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Abstract  

Robust signal processing methods adapted to clinical measurements of guided modes are 

required to assess bone properties such as cortical thickness and porosity. Recently, an 

approach based on the singular value decomposition (SVD) of multidimensional signals 

recorded with an axial transmission array of emitters and receivers has been proposed for 

materials with negligible absorption [Minonzio et al. J. Acoust. Soc. Am. 127, 2913-2919 

(2010)]. In presence of absorption, the ability to extract guided mode degrades. The objective 

of the present study is to extend the method to the case of absorbing media, considering 

attenuated plane waves (complex wavenumber). The guided mode wavenumber extraction is 

enhanced and the order of magnitude of the attenuation of the guided mode is estimated. 

Experiments have been carried out on 2 mm thick plates in the 0.2 – 2 MHz bandwidth. Two 

material are inspected: PMMA (isotropic with absorption) and artificial composite bones 

(Sawbones, Pacific Research Laboratory Inc, Vashon WA) which is a transverse isotropic 

absorbing medium. Bulk wave velocities and bulk attenuation have been evaluated from 

transmission measurements. These values were used to compute theoretical Lamb mode 

wavenumbers which are consistent with the experimental ones obtained with the SVD-based 

approach.  

 

PACS numbers  

4320Ye Measurement methods and instrumentation,  

4380Vj Acoustical medical instrumentation and measurement techniques 

4320Mv Waveguides, wave propagation in tubes and ducts  

4360Fg Acoustic array systems and processing, beam-forming 
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I. INTRODUCTION 

Since more than ten years, guided waves have been known to be supported at 

ultrasonic frequencies by long cortical bones, such as tibia or radius.1, 2 The frequency-

dependent phase/group guided mode velocities, which are determined by bone elastic or 

geometrical properties, have thus the potential to be used as surrogate markers of bone 

strength. To date, in most in vivo axial transmission measurements, attention was focused on 

the measurement of the first arrival signal, denoted FAS. It has been measured on the leg 

(tibia)3-6 or the forearm (radius).6-9 Yet, measurements of dispersion curves have not been 

thoroughly investigated in vivo, except in a pioneering study on tibia dedicated to A0 mode.6, 

10 However, A0 mode is more susceptible than other Lamb waves to coupling with soft 

tissue.11  

In vitro measurements of frequency dependent guided modes were achieved on bone 

specimens. Several authors used a fixed transmitter and a mobile receiver on bovine tibia. 

Different frequency excitation and signal processing techniques have been considered. 

Lefebvre et al.12 used the spatio-temporal Fourier transform at 0.1 MHz and identified three 

plate or Lamb modes: A0, S0 and A1. Ta et al.13 used the phase spectrum method with 

ultrasonic frequencies of 0.5 and 1 MHz. Three longitudinal tube modes were measured: 

L(0,1), L(0,2) and L(0,3). Le et al.14 applied seismological principles at 1 MHz and identified 

different propagation paths, combination of the P and S waves. However, in all these 

approaches, the signals transmitted through the cortical layer along the bone axis must be 

recorded over a sufficiently large propagation distance (defined by the receiver scanning 

distance in case of a single receiver or by the length of the receiver array)  in order to allow a 

clear separation of the different signals components in the time  domain. Likewise, a large 

propagation distance is necessary to allow a clear separation in the frequency domain. Typical 

propagation distances reported in in vitro experimental works are between 60 and 160 mm, 
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which precludes the direct application of these methods to clinical measurements. The bone 

segment that can reasonably be investigated is limited to approximately 20 to 30 mm due to 

strong bone heterogeneities and variations of soft tissue thickness along the receiving area. 

Time-frequency analysis with a single transmitter − receiver configuration, has been proposed 

to overcome the need for an extended propagation distance.15,16  When applied on a sheep 

tibia, Protopappas et al.15 were able to identify several plate or Lamb guided modes A0, S0, 

A1, S1 and A2. Accurate model and advanced extraction tools17 are required to identify 

individual guided modes.  

To overcome these limitations, a signal processing method has recently been proposed 

taking advantage of a multi-emitter and multi-receiver axial transmission configuration.18, 19  

At each frequency f of the bandwidth, the most energetic singular vectors of the response 

matrix are interpreted as the signal subspace basis. The so-called Norm-function corresponds 

to the projection into the signal subspace of non attenuated plane waves (real wavenumber k). 

Guided modes are associated with Norm maxima in the (f-k) domain. The method has been 

validated for non dissipative materials such as copper plate,18, 19 using probes initially 

designed for FAS clinical measurements.20 In this case, measured Norm maxima values are 

closed to 1.  

In presence of absorption, the magnitude of the maxima of the Norm-function 

decreases, which degrades the ability to extract guided modes. The objective of the present 

study is to extend the method to the case of absorbing media such as cortical bone. The Norm-

function is generalized by considering attenuated plane waves (complex wavenumber k +iα). 

