M. Thiriet, J. Graham, and R. Issa, A pulsatile developing flow in a bend, Journal de Physique III, vol.2, issue.6, pp.995-1013, 1992.
DOI : 10.1051/jp3:1992174

URL : https://hal.archives-ouvertes.fr/jpa-00248799

M. Mendlowitz, The Specific Heat of Human Blood, Science, vol.107, issue.2769, pp.97-98, 1948.
DOI : 10.1126/science.107.2769.97

J. Woodcock, Physical properties of blood and their influence on blood-flow measurement, Reports on Progress in Physics, vol.39, issue.1, p.65, 1976.
DOI : 10.1088/0034-4885/39/1/002

S. Jiang, N. Ma, H. Li, and X. Zhang, Effects of thermal properties and geometrical dimensions on skin burn injuries, Burns, vol.28, issue.8, pp.713-717, 2002.
DOI : 10.1016/S0305-4179(02)00104-3

V. Nahirnyak, S. Yoon, and C. Holland, Acousto-mechanical and thermal properties of clotted blood, The Journal of the Acoustical Society of America, vol.119, issue.6, pp.3766-3772, 2006.
DOI : 10.1121/1.2201251

K. Holmes, Thermal conductivity of biomaterials (www.ece.utexas

J. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, The Journal of Physiology, vol.127, issue.3, pp.553-563, 1955.
DOI : 10.1113/jphysiol.1955.sp005276

A. Quarteroni, S. Ragni, and A. Veneziani, Coupling between lumped and distributed models for blood flow problems, Computing and Visualization in Science, vol.4, issue.2, pp.111-124, 2001.
DOI : 10.1007/s007910100063

N. Smith, A. Pullan, and P. Hunter, An Anatomically Based Model of Transient Coronary Blood Flow in the Heart, SIAM Journal on Applied Mathematics, vol.62, issue.3, pp.990-1018, 2002.
DOI : 10.1137/S0036139999355199

M. Olufsen, C. Peskin, W. Kim, E. Pedersen, A. Nadim et al., Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions, Annals of Biomedical Engineering, vol.28, issue.11, pp.1281-1299, 2000.
DOI : 10.1114/1.1326031

K. Laganà, G. Dubini, F. Migliavacca, R. Pietrabissa, G. Pennati et al., Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures, Biorheology, vol.39, pp.359-364, 2002.

L. Formaggia, J. Gerbeau, F. Nobile, and A. Quarteroni, Numerical Treatment of Defective Boundary Conditions for the Navier--Stokes Equations, SIAM Journal on Numerical Analysis, vol.40, issue.1, pp.376-401, 2002.
DOI : 10.1137/S003614290038296X

URL : https://hal.archives-ouvertes.fr/inria-00072539

S. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere Series on Computational Methods in Mechanics and Thermal Science, 1980.

R. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, 2002.
DOI : 10.1017/CBO9780511791253

O. Pironneau, Méthodes desélémentsdeséléments finis pour les fluides. Masson, Paris and Finite element methods for fluids, 1988.

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, 1986.
DOI : 10.1007/978-3-642-61623-5

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, 1991.
DOI : 10.1007/978-1-4612-3172-1

J. Reddy, An Introduction to the Finite Element Method. McGraw-Hill series in mechanical engineering, Engineering Series, 2006.

J. Cebral and R. Löhner, From medical images to anatomically accurate finite element grids, International Journal for Numerical Methods in Engineering, vol.127, issue.8, pp.985-1008, 2001.
DOI : 10.1002/nme.205

M. Thiriet, P. Brugì-eres, J. Bittoun, and A. Gaston, Simulation num??rique de l'??coulement dans les an??vrismes c??r??braux cong??nitaux??: I.????coulement stationnaire, M??canique & Industries, vol.2, issue.2, pp.107-118, 2001.
DOI : 10.1016/S1296-2139(01)01088-0

S. Salmon, M. Thiriet, and J. Gerbeau, Medical image ??? based computational model of pulsatile flow in saccular aneurisms, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.663-679, 2003.
DOI : 10.1051/m2an:2003053

