S. Bourigault, C. Lagnier, S. Lamprier, L. Denoyer, and P. Gallinari, Learning social network embeddings for predicting information diffusion, Proceedings of the 7th ACM international conference on Web search and data mining, WSDM '14, pp.393-402, 2014.
DOI : 10.1145/2556195.2556216

URL : https://hal.archives-ouvertes.fr/hal-01211783

K. Burton, A. Java, and I. Soboroff, The icwsm 2009 spinn3r dataset, Proceedings of the Third Annual Conference on Weblogs and Social Media, 2009.

N. Du, L. Song, M. Gomez-rodriguez, and H. Zha, Scalable influence estimation in continuous-time diffusion networks, Advances in Neural Information Processing Systems 26, pp.3147-3155, 2013.

J. Goldenberg, B. Libai, and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth, Marketing Letters, vol.12, issue.3, pp.211-223, 2001.
DOI : 10.1023/A:1011122126881

M. Gomez-rodriguez, D. Balduzzi, and B. Schölkopf, Uncovering the temporal dynamics of diffusion networks, Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML '11, pp.561-568, 2011.

G. Rodriguez, M. Leskovec, J. Krause, and A. , Inferring networks of diffusion and influence, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, 2010.
DOI : 10.1145/1835804.1835933

M. Granovetter, Threshold Models of Collective Behavior, American Journal of Sociology, vol.83, issue.6, pp.1420-1143, 1978.
DOI : 10.1086/226707

D. Gruhl, R. Guha, D. Liben-nowell, and A. Tomkins, Information diffusion through blogspace, Proceedings of the 13th International Conference on World Wide Web, pp.491-501, 2004.

A. Guille and H. Hacid, A predictive model for the temporal dynamics of information diffusion in online social networks, Proceedings of the 21st international conference companion on World Wide Web, WWW '12 Companion, 2012.
DOI : 10.1145/2187980.2188254

URL : https://hal.archives-ouvertes.fr/hal-00680767

D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the spread of influence through a social network, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.137-146, 2003.
DOI : 10.1145/956750.956769

B. Klimt and Y. Yang, Introducing the Enron corpus, First Conference on Email and Anti-Spam (CEAS), 2004.

C. Lagnier, L. Denoyer, E. Gaussier, and P. Gallinari, Predicting Information Diffusion in Social Networks Using Content and User???s Profiles, European Conference on Information Retrieval, p.13, 2013.
DOI : 10.1007/978-3-642-36973-5_7

J. Leskovec, L. Backstrom, and J. Kleinberg, Meme-tracking and the dynamics of the news cycle, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.497-506, 2009.
DOI : 10.1145/1557019.1557077

H. Ma, H. Yang, M. R. Lyu, and I. King, Mining social networks using heat diffusion processes for marketing candidates selection, Proceeding of the 17th ACM conference on Information and knowledge mining, CIKM '08, pp.233-242, 2008.
DOI : 10.1145/1458082.1458115

M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen, Sparsification of influence networks, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '11, pp.529-537, 2011.
DOI : 10.1145/2020408.2020492

S. A. Myers and J. Leskovec, On the convexity of latent social network inference, p.5504, 1010.

D. M. Romero, B. Meeder, and J. Kleinberg, Differences in the mechanics of information diffusion across topics, Proceedings of the 20th international conference on World wide web, WWW '11, pp.695-704, 2011.
DOI : 10.1145/1963405.1963503

K. Saito, M. Kimura, K. Ohara, and H. Motoda, Learning Continuous-Time Information Diffusion Model for Social Behavioral Data Analysis, Proceedings of the 1st Asian Conference on Machine Learning: Advances in Machine Learning, ACML '09, pp.322-337, 2009.
DOI : 10.1007/978-3-642-05224-8_25

K. Saito, M. Kimura, K. Ohara, and H. Motoda, Generative models of information diffusion with asynchronous timedelay, Journal of Machine Learning Research -Proceedings Track, vol.13, pp.193-208, 2010.

K. Saito, R. Nakano, and M. Kimura, Prediction of Information Diffusion Probabilities for Independent Cascade Model, Proceedings of the 12th international conference on Knowledge-Based Intelligent Information and Engineering Systems, Part III, KES '08, pp.67-75, 2008.
DOI : 10.1007/978-3-540-85567-5_9

K. Saito, K. Ohara, Y. Yamagishi, M. Kimura, and H. Motoda, Learning Diffusion Probability Based on Node Attributes in Social Networks, Lecture Notes in Computer Science, vol.34, pp.153-162, 2011.
DOI : 10.1086/518527

G. Szabo and B. A. Huberman, Predicting the popularity of online content, Communications of the ACM, vol.53, issue.8, pp.80-88, 2010.
DOI : 10.1145/1787234.1787254

V. Steeg, G. Galstyan, and A. , Information-theoretic measures of influence based on content dynamics, Proceedings of the sixth ACM international conference on Web search and data mining, WSDM '13, pp.3-12, 2013.

F. Wang, H. Wang, and K. Xu, Diffusive Logistic Model Towards Predicting Information Diffusion in Online Social Networks, 2012 32nd International Conference on Distributed Computing Systems Workshops, pp.133-139, 2012.
DOI : 10.1109/ICDCSW.2012.16

L. Wang, S. Ermon, and J. E. Hopcroft, Feature-Enhanced Probabilistic Models for Diffusion Network Inference, Proceedings of the 2012 European conference on Machine Learning and Knowledge Discovery in Databases -Volume Part II, ECML PKDD'12, pp.499-514, 2012.
DOI : 10.1007/978-3-642-33486-3_32

J. Yang and J. Leskovec, Modeling Information Diffusion in Implicit Networks, 2010 IEEE International Conference on Data Mining, pp.599-60822, 2010.
DOI : 10.1109/ICDM.2010.22