Consequently, maxima are extracted in a three dimensional (f-k-α) domain. The Norm 

maxima are shown to be enhanced, allowing more reliable measurements of dispersion curves 

and assessment of the order of magnitude of the attenuation of the guided modes. This method 

is presented in Sec. II. Material and methods are then described in Sec. III. Finally 
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experimental validation is presented in Sec. IV. Experiments are performed on 

polymethylacrylate (PMMA) and bone mimicking plates. Experimental complex guided mode 

wavenumbers are compared with theoretical predictions. Finally, for one particular case the 

results compared with the generalized Norm-function are compared and discussed with those 

obtained with the former Norm-function formalism and with the spatio-temporal Fourier 

transform.  

 

II. MEASUREMENT CONFIGURATION AND SIGNAL PROCESSING 

 

A. Axial transmission configuration 

The clinical probe contains NE emitters and NR receivers, placed in the axial 

transmission configuration: emitters and receivers are aligned along the (Ox3) axis and in 

contact with the wave guide to be characterized (Fig. 1). The waveguide thickness, the 

reception array length and the distance between the first emitters and the first receiver, are 

respectively denoted e, L and D. The emitter and receiver positions are denoted xj
E and xj

R and 

satisfy xi
E = ip and xj

R = D + jp respectively, with p the array pitch. Normal stress excitation is 

assumed. The length of the transducer elements along the (Ox2) direction is large compared to 

the transducer elements width along the (Ox3) direction, i.e., the array pitch. It implies that the 

problem can be simplified and considered as being two dimensional. An inter-element 

temporal response, with j and i the receiver and emitter indexes, is denoted rji(t). Its temporal 

Fourier transform, denoted Rji(f), corresponds to an element of the NR×NE response matrix 

R(f).  
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FIG. 1. Geometry of the problem: emission and reception arrays are placed in the axial 

transmission configuration. 

 

 

 

B. Response matrix 

An element Rji(f) of the theoretical response matrix R(f), can be written as a sum of 

normal modes21 

( ) ( )( ) ( )( )
mode

R E R Ei

1

n j i n j i
N f x x k f x x

ij n
n

R f w e eα− − −

=

= ∑ , (1) 

with kn(f) and αn(f) the real and imaginary parts of the guided mode wavenumber. The number 

of guided modes is denoted Nmode at the frequency f. The modal amplitude is denoted wn and 

can be given, for instance, for a non absorbing plate, assuming that normal displacement is 

measured at the receivers by21 

( ) ( )
2

L T=  sinc , , , , .
2 2n n n n
p pw B f k E k f c c e⎛ ⎞⎡ ⎤

⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 (2) 

The term B(f) corresponds to the frequency bandwidth. The sinc function corresponds to the 

transducer aperture function. The term En is the intrinsic excitability of the nth mode. It can be 

calculated either using integral transform or reciprocity relationship.21  
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Due to the two dimensional assumption, no geometric dispersion is considered as the 

propagation is purely in (Ox1x3) plane. Thus the amplitude decay is due to the guided mode 

attenuation and varies as ( ) 3n f xe α− . Transducers of finite dimension along the (Ox2) axis have 

been described in Ref. 22 and are not considered here. 

 

Considering the two previous equations, the theoretical response matrix can be written 

R(f) = aR W taE*. The notation t and * correspond to the transpose and complex conjugation 

operations. Elements of the reception and emission matrices aR and aE are  

( ) ( )( )R Rexp ijn n n ja f k f xα= − +⎡ ⎤⎣ ⎦ ,   

( ) ( )( )E Eexp i .in n n ia f k f xα= +⎡ ⎤⎣ ⎦  (3)  

The matrix W is diagonal and contains the weighting terms wn [Eq.(2)], i.e., Wnm = wn δnm with 

δnm the Kronecker symbol. The theoretical response matrix can be expressed using normalized 

vectors as 

R(f) = eR S teE*. (4) 

The normalized guided mode vectors in emission or reception satisfy  

E,R
E,R

E,R
.n

n
n

= ae
a

 (5) 

The notation ||aE
n|| corresponds to the norm of the aE

n vector given by Eq. (3). Its expression 

is given in Eq. (A3) of the appendix. With Nmode the number of guided modes at the frequency 

f, the dimensions of the reception and emission normalized guided mode matrices eR and eE 

are NR × Nmode and NE × Nmode respectively. The Nmode × Nmode matrix S is diagonal and 

contains the normalized weighting terms  

Sn =  wn ||aR
n|| ||aE

n||.          (6)
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C. Norm-function expression 

 

In a first step, the singular value decomposition (SVD) is applied to the response 

matrix R(f). The SVD of the response matrix writes as a three matrix product  

R (f) = U Σ tV*.  (7) 

The matrices U and V contain the reception and emission singular vectors. The real 

positive diagonal matrix Σ contains the singular values. The SVD outputs used in the 

following are the singular values σm(f) and the reception singular vectors Um(f). The number 

of experimental singular values and vectors is equal to the minimum of NE and NR, i.e., NE in 

this study.  