URL : https://hal.archives-ouvertes.fr/hal-00017590

J. Milner, J. Moore, B. Rutt, and D. Steinman, Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects, Journal of Vascular Surgery, vol.28, issue.1, pp.143-156, 1998.
DOI : 10.1016/S0741-5214(98)70210-1

J. Moore, B. Rutt, S. Karlik, K. Yin, and C. Ethier, Computational Blood Flow Modeling Based on In Vivo Measurements, Annals of Biomedical Engineering, vol.27, issue.5, pp.627-640, 1999.
DOI : 10.1114/1.221

H. Ladak, J. Milner, . Steinman, and . Da, Rapid Three-Dimensional Segmentation of the Carotid Bifurcation From Serial MR Images, Journal of Biomechanical Engineering, vol.122, issue.1, pp.96-99, 2000.
DOI : 10.1115/1.429646

Y. Papaharilaou, D. Doorly, S. Sherwin, J. Peir, C. Griffith et al., Combined MRI and computational fluid dynamics detailed investigation of flow in idealised and realistic arterial bypass graft models, Biorheology, vol.39, pp.525-532, 2002.

J. Gill, H. Ladak, D. Steinman, and A. Fenster, Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images, Medical Physics, vol.1131, issue.6, pp.1333-1342, 2000.
DOI : 10.1118/1.599014

M. Delfour and J. Zolesio, Shapes and Geometries: Metrics, Analysis, Differential Calculus and Optimization, SIAM series on Advances in Design and Control, Society for Industrial and Applied Mathematics, 2011.
DOI : 10.1137/1.9780898719826

J. Boissonnat, Shape reconstruction from planar cross sections, Computer Vision, Graphics, and Image Processing, vol.44, issue.1, pp.1-29, 1988.
DOI : 10.1016/S0734-189X(88)80028-8

URL : https://hal.archives-ouvertes.fr/inria-00076008

J. Boissonnat, R. Chaine, P. Frey, G. Malandain, S. Salmon et al., From arteriographies to computational flow in saccular aneurisms: the INRIA experience, Medical Image Analysis, vol.9, issue.2, pp.133-143, 2005.
DOI : 10.1016/j.media.2004.11.004

URL : https://hal.archives-ouvertes.fr/hal-00017614

J. Boissonnat and F. Cazals, Smooth surface reconstruction via natural neighbour interpolation of distance functions, Computational Geometry, vol.22, issue.1-3, pp.185-203, 2002.
DOI : 10.1016/S0925-7721(01)00048-7

URL : https://hal.archives-ouvertes.fr/inria-00072662

H. Delingette, M. Hébert, and K. Ikeuchi, Shape representation and image segmentation using deformable surfaces, Image and Vision Computing, vol.10, issue.3, pp.132-144, 1992.
DOI : 10.1016/0262-8856(92)90065-B

URL : https://hal.archives-ouvertes.fr/inria-00615539

C. Taylor, T. Hughes, and C. Zarins, Finite element modeling of blood flow in arteries, Computer Methods in Applied Mechanics and Engineering, vol.158, issue.1-2, pp.155-196, 1998.
DOI : 10.1016/S0045-7825(98)80008-X

J. Peir, S. Giordana, C. Griffith, and S. Sherwin, High-order algorithms for vascular flow modelling, International Journal for Numerical Methods in Fluids, vol.285, issue.6, pp.137-151, 2002.
DOI : 10.1002/fld.270

S. Sherwin and J. Peir, Mesh generation in curvilinear domains using high-order elements, International Journal for Numerical Methods in Engineering, vol.218, issue.2, pp.207-223, 2002.
DOI : 10.1002/nme.397

A. Giachetti, M. Tuveri, and G. Zanetti, Reconstruction and web distribution of measurable arterial models, Medical Image Analysis, vol.7, issue.1, pp.79-93, 2003.
DOI : 10.1016/S1361-8415(02)00092-0

L. Cohen, On active contour models and balloons, CVGIP: Image Understanding, vol.53, issue.2, pp.211-218, 1991.
DOI : 10.1016/1049-9660(91)90028-N

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.158.8722

C. Fetita, F. Prêteux, C. Beigelman-aubry, and P. Grenier, Pulmonary Airways: 3-D Reconstruction From Multislice CT and Clinical Investigation, IEEE Transactions on Medical Imaging, vol.23, issue.11, pp.1353-1364, 2004.
DOI : 10.1109/TMI.2004.826945

