at least one user
u ∈ ID

j such that |D−u,v|= 0. In that case, we can rewrite the inequality as :

PD(i)
v ≤ 1−BD

v (1−θ
(i)
u,v) ∏

u′∈ID
v \{u},|D−u′ ,v |=0

(1−θ
(i)
u′,v)

≤ 1−BD
v (1−θ

(i)
u,v)(1− max

u′∈ID
v \{u},|D−u′ ,v |=0

θ
(i)
u′,v)

|{u′∈ID
v \{u},|D−u′ ,v |=0}|

(19)

Now, let us consider the sequence V defined as:

Vn = (1− max
u′∈ID

v \{u},|D−u′ ,v |=0
θ

(n)
u′,v)

|{u′∈ID
v \{u},|D−u′ ,v |=0}|
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From lemma 2, we know that V is decreasing, since any component of the max function
does not own any counter-example in the training set. Moreover, This sequence is lower-
bounded by 0. Then, V converges towards its fixed point, which we denote as l. From this,
two possibilities: either l equals 0 or is strictly greater than 0.

If l = 0, then we know that:

lim
n→∞

max
u′∈ID

v \{u},|D−u′ ,v|=0
θ

(n)
u′,v = 1

Now, the formula 1 leads to know that, at every iteration i, ∀u′ ∈ ID
v : PD(i)

v ≥ θ
(i)
u′,v. There-

fore, at every iteration i, we have: PD(i)
v ≥ max

u′∈ID
v \{u},|D−u′ ,v|=0

θ
(i)
u′,v. Since we know that PD(i)

v is also

upper-bounded by 1 at every iteration i, we can state that, in that case, lim
n→∞

PD(n)

v = 1.

Else, we have at every iteration i:

(1− max
u′∈ID

v \{u},|D−u′ ,v |=0
θ

(i)
u′,v)

|{u′∈ID
v \{u},|D−u′ ,v |=0}| ≥ l

Plugging this in inequality 19, we get for every i:

PD(i)
v ≤ 1− lBD

j (1−θ
(i)
u,v)≤ 1−λ + λθ

(i)
u,v

with λ = lBD
v . Then, we can rewrite the update formula 7 as:

θ
(i+1)
u,v =

∑D′∈D+
u,v\D

θ
(i)
u,v

PD′(i)
v

+
θ

(i)
u,v

PD(n)
v

|D+
u,v|

≥
(|D+

u,v|−1)θ
(i)
u,v +

θ
(i)
u,v

1−λ+λθu,v

|D+
u,v|

(20)

Let us consider now the sequence W such that:W0 = θ
(0)
u,v

Wn+1 =
(|D+

u,v |−1)Wn+ Wn
1−λ+λWn

|D+
u,v|

Then, since W takes its values in ]0;1[, and that λ is also in ]0;1[, we can state that:

Wn+1

Wn
=
|D+

u,v|−1 + 1
1−λ+λWn

|D+
u,v|

> 1

The sequence is thus strictly increasing. Since it is upper bounded by its fixed point 1,

we know that it converges to 1. Now, since we know that, from inequality 20, ∀n : θ
(n)
u,v ≥Wn,

we can get that lim
n→∞

θ
(n)
u,v = 1. This concludes the proof since therefore: lim

n→∞
PD(n)

v = 1.

B Proof of Proposition 2

If, for a given relationship Iu,v ∈I such that |D−u,v|> 0, it exists in each D ∈D+
u,v at least one

user u′ ∈UD
v ∩Predsv such that |D−u′,v|= 0, we can deduce from proposition 1 that:

∀D ∈D+
u,v : lim

n→+∞
PD(n)

v = 1

In that case, we can state that, after a given iteration m, it exists a value x ∈]Au,v;1[ such

that ∀D ∈D+
u,v : PD(n)

v > x. Then, we know that: ∀n > m,θ
(n+1)
u,v < θ

(n)
u,v

Au,v
x = γθ

(n)
u,v , with γ =

Au,v
x .

Note that γ ∈]0;1[ since x > Au,v. Let us consider now the following sequence V :{
V0 = θ

(0)
u,v

Vn+1 = γVn

This sequence converges to its unique fixed point 0 since γ ∈]0;1[. Since we know that:

∀n > m,θ
(n)
u,v ≤Vn and that θ

(n)
u,v is lower bounded by 0, then we get: lim

n→+∞
θ

(n)
u,v = 0.
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C Proof of Proposition 3

Proving that the solution given by (14), denoted hereafter θ ∗u,v, is non-negative is straight-

forward. Inequality θ ∗u,v ≥ 0 can indeed be transformed into β ≥
√

∆ whose both sides are non-

negative terms and which can thus be verified by considering its square: as ∆−β 2 =−4λγ ≤ 0,
β 2 ≥ ∆ is always true.

Proving that θ ∗u,v ≤ 1 requires showing that β −
√

∆ ≤ 2λ , which is equivalent to β −
2λ ≤

√
∆ . If λ ≥ (|D−u,v|+ |D+

u,v|), the verification of the latter is direct since in that case

β − 2λ ≤ 0 (and we know that
√

∆ ≥ 0). In the opposite case, both sides of the inequality
are non-negative. It is then possible to consider the square of the inequality: (β −2λ )2 ≤ ∆

is equivalent to |D−u,v|+ |D+
u,v|− γ ≥ 0, that is always true since we know that |D+

u,v| ≥ γ. Then,
θ ∗u,v always lies in [0,1].

Proving that the solution given by (14) can be used as an update rule at each maxi-
mization step for solving the estimator of formula (12) implies to show that it maximizes,
for any pair (u,v), the quantity Q = Q(θ |θ̂)−λ ∑θu,v∈θ θu,v. Since we already know that θ ∗u,v
corresponds to one of the two possible solutions of the cancellation of the derivative of Q
from equation (13), it suffices to show that it corresponds to a maximum. This can be easily
verified by considering the second derivative of Q w.r.t. θu,v, which equals:

∂Q
∂θ 2

u,v
=− ∑

D∈D+
u,v

(
θ̂ D

u→v
θ 2

u,v
+

(1− θ̂ D
u→v)

(1−θu,v)2 )− ∑
D∈D−u,v

1
(1−θu,v)2

where θ̂ D
u→v is a shortcut for

θ̂u,v
P̂D

v
. From this formulation, it is easy to see that the second

derivative of Q w.r.t. θu,v is always negative on ]0;1[, which concludes the proof: taking θ ∗u,v
as an update of θu,v allows us to maximize Q at each step of the EM algorithm.
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