The most energetic singular values are used to define the signal subspace, whereas the 

other singular values define the complementary noise subspace. To this end, a first adaptive 

threshold t1 is used. Only singular values higher than the threshold t1 are kept and associated 

with the signal subspace. The threshold value is heuristically chosen at each frequency. The 

number of kept singular values corresponds to the rank of the signal subspace and is denoted 

M. The rank of the signal subspace is less or equal than Nmode at each frequency. Thus the 

signal singular vectors subspace Span(Um≤M) is included in the guided mode subspace 

Span(en
R). The singular vectors associated with the signal subspace, i.e., Um≤M, form the 

received signal basis. 

Consider an attenuated spatial plane wave with a complex wavenumber k+iα, denoted 

etest(k, α). It is defined as the test normalized guided mode following Eqs. (3) and (5) as 

etest(k, α) = eR(k, α).  (8)  

The test vector etest(k, α) is expressed in the canonical basis , i.e., the receiver  basis [Eq. (3)]. 

It can be projected in the signal subspace, using the singular vector basis, as 
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1
.

M
test test

signal m m
m=

=∑e U e U  (9) 

The Hermitian scalar product <Um| etest> is equal to tUm
* . etest. The Norm-function is defined 

at each frequency, as the square of the norm of the previous expression  

( ) ( ) ( )
2

1

, , , .
M

test
m

m
Norm f k f kα α

=

=∑ U e   (10) 

The Norm-function is real positive. Due to the normalization [Eqs. (5) and (7)], it ranges from 

0 to 1. Equation (10) corresponds to the extension of the non attenuated case.18 In this 

previous formalism, the Norm-function was expressed in the two dimensional (f, k) plane. 

Here, the Norm-function is expressed in the three dimensional (f, k, α) space, where α is the 

imaginary part of the testing wavenumber. Thus, the previous definition is included in the 

new formalism and corresponds to the α = 0 line of a (k, α) plane.   

 

D. Norm-function interpretation 

The Norm-function can be interpreted using the guided mode basis. Equations (4) and 

(7) are formally similar, i.e., the response matrix R(f) can be expressed in function of the 

normalized guided modes basis (en
R) or in function of the signal singular vectors basis (Um≤M). 

Due to the finite reception array length, the normalized guided modes en
R are not orthogonal. 

On the contrary, the singular vectors Um≤M are defined orthogonal.23  Thus the singular vectors 

are combination of the normalized guided modes. These two basis are represented 

schematically in Fig. 2 in the case of a rank 2 signal subspace, i.e., Span(e1
R, e2

R) or 

Span(U1, U2). 
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FIG. 2. Schematic representation of a signal subspace of rank 2: the test vector etest can be 

projected on the singular vector basis (U1, U2) [Eq. (9)] or in normalized guided mode basis 

(e1
R

, e2
R) [Eq. (11)]. 

 

The projection in the signal subspace of the test vector etest can be expressed using the 

singular vector basis [Eq. (9)] or using the normalized guided mode basis as 

( )
mode

R R

1
, .

N
test test

signal n n
n

k α
=

≈ ∑e e e e  (11) 

If k +iα is close to a guided mode wavenumber kn+iαn, the test vector etest(k, α) is projected 

mainly on the nth guided mode ( )R ,n n nk αe  as  

( ) ( ) ( )R R, , , ,test test
n n signal n n n n n nk k k kα α α α≈e e e e∼ ∼  (12) 

and the Norm-function [Eq. (10)] is given in that case by  

( ) ( ) ( )
2

R, , , , .test
n n n n nNorm f k k k kα α α α= e e∼ ∼  (13)  

The expression of the Hermitian scalar product ( ) ( )R , ,test
n n nk kα αe e  is given by Eq. (A6) 

in the appendix. This scalar product can be interpreted as the normalized spatial Fourier 

transform of the normalized guided mode ( )R ,n n nk αe . Thus, the SVD can be interpreted as a 
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denoising step included between the temporal and spatial Fourier transforms. If k +iα 

corresponds to a guided mode wavenumber kn +iαn, the Norm-function is close to 1. If k +iα 

does not correspond to a guided mode wavenumber, the Norm-function is small compared to 

1. The resolution, i.e., the ability to discriminate two close modes, corresponds to the main 

lobe width.18  

Thus the real and imaginary part of the guided mode wavenumbers can be obtained 

from the Norm maxima positions in the (f, k, α) 3D-space. A second threshold t2 is used to 

select the retained maxima larger than t2. As the maximum value reflects how the spatial 

plane wave is represented in the basis of the signal subspace, the value is interpreted as a 

quality parameter ranging from 0 to 1. 