URL : https://hal.archives-ouvertes.fr/hal-00273473

M. Thiriet and M. Bonis, Experiments on flow limitation during forced expiration in a monoalveolar lung model, Medical & Biological Engineering & Computing, vol.37, issue.6, pp.681-687, 1983.
DOI : 10.1007/BF02464030

M. Thiriet, S. Naili, and C. Ribreau, Entry Length and Wall Shear Stress in Uniformly Collapsed Veins, Key Engineering Materials, vol.243, issue.244, pp.473-488, 2003.
DOI : 10.4028/www.scientific.net/KEM.243-244.243

URL : https://hal.archives-ouvertes.fr/hal-00017583

R. Raghu, I. Vignon-clementel, C. Figueroa, and C. Taylor, Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow, ASME Journal of Biomechanical Engineering, vol.133, p.81003, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650846

H. Kim, I. Vignon-clementel, C. Figueroa, J. Ladisa, K. Jansen et al., On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model, Annals of Biomedical Engineering, vol.25, issue.11, pp.2153-2169, 2009.
DOI : 10.1007/s10439-009-9760-8

URL : https://hal.archives-ouvertes.fr/inria-00542739

P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.42-44, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/hal-00695954

F. Varela, M. Gerbeau, J. Grandmont, and C. , A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.69, pp.794-821, 2007.

E. Burman, F. Varela, and M. , Stabilization of explicit coupling in fluid???structure interaction involving fluid incompressibility, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.5-8, pp.766-784, 2009.
DOI : 10.1016/j.cma.2008.10.012

URL : https://hal.archives-ouvertes.fr/inria-00247409

M. Boulakia and S. Guerrero, Regular solutions of a problem coupling a compressible fluid and an elastic structure, Journal de Math??matiques Pures et Appliqu??es, vol.94, issue.4, pp.341-365, 2010.
DOI : 10.1016/j.matpur.2010.04.002

URL : https://hal.archives-ouvertes.fr/inria-00538039

F. Varela and M. , Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit, SeMa Journal, vol.55, pp.59-108, 2011.

K. Wang, A. Rallu, J. Gerbeau, and C. Farhat, Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems, International Journal for Numerical Methods in Fluids, vol.41, issue.1, pp.1175-1206, 2011.
DOI : 10.1002/fld.2556

URL : https://hal.archives-ouvertes.fr/hal-00651118

H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of Applied Physiology, vol.1, pp.93-122, 1948.

J. Lighthill, Acoustic streaming, Journal of Sound and Vibration, vol.61, issue.3, pp.391-418, 1978.
DOI : 10.1016/0022-460X(78)90388-7

S. Chien, Shear Dependence of Effective Cell Volume as a Determinant of Blood Viscosity, Science, vol.168, issue.3934, pp.977-978, 1970.
DOI : 10.1126/science.168.3934.977

P. Easthope and D. Brooks, A comparison of rheological constitutive functions for whole human blood, Biorheology, vol.17, pp.235-247, 1980.

S. Chien, Biophysical behavior in suspensions The red blood cell, 1975.

C. Bucherer, C. Lacombe, and J. Lelì-evre, Viscosité du sang humain[Viscosity of the human blood, 1998.

M. Joly, C. Lacombe, and D. Quemada, Application of the transient flow rheology to the study of abnormal human bloods, Biorheology, vol.18, pp.445-452, 1981.

M. Thiriet, G. Martin-borret, and F. Hecht, ??coulement rh??ofluidifiant dans un coude et une bifurcation plane sym??trique. Application ?? l'??coulement sanguin dans la grande circulation, Journal de Physique III, vol.6, issue.4, pp.529-542, 1996.
DOI : 10.1051/jp3:1996139

A. Iolov, A. Kane, Y. Bourgault, R. Owens, and A. Fortin, A finite element method for a microstructure-based model of blood, International Journal for Numerical Methods in Biomedical Engineering, vol.153, pp.1321-1349, 2011.
DOI : 10.1002/cnm.1427