As discussed in the paragraph II.C, the definition of the Norm-function adapted to the 

case of non-attenuating propagation media corresponds to the α = 0 2D-restriction of the 

(f, k, α) 3D-space. The 2D point of view is limited in case of absorbing waveguides, because 

the maxima of the Norm(f, k, 0) function decreases as αn increases [Eq. (A7)]. Thus maxima 

can be of the order of other mode secondary maxima or simply associated with noise. Thus, in 

presence of absorption, the magnitude of the maxima of the 2D-Norm-function decreases, this 

degrades the ability to extract guided mode. On the contrary, with the 3D-Norm-function 

definition, the maxima are enhanced and closer to 1. Thus a second threshold t2 closer to 1 can 

be chosen. Moreover, the order of magnitude of the attenuation of the guided mode an(f) is 

estimated. An example is shown and discussed in Sec. IV.C. 
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III. MATERIAL AND METHODS 

  

A. Samples 

Two materials have been measured: PMMA and bone mimicking plates. The plate 

thicknesses, about 2 mm, correspond to a typical cortical bone thickness. The PMMA is 

considered as isotropic. The bone mimicking material (Sawbones, Pacific Research 

Laboratory Inc, Vashon WA) is made of oriented glass fibers mixed with epoxy. The material 

is transverse isotropic, with elastic properties close to those of real bones. The velocities and 

attenuation coefficients of bulk compression and shear waves of both materials were 

determined with longitudinal (2.25 MHz Panametrics V105RM) and transverse (1 MHz 

Panametrics V152 RM) contact transducers24 using a conventional through-transmission 

method on 10 mm-thick plate of the same material.25-27 Constant rate of attenuation increase 

with frequency are experimentally observed.28 Thus, the bulk wave absorption per wavelength 

(αλ)L,T is constant, where subscripts L and T refer to compression and shear waves 

respectively. With this notation, a bulk plane wave can be written as 

exp[ ikL,T(1 + i(αλ)L,T/2π)x ]. 

The measured values compression (cL) and shear (cT) bulk velocities and compression 

(αλ)L and shear (αλ)T attenuation, the density ρ and the plate thickness e are reported in 

Table I. The PMMA values are consistent with previously reported values.29-32 For the bone 

mimicking material, the bulk velocities and attenuation are first measured perpendicular (⊥) 

to the fibers using the 10 mm-thick plate. In order to evaluate the longitudinal properties 

parallel (||) to the fibers, measurement have been done on a small cube (about 10×10×10.2 

mm3) extracted from the plate. The cube dimensions were large enough to evaluate the 

parallel bulk velocities cL
|| and cT

|| but too small to evaluate the attenuations (αλ)L
|| and (αλ)T

||. 
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The measured values are consistent with previously reported values on Sawbones33 or epoxy 

plates.34 These values are used to compute theoretical guided mode wavenumbers as 

discussed in paragraph III.B. Theoretical predictions are then compared to experimental data 

in Sec. IV.  

  

TABLE  I. Measured values for PMMA and bone mimicking (bone mim.) plates 

 cL  (m.s-1) cT (m.s-1) (αλ)L (Np) (αλ)T (Np) ρ (g.cm-3) e (mm)

PMMA 2685 ± 20 1365 ± 10 0.059 ± 0.007 0.063 ± 0.003 1.18 1.95 

bone mim. ⊥ 2870 ± 40 1520 ± 20 0.087 ± 0.013 0.147 ± 0.004 1.64 2.30 

bone mim. || 3705 ± 40 1585 ± 20     

 

B. Lamb wave calculations 

Theoretical Rayleigh-Lamb spectrum was calculated for isotropic (PMMA) and 

transverse isotropic plates (bone mimicking material).2, 35, 36 For the bone mimicking plate, 

two cases are considered, depending if the probe is placed perpendicularly or parallel to the 

fibers. In experiments, as the probe works in piston mode and does not excite horizontal shear 

displacement, only motion in the plane (Ox1x3) is considered.37 Due to geometrical hypothesis 

discussed in paragraph II.A, the perpendicular orientation is similar to an isotropic case. Thus, 

in this case, an absorbing plate with linear variation of absorption with frequency was 

assumed. For small values of (αλ)L,T, the real part of the guided mode wavenumbers is close 

to the non absorbing values. If the probe is placed parallel to the fibers, transverse isotropic 

case is considered. Nevertheless, as the attenuation could not be measured for all stiffness 

coefficients (Table I), only the non absorbing transverse isotropic is considered. The c13 

coefficient was deduced from c33 and c44 using c13 = c33 −2c44. 
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C. Axial transmission measurements 

The custom made probe used in this study contains 32 receivers and 5 emitters.19 The 

reception array pitch, denoted p, is equal to 0.8 mm. The reception array length, denoted L, is 

about 26 mm. The probe is driven by a custom made multichannel emission and reception 

electronic system (Althaïs Technologie, Tours, France). Emitted signals are wideband pulses 

(–50 dB bandwidth 0.2−2 MHz). The sampling frequency is equal to 20 MHz. The number of 

recorded time samples is equal to 1024. Fifty times signals are averaged to increase signal-to-

noise ratio. 

The experimental guided mode wavenumbers are extracted from the Norm-function in 

the following way. In a first step, the inter-element responses rji(t) are experimentally 

recorded. Then, the experimental response matrix R(f) is computed using the temporal Fourier 

transform for each frequency of the bandwidth. The SVD is then computed at each frequency 

and the heuristic threshold t1 is applied on the singular values in order to define the signal 

subspace dimension M, as discussed in paragraph II.C. Finally, the Norm-function is 

computed in the (f, k, α) 3D-space following Eq. (10). The experimental wavenumbers are 

obtained from the values of the Norm-function larger than a second threshold t2 equal here to 

0.85. Experimental results are shown and discussed in Sec. IV. For one particular case, the 

former Norm-function, i.e., for α = 0, and the spatio-temporal Fourier transform are also 

performed. These results are compared with those obtained the generalized Norm-function in 

this particular case.  
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IV. EXPERIMENTAL RESULTS 

A. Guided mode wavenumbers of the PMMA plate 

First, axial transmission measurements have been carried out on the isotropic 

dissipative PMMA plate. The plate thickness e measured with a caliper was 1.95 mm 

(Table I). The real and imaginary parts of wavenumbers kn
exp(f) and αn

exp(f) are obtained from 

the 3D-Norm(f, k, α) function maxima. Results are shown on Fig. 3(a) and (b). Experimental 

results are compared with the theoretical Lamb guided wavenumbers computed using velocity 

and attenuation values shown in Table I. The modes are labeled Sn or An considering their 

symmetry or anti-symmetry nature and their cutoff frequency × thickness product denoted 

fc.e. Five modes with transverse asymptotic behavior are identified: A1 (fc.e = cT/2), S2 (cT), 

A3 (3/2cT), S4 (2cT) and A5 (5/2cT). Moreover, two modes with longitudinal asymptotic 

behavior are identified: S1 (fc.e = cL/2) and A2 (cL). The S0 mode is also measured at low 

frequency. 

The experimental real part of the guided wavenumbers kn
exp(f) are overall in good 

agreement with the theoretical Lamb guided wavenumbers [Fig. 3(a)] except for A3 around 

1.4 MHz and 3.5 rad.mm-1, where the agreement is poorer. Part of the k negative branch of the 

S1 is measured around 0.7 MHz. The mode are measured if their intrinsic excitability En(f) is 

large enough. For example, the S2 mode is not observed between around 0.8 MHz. Similar 

behavior is observed for S1 mode around 1.6 MHz. These examples are marked with a vertical 

arrow on Fig. 3. At these frequency, the low intrinsic excitability En [Eq. (2) and Fig. 4] 

implies that the mode is poorly observed. Moreover, repeatability tests have been conducted. 

Three different measurements have been carried out at room temperature with varying 

pressing force exerting on the probe. The real and imaginary parts of the guided mode 

wavenumbers led to a coefficient of variation smaller than 1 %. 
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 (a) 

  (b) 

FIG. 3. Results for the PMMA plate: real (a) and imaginary parts (b) of the guided mode 

wavenumbers kn(f) +iαn(f). Experimental values (each mode is represented with a different 

symbol) determined from the 3D Norm values and a  threshold t2 = 0.85 are compared with 

the theoretical Lamb modes An (continuous line) and Sn (dash line). For the imaginary part, 

four modes are shown  S1, S2, S4 and A5. Arrows correspond to guided mode excitability 

minima. The f = 1.84 MHz case (shown with a vertical dash-dot line) is discussed in 

paragraph IV.C. 
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FIG. 4. Intrinsic excitability En function [Eq. (2)] of a 1.95 mm thick PMMA plate for the S1 

and S2 modes. If the excitability is too low (as shown by the arrows), the modes are not 

observed.  