R. Paul, J. Apel, S. Klaus, F. Schugner, P. Shwindke et al., Shear Stress Related Blood Damage in Laminar Couette Flow, Artificial Organs, vol.17, issue.6, pp.517-529, 2003.
DOI : 10.1046/j.1525-1594.2003.07103.x

M. Kunov, D. Steinman, and C. Ethier, Particle Volumetric Residence Time Calculations in Arterial Geometries, Journal of Biomechanical Engineering, vol.118, issue.2, pp.158-164, 1996.
DOI : 10.1115/1.2795954

M. Pinotti and E. Rosa, Computational Prediction of Hemolysis in a Centrifugal Ventricular Assist Device, Artificial Organs, vol.3, issue.3, pp.267-273, 1995.
DOI : 10.1111/j.1525-1594.1995.tb02326.x

A. Garon and M. Farinas, Fast Three-dimensional Numerical Hemolysis Approximation, Artificial Organs, vol.20, issue.11, pp.1016-1025, 2004.
DOI : 10.1046/j.1525-1594.2002.07079.x

M. Giersiepen, L. Wurzinger, R. Opitz, and H. Reul, Estimation of shear stress-related blood damage in heart valve protheses -in vitro comparison of 25 aortic valves, International Journal of Artificial Organs, vol.13, pp.300-306, 1990.

C. Bludszuweit, Model for a General Mechanical Blood Damage Prediction, Artificial Organs, vol.12, issue.4, pp.583-589, 1995.
DOI : 10.1111/j.1525-1594.1995.tb02385.x

M. Thiriet, Biology and Mechanics of Blood Flows, part II: Mechanics and Medical Aspects of Blood Flows, CRM Series in Mathematical Physics, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00715110

G. Segré and A. Silberberg, Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams, Journal of Fluid Mechanics, vol.189, issue.01, pp.115-135, 1962.
DOI : 10.1017/S002211206200110X

G. Segré and A. Silberberg, Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation, Journal of Fluid Mechanics, vol.11, issue.01, pp.136-157, 1962.
DOI : 10.1007/BF01968851

D. Leighton and A. Acrivos, The shear-induced migration of particles in concentrated suspensions, Journal of Fluid Mechanics, vol.177, issue.-1, pp.415-439, 1987.
DOI : 10.1016/0021-9797(77)90414-3

C. Koh, P. Hookham, and L. Leal, An experimental investigation of concentrated suspension flows in a rectangular channel, Journal of Fluid Mechanics, vol.44, issue.-1, pp.1-32, 1994.
DOI : 10.1063/1.1672048

R. Fahraeus and T. Lindqvist, The viscosity of the blood in narrow capillary tubes, The American Journal of Physiology, vol.96, pp.562-568, 1931.

C. Michel and F. Curry, Microvascular permeability, Physiological Reviews, vol.79, pp.703-761, 1999.

S. Weinbaum and F. Curry, Modelling the structural pathways for transcapillary exchange, Symposia of the Society for Experimental Biology, vol.49, pp.323-345, 1995.

P. Agre, D. Brown, and S. Nielsen, Aquaporin water channels: unanswered questions and unresolved controversies, Current Opinion in Cell Biology, vol.7, issue.4, pp.472-483, 1995.
DOI : 10.1016/0955-0674(95)80003-4

J. Tarbell, L. Demaio, and M. Zaw, Effect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress, Journal of Applied Physiology, vol.87, pp.261-268, 1999.

S. Chen, K. Liu, and R. Wagner, Three-dimensional analysis of vacuoles and surface invaginations of capillary endothelia in the eel rete mirabile, The Anatomical Record, vol.34, issue.4, pp.546-553, 1998.
DOI : 10.1002/(SICI)1097-0185(199812)252:4<546::AID-AR5>3.0.CO;2-6

M. Thiriet, Cell and Tissue Organization in the Circulatory and Ventilatory Systems . Series " Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00651146

M. Thiriet, Control of Cell Fate in the Circulatory and Ventilatory Systems. Series " Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00651147

J. Wright, W. Thurlbeck, A. Churg, J. Myers, H. Tazelaar et al., Quantitative Anatomy of the Lung, Thurlbeck's Pathology of the Lung, 2005.