 

For the experimental imaginary part of the guided wavenumbers αn
exp(f), the agreement with 

the theoretical Lamb guided wavenumbers remains reasonable, although less accurate 

[Fig. 3(b)] compared to the real part kn
exp(f) [Fig. 3(a)]. Nevertheless the overall behavior, as 

for example close to cutoff frequencies, is observed. The previous low excitability domains 

(i.e., S1 around 0.8 MHz and S2 around 1.6 MHz) are marked with an arrow. In this domain, 

the attenuation is not measured. The observed deviation between experimental data and 

theoretical predictions may have several origins, such as attenuation sources (such as 

geometrical dispersion) which are not properly taken into account in the model or 

experimental inaccuracies in through-transmission measurements of reference attenuation 

values (Table I). Modes vicinity may also affect attenuation evaluation as for example S1 and 

A2 around 1.7 MHz. The two modes with longitudinal asymptotic behavior (S1 and A2) are 

experimentally more attenuated than expected from the Lamb free plate spectrum. It may be 

due to the coupling between the probe and the wave guide which has not been taken into 

account in the model. 
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B. Guided mode wavenumbers of the bone mimicking plate 

 

The bone mimicking plate thickness has been next measured to 2.3 mm with a caliper 

(Table I). First, the probe is placed perpendicularly to the fibers. Due to the geometrical 

hypothesis described in Sections. II and III, this configuration can be considered as isotropic. 

Thus, an analysis similar to the PMMA case has been used. The same threshold t2= 0.85 has 

been used. The results are shown in Fig. 5(a) and (b). The experimental real kn
exp(f) and 

imaginary part αn
exp(f) of the guided mode wavenumber (shown with symbols) are compared 

with the theoretical values. The same modes are observed as in the PMMA case, but they 

appear in a different order, because of the value taken by the ratio cL/2cT, which is larger than 

1 for PMMA and less than 1 for the bone mimicking plate measured perpendicularly to the 

fibers (Table I). The agreement between experimental and theoretical data is overall good and 

of comparable to the PMMA case, except for  the mode S2 around 1.2 MHz and for the modes 

A2 and S4 mode around 1.7 MHz. Observed discrepancies between experimental data and 

theoretical predictions may be caused by an interference between different modes, typically 

between S2 and A3 around 1.2 MHz and between A2 and S4 around 1.7 MHz, respectively.  
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 (a) 

 (b) 

 

FIG. 5. Results for the 2.3 mm bone mimicking plate, measured with the probe oriented 

perpendicularly to the fibers. Real (a) and imaginary (b) parts of the guided mode wavenumbers 

kn(f) +iαn(f). 
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Finally, the probe is placed in the fiber direction, a configuration which is similar to clinical 

measurements. The theoretical guided mode wavenumbers are computed in the anisotropic 

case following paragraph III.B. The results are shown in Fig. 6. Only, the experimental real 

part kn
exp(f) of the guided mode wavenumber (shown with dots) are compared with the 

theoretical guided number wavenumbers, showing reasonable agreement experimental and 

theoretical data as in the previous cases. As the attenuation coefficients (αλ)L
|| and (αλ)T

|| 

were not measured (Table I), the theoretical imaginary part of the guided mode wavenumbers 

was not computed. 

 

 

FIG. 6. Results for the 2.3 mm bone mimicking plate, the probe parallel to the fibers, real part 

kn(f) of the guided mode wavenumbers. 
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C. Discussion  

 

In order to illustrate the method, the particular case of the PMMA plate at 1.84 MHz is 

now discussed. This case is marked with a vertical dash-dot line on Fig. 3. At this frequency, 

three guided mode are measured: A5, A2 and S1 and the experimental rank (or signal subspace 

dimension) M is equal to 3. The corresponding Norm(f, k, α) function [Eq. (10)], i.e., 

|<U1| etest(k,α)>|2 + |<U2| etest(k,α)>|2  + |<U3| etest(k,α)>|2, is illustrated on Fig. 7(a) in the (k, α) 

plane with f being equal to 1.84 MHz. Three peaks (shown with crosses) are observed in the 

(k, α) plane corresponding to the experimental wavenumbers. The real part of the 

wavenumber kn
exp(f) are equal to 1.9 (A5), 3.7 (A2) and 4.6 rad.mm-1 (S1). The corresponding 

imaginary part α n
exp(f) equal to 0.15 (A2) 0.2 (S1) and 0.4 Np.mm-1(A5). In this example, the 

peak values for these three modes, range from 0.9 to 0.95. Thus the second threshold t2, 

chosen equal to 0.85, allows to select to the peaks associated with these guided modes. This 

threshold is shown with a thick line on Fig. 7(a). 

As attenuation increases, the useful reception length decreases. Figure 8 shows the 

modulus of different normalized guided modes en
R(kn,αn) with αn ranging from 0 to 0.5 

rad.mm-1. For example, with αn equal to 0.4 Np.mm-1, the measured amplitude at the middle 

of the reception array is −40 dB below the amplitude of the signal measured at the first 

receiver. In this case, only half of the reception array can be considered as useful, the second 

half of received signals being with poor signal-to-noise ratio. It implies that the main lobe 

width increases as the attenuation increases [Eq. (A6) and Fig. 7]. The peak associated with 

A2 is larger than expected due to the vicinity of the S4 mode. The two modes are too close to 

be resolved. 
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(a) 

(b) 

FIG. 7. Norm(f, k, α) function in the (k, α) plane for f = 1.84 MHz (a) and for α = 0 (b), 

equivalent to the former Norm(f, k) function formalism. The normalized spatio-temporal 

Fourier transform is shown in (b) with dashed line. The step between each level line is equal 

to 0.05. 
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The Norm-function computed under the assumption that the medium is non-

attenuating,18 i.e., with α equal to 0, is shown on Fig. 7(b). The same three peaks are visible, 

but with lower peak values ranging from 0.3 to 0.75. These values are in agreement with 

equation (A7). This illustrates how critical are (i) signal-to-noise ratio, and (ii) the choice of 

the threshold t2 to correctly detect the guided modes. In case of noisy data, low value peak 

may be close to noise peaks and the choice for the second threshold may be difficult. Thus, 

the extended Norm-function formalism, by taking properly into account the attenuation of the 

medium, enhances the peak values corresponding to actual guided modes. These peak values 

can then be easily identified by a proper selection of a high t2 threshold value, even for 

strongly attenuated modes. The spatio-temporal Fourier transform, normalized with the main 

peak value, is also shown on Fig. 7(b) with dashed line. Only one mode (A2) is clearly visible. 

The mode S1 can be confounded with a secondary maximum, and thus is likely not to be 

detected, depending on its relative value compared to the selected threshold. The most 

attenuated mode A5 is not measured. Thus the generalized Norm-function appears to be 

efficient to extract attenuated guided mode wavenumbers using a clinical probe with a limited 

aperture. 

 

FIG. 8. Modulus of the normalized guided mode en
R(kn,αn) vs. receiver number for three 

different α values from 0 to 0.5 Np.mm-1. 
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In this paper, the authors specifically addressed the influence of attenuation on the 

measurement of guided mode wavenumbers in a bone mimicking plate. The material, is a 

homogenous absorbing transverse isotropic material which is considered to reasonably match 

the anisotropic elastic properties of actual human cortical bones.24 The disadvantage of 

performing measurements on phantoms, of course, is that they only approximate true cortical 

bone structure. In order to generalize the approach to the in vivo measurement conditions, 

several parameters will have to be taken into account in future studies, such as the irregular 

geometry, the heterogeneity of the cortical tissue and the presence of marrow and surrounding 

soft tissues. Performing the measurements with a relatively short reception length of 

~20−30 mm potentially minimizes the adverse impact of irregular geometry and of bone 

heterogeneity. The presence of surrounding tissues and marrow will likely affect the 

wavenumber measurement. However, our preliminary (data not shown) obtained in a bone 

mimicking plate covered by a soft-tissue mimicking layer suggested that the guided mode 

wavenumbers are only slightly modified compared to their counterparts in the free bone 

mimicking plate, and that they are still well predicted by an elastic transverse isotropic 

waveguide. The authors’ intent is to progressively extend the study first to the case of bone 

phantoms with soft tissue mimicking layers on top of it and marrow inside and then to in vitro 

experiments with real inhomogeneous bone specimens. These critical issues will be the object 

of our future studies in order to prepare the in vivo application. 
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Conclusion  

An original method for evaluating the complex guided mode wavenumbers, using a probe 

consisting of two separated emission and reception arrays in contact with the inspected 

waveguide, is presented in this paper. The method is a generalization of the Norm-function 

formalism described previously for non attenuated guided mode. This method allows the 

evaluation of both real and imaginary parts of the attenuated guided mode wavenumbers. 

Experimental results are in good agreement with the theoretical Lamb modes. The 

methodology presented herein hold promises for the assessment of the structural and material 

properties of wave guides, and thus can potentially be used for assessing cortical bone 

strength. Future studies will focus on the evaluation of elastic properties of cortical bone and 

will be extended to in vivo measurements. The impact of the geometry (e.g., variable cortical 

thickness) and soft tissue coupling will also be taken into account.  
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APPENDIX 

In order to lighten the theoretical part (Sec. II), some notations used are explicitly calculated 

in this appendix. In particular, the expressions of the norm of the guided mode vector aE
n  and 

the scalar product <en
R | etest> are given here. Consider a single attenuated guided mode an

R 

given in Eq. (3). The norm of the an
R vector satisfies 

R2 2R R R*

1 1

R R

n j
N N

x
n jn jn

j j
a a e α−

= =

= =∑ ∑a .      (A1)  

The analytical solution can be evaluated, using an integral solution 

2 2R

0
n

L x
n

dxe
p

α−= ∫a ,          (A2)  

with p, the array inter element pitch. Thus, the norm is 

( )
R

2R 1
2

nL
n

n

N e
L

α

α
−= −a . (A3)  

If αnL tends toward zero, the normalization factor tends toward RN  as in Ref. 18. 