E. Weibel, Morphometry of the human lung, 1963.

U. Bucher and L. Reid, Development of the Intrasegmental Bronchial Tree: the Pattern of Branching and Development of Cartilage at Various Stages of Intra-uterine Life, Thorax, vol.16, issue.3, pp.207-218, 1961.
DOI : 10.1136/thx.16.3.207

M. Thiriet, D. Douguet, J. Bonnet, C. Canonne, and C. Hatzfeld, Influence du mélange He?O 2 sur la mixique dans les bronchopneumopathies obstructives chroniques. [Influence of a He?O 2 mixture on gas mixing in chronic obstructive lung diseases, pp.1053-1068, 1979.

J. Maina and J. West, Thin and Strong! The Bioengineering Dilemma in the Structural and Functional Design of the Blood-Gas Barrier, Physiological Reviews, vol.85, issue.3, pp.811-844, 2005.
DOI : 10.1152/physrev.00022.2004

M. Thiriet, M. Bonis, A. Adedjouma, C. Hatzfeld, and J. Yvon, Experimental and theoretical models of flow during forced expiration: pressure and pressure history dependence of flow rate, Medical & Biological Engineering & Computing, vol.59, issue.5, pp.551-559, 1987.
DOI : 10.1007/BF02441748

M. Thiriet, M. Bonis, A. Adedjouma, and J. Yvon, A Numerical Model of Expired Flow in a Monoalveolar Lung Model Subjected to Pressure Ramps, Journal of Biomechanical Engineering, vol.111, issue.1, pp.9-16, 1989.
DOI : 10.1115/1.3168349

M. Thiriet, J. Maarek, D. Chartrand, C. Delpuech, L. Davis et al., Transverse images of the human thoracic trachea during forced expiration, Journal of Applied Physiology, vol.67, pp.1032-1040, 1989.

S. Randell and R. Boucher, Effective Mucus Clearance Is Essential for Respiratory Health, American Journal of Respiratory Cell and Molecular Biology, vol.35, issue.1, pp.20-28, 2006.
DOI : 10.1165/rcmb.2006-0082SF

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658694

S. Enault, D. Lombardi, P. Poncet, and M. Thiriet, Mucus dynamics subject to air and wall motion, ESAIM: Proceedings, vol.30, pp.125-141, 2010.
DOI : 10.1051/proc/2010010

URL : https://hal.archives-ouvertes.fr/inria-00543082

R. Chatelin, P. Poncet, A. Didier, M. Murris-espin, D. Anne-archard et al., Mucus and Ciliated Cells of Human Lung: Splitting Strategies for Particle Methods and 3D Stokes Flows, International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Particle Methods in Fluid Mechanics, 2012.
DOI : 10.1016/j.piutam.2015.11.012

D. Yeates, B. Pitt, D. Spektor, G. Karron, and R. Albert, Coordination of mucociliary transport in the human trachea and intrapulmonary airways, Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, vol.51, pp.1057-1064, 1981.

I. Katz, T. Zwas, G. Baum, E. Aharonson, and B. Belfer, Ciliary Beat Frequency and Mucociliary Clearance, Chest, vol.92, issue.3, pp.491-493, 1987.
DOI : 10.1378/chest.92.3.491

A. Wanner, Alteration of tracheal mucociliary transport in airway disease: effect of pharmacologic agents, Chest, vol.80, pp.867-870, 1981.

J. Yager, T. Chen, and M. Dulfano, Measurement of Frequency of Ciliary Beats of Human Respiratory Epithelium, Chest, vol.73, issue.5, pp.627-633, 1978.
DOI : 10.1378/chest.73.5.627

J. Rutland, W. Griffin, and P. Cole, Human ciliary beat frequency in epithelium from intrathoracic and extrathoracic airways, American Review of Respiratory Diseases, vol.125, pp.100-105, 1982.