The scalar product between the normalized guided mode en
R [Eq. (5)] and the test vector etest 

[Eq. (8)]  

 ( ) ( ) ( ) ( )R RiR
R

1

1, ,
R

n j n j
N k k x xtest

n n n pw
j n

k k e α αα α
⎡ ⎤− − +⎣ ⎦

=

=∑e e
a a

.   (A4) 

In the general case, i.e., k ≠ kn and α ≠ αn, the scalar product is complex. The analytical 

solution can also be evaluated, using an integral solution 

( ) ( ) ( )iR
R 0

1, ,
L k xtest

n n n pw
n

dxk k e
p

αα α Δ −Δ= ∫e e
a a

,    (A5) 

with Δk = kn – k and Δα = αn + α. The solution of the previous equation is  

( ) ( ) ( )( )
( )i

R
22

1, , 2
i1 1 n

k L
test n

n n n LL

ek k
ke e

α

αα

α αα α
α

Δ −Δ

−−

−=
Δ − Δ− −

e e . (A6) 
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For quasi orthogonal guided modes, the Norm-function is equal to |<en
R|etest>|2 [Eq. (13)]. For 

k = kn and α =αn, the scalar product and the Norm-function are maximum and equal to 1. The 

Norm-function decrease and lead toward zero as Δk and Δα increase. With αn and α nulls, the 

scalar product <en
R|etest> is equal to ( )i 2sinc 2kLe kLΔ Δ . 

The previous Norm-function formalism corresponds to the α = 0 case and its 

maximum  also corresponds to k equal to kn.18 The value of this maximum depends on the αnL 

product as 

( ) ( )
( )

2

2

2 1
, 0

1

n

n

L

n L
n

e
Norm k k

L e

α

α
α

α

−

−

−
= = =

−
. (A7) 

Previous equation allows the estimation imaginary part αn from the maximum values of the 

2D-Norm(f, k)-function.38 
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TABLE  I. Measured values for PMMA and bone mimicking (bone mim.) plates 

 cL  (m.s-1) cT (m.s-1) (αλ)L (Np) (αλ)T (Np) ρ (g.cm-3) e (mm)

PMMA 2685 ± 20 1365 ± 10 0.059 ± 0.007 0.063 ± 0.003 1.18 1.95 

bone mim. ⊥ 2870 ± 40 1520 ± 20 0.087 ± 0.013 0.147 ± 0.004 1.64 2.30 

bone mim. || 3705 ± 40 1585 ± 20     
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FIG. 1. Geometry of the problem: emission and reception arrays are placed in the axial 

transmission configuration. 

 

FIG. 2. Schematic representation of a signal subspace of rank 2: the test vector etest can be 

projected on the singular vector basis (U1, U2) [Eq. (9)] or in normalized guided mode basis 

(e1
R

, e2
R) [Eq. (11)]. 

 

FIG. 3. Results for the PMMA plate: real (a) and imaginary parts (b) of the guided mode 

wavenumbers kn(f) +iαn(f). Experimental values (each mode is represented with a different 

symbol) determined from the 3D Norm values and a  threshold t2 = 0.85 are compared with 

the theoretical Lamb modes An (continuous line) and Sn (dash line). For the imaginary part, 

four modes are shown  S1, S2, S4 and A5. Arrows correspond to guided mode excitability 

minima. The f = 1.84 MHz case (shown with a vertical dash-dot line) is discussed in 

paragraph IV.C. 

 

FIG. 4. Intrinsic excitability En function [Eq. (2)] of a 1.95 mm thick PMMA plate for the S1 

and S2 modes. If the excitability is too low (as shown by the arrows), the modes are not 

observed. 

 

FIG. 5. Results for the 2.3 mm bone mimicking plate, measured with the probe oriented 

perpendicularly to the fibers. Real (a) and imaginary (b) parts of the guided mode 

wavenumbers kn(f) +iαn(f). 

 

FIG. 6. Results for the 2.3 mm bone mimicking plate, the probe parallel to the fibers, real part 

kn(f) of the guided mode wavenumbers. 
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FIG. 7. Norm(f, k, α) function in the (k, α) plane for f = 1.84 MHz (a) and for α = 0 (b), 

equivalent to the former Norm(f, k) function formalism. The normalized spatio-temporal 

Fourier transform is shown in (b) with dashed line. The step between each level line is equal 

to 0.05. 

 

FIG. 8. Modulus of the normalized guided mode en
R(kn,αn) vs. receiver number for three 

different α values from 0 to 0.5 Np.mm-1. 
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