S. Lindberg and T. Runer, Method for in Vivo Measurement of Mucociliary Activity in the Human Nose, Annals of Otology, Rhinology & Laryngology, vol.13, issue.7, pp.558-566, 1994.
DOI : 10.1016/0014-4827(81)90307-4

J. Nuutinen, E. Toskala, V. Saano, and S. J. , Ciliary Beating Frequency in Chronic Sinusitis, Archives of Otolaryngology - Head and Neck Surgery, vol.119, issue.6, pp.645-647, 1993.
DOI : 10.1001/archotol.1993.01880180061011

S. Lai, Y. Wang, D. Wirtz, and J. Hanes, Micro- and macrorheology of mucus, Advanced Drug Delivery Reviews, vol.61, issue.2, pp.86-100, 2009.
DOI : 10.1016/j.addr.2008.09.012

E. Puchelle, J. Zahm, and D. Quemada, Rheological properties controlling mucociliary frequency and respiratory mucus transport, Biorheology, vol.24, pp.557-563, 1987.

M. King, Physiology of mucus clearance, Paediatric Respiratory Reviews, vol.7, pp.212-214, 2006.
DOI : 10.1016/j.prrv.2006.04.199

M. Dawson, D. Wirtz, and J. Hanes, Enhanced Viscoelasticity of Human Cystic Fibrotic Sputum Correlates with Increasing Microheterogeneity in Particle Transport, Journal of Biological Chemistry, vol.278, issue.50, pp.50393-50401, 2003.
DOI : 10.1074/jbc.M309026200

L. Boudin, L. Desvillettes, and R. Motte, A Modeling of Compressible Droplets in a Fluid, Communications in Mathematical Sciences, vol.1, issue.4, pp.657-669, 2003.
DOI : 10.4310/CMS.2003.v1.n4.a2

D. Dubois and E. Dubois, A formula to estimate the approximate surface area if height and weight be known, Archives of Internal Medicine, vol.17, pp.863-871, 1916.

Y. Wang, J. Moss, and R. Thisted, Predictors of body surface area, Journal of Clinical Anesthesia, vol.4, issue.1, pp.4-10, 1992.
DOI : 10.1016/0952-8180(92)90111-D

J. Valvano, Bioheat Transfer, Encyclopedia of Medical Devices and Instrumentation, 2006.
DOI : 10.1002/0471732877.emd015

A. Zolfaghari and M. Maerefat, A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environmrnt, Building and Environment, vol.45, pp.2069-2076, 2010.

A. Zolfaghari and M. Maerefat, Bioheat transfer, Chap. 9: Developments in Heat Transfer, dos Santos Bernardes MA (Ed.) Developments in Heat Transfer, 2011.

A. Kuznetsov, Optimization problems for bioheat equation, International Communications in Heat and Mass Transfer, vol.33, issue.5, pp.537-543, 2006.
DOI : 10.1016/j.icheatmasstransfer.2006.01.012

S. Goldberg, G. Gazelle, C. Compton, and T. Mcloud, Radiofrequency tissue ablation in the rabbit lung: Efficacy and complications, Academic Radiology, vol.2, issue.9, p.776, 1995.
DOI : 10.1016/S1076-6332(05)80852-9

G. Gazelle, S. Goldberg, L. Solbiati, and T. Livoraghi, Tumor Ablation with Radio-frequency Energy, Radiology, vol.217, issue.3, pp.633-646, 2000.
DOI : 10.1148/radiology.217.3.r00dc26633

T. Sheu, C. Chou, S. Tsai, and P. Liang, Three-dimensional analysis for radio-frequency ablation of liver tumor with blood perfusion effect, Computer Methods in Biomechanics and Biomedical Engineering, vol.49, issue.4, pp.229-240, 2005.
DOI : 10.1002/1097-0142(19870915)60:6<1400::AID-CNCR2820600639>3.0.CO;2-W

T. Lorentzen, A cooled needle electrode for radiofrequency tissue ablation: Thermodynamic aspects of improved performance compared with conventional needle design, Academic Radiology, vol.3, issue.7, pp.556-563, 1996.
DOI : 10.1016/S1076-6332(96)80219-4

T. Sheu, M. Solovchuk, A. Chen, and M. Thiriet, On an acoustics???thermal???fluid coupling model for the prediction of temperature elevation in liver tumor, International Journal of Heat and Mass Transfer, vol.54, issue.17-18, pp.4117-4126, 2011.
DOI : 10.1016/j.ijheatmasstransfer.2011.03.045

J. Van-der-zee, Heating the patient: a promising approach?, Annals of Oncology, vol.13, issue.8, pp.1173-1184, 2002.
DOI : 10.1093/annonc/mdf280