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Abstract  

This paper is devoted to a method of extraction of guided waves phase velocities from 

experimental signals. Measurements are performed using an axial transmission device 

consisting of a linear arrangement of emitters and receivers placed on the surface of the 

inspected specimen. The technique takes benefit of using both multiple emitters and receivers 

and is validated on a reference wave guide. The guided mode phase velocities are obtained 

using a projection in the singular vectors basis. The singular vectors are determined by the 

singular values decomposition (SVD) of the response matrix between the two arrays in the 

frequency domain. This technique enables to recover accurately guided wave phase velocity 

dispersion curves. The SVD based approach was designed to overcome limitations of spatio-

temporal Fourier transform for receiver array of limited spatial extent as in the case of clinical 

assessment of cortical bone in axial transmission.  

 

   

 

PACS numbers  

4320Ye Measurement methods and instrumentation,  

4380Vj Acoustical medical instrumentation and measurement techniques 

4320Mv Waveguides, wave propagation in tubes and ducts  

4360Fg Acoustic array systems and processing, beam-forming 
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I. INTRODUCTION 

Different quantitative ultrasound (QUS) techniques are currently developed for clinical 

assessment of human bone status.1-3 The goal is to determine ultrasound-based indicators of 

bone strength, suitable for the discrimination of osteoporotic patients from healthy subjects.4 

Alternatively, the possibility of bone properties determination from ultrasound measurements, 

for instance cortical thickness or elasticity, has been explored.5-7 One of the most promising 

recent development in this field is the so called “axial transmission” technique: a set of 

emitter(s) and receiver(s) are linearly arranged on the same side of a skeletal site, for instance 

the forearm or the leg.8-10 The signals obtained at the receiver(s) are the combination of all 

waves propagating axially along the long axis of the bone. A few studies indicate that cortical 

bones support guided waves propagation, despite absorption and heterogeneity in geometry 

and elasticity.11  

In one development of the axial transmission technique, attention was focused in determining 

in the time domain the velocity of the first arriving signal, denoted FAS.12,13 The FAS can be 

interpreted as a guided S0 wave in the low frequency regime (i.e., low cortical thickness-to-

wavelength ratio) and as a lateral compression wave in the high frequency regime (i.e., high 

cortical thickness-to-wavelength ratio).14 Alternatively, other studies have focused attention 

on the most energetic contribution arriving after the FAS. Signal processing techniques were 

proposed in vitro to isolate this signal component and to measure its phase velocity: group 

velocity filtering technique prior to spatio-temporal Fourier transform15,16 or the singular 

value decomposition in the space-time domain.17,18 In in vitro measurements, this contribution 

is identified with the A0 plate guided mode, or its counterpart for the tube model, the F(1,1) 

flexural mode.  

Moreover, higher order guided modes have been experimentally identified on in vitro 

animal bones. Different techniques were used to extract guided mode phase or group 
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velocities. The L(0, n) longitudinal tube wave phase velocities (1 ≤ n ≤ 3) were measured on a 

bovine tibia.19 Authors used angled beam transducers and analyzed the received signals with 

the phase spectrum method.20 The method required a minimal distance between the emitter 

and receiver of about 70 mm and a scanning length of about 80 mm. On a sheep tibia, guided 

waves were also experimentally observed.21 Authors used two fixed transducers and obtained 

group velocities using time-frequency analysis.22 Results were interpreted as Rayleigh-Lamb 

guided modes, An and Sn (0 ≤ n ≤ 2). However an accurate model is required to interpret the 

results. 

The clinical relevance of ultrasound velocities to reflect specific aspects of bone strength 

such as cortical thickness, stiffness, porosity is partly established. It was found in several 

clinical studies that the FAS velocity discriminates healthy subjects from osteoporotic 

patients.23-25 In addition, a FAS velocity database, measured in vivo, was used in a technique 

of elasticity identification.7 From A0 phase velocity data, inversion schemes were proposed to 

estimate cortical thickness.5 However, the A0 guided wave presents a strong coupling with the 

surrounding soft tissues which reduces its sensitivity to bone properties in clinical 

measurement.26  

Currently, there is no clinical measurement of higher order guided waves. There is a 

need to implement a robust method to extract guided mode phase velocities adapted to clinical 

requirements. Particularly, as the probe dimensions are limited by the accessibility to the 

skeletal site or bone and soft tissue, classing signal processing methods16,18,20,22 can not be 

directly applied. Thus, the aim of this paper is to introduce a method of extraction of guided 

mode phase velocities from in vivo signals. Our approach is based on the singular value 

decomposition (SVD) applied to the configuration of multi-emitter and multi-receiver arrays 

in axial transmission geometry. SVD is a widely used filtering tool. The interpretation of the 



Minonzio et al.   JASA 

 5

singular vectors and singular values is adapted and specific to each case and array 

configuration.27-29   

The paper is organized as follows. First, the principle of the method is presented in 

Sec. II: the phase velocities are measured using the singular vectors of the response matrix, 

interpreted as the basis of the received signal subspace. The advantages of the method are 

then described: the signal and noise separation and the improvement of the ability to evaluate 

phase velocities. To this end, two specific thresholds are discussed. In Sec. III the accuracy 

and effectiveness of the method are tested on experimental measurements on a reference wave 

guide. Two probes of central frequency equal to 1 and 2 MHz, developed for the axial 

transmission approach, are used.13 The experimental set up, the evaluation domain and the 

resolution are then discussed. Finally experimental phase velocities arecompared with 

theoretical ones and with those obtained with the spatio-temporal Fourier transform.  

 

 

II. THEORY 

A. Response matrix 

 A single probe consisting of two separated arrays are used in contact with a metallic 

plate, using coupling gel (Fig. 1). Superscripts E and R refer respectively to the emission and 

reception arrays. Thus the emission array contains NE emitters of position xi
E, with 1≤ i ≤ NE. 

Likewise, the reception array contains NR receivers of position xj
R, with 1≤ j ≤ NR.  
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Fig. 1. Geometry of the problem: the emission and reception arrays are in contact with the 
metallic plate. 

 

The response to a pulse emitted by the ith emitter, received by the jth receiver after 

propagation in the medium, is denoted hji(t). It corresponds to the impulse response between 

the two transducers. The number of responses is equal to NR multiplied by NE. The received 

signal rji(t) on the jth receiver is given by the sum of the convolutions of the emissions eji(t) 

with the impulse responses hji(t) as 

 ( ) ( ) ( )
E

1

N

ji ji ii
i

r t h t e t
=

= ⊗∑ .        (1)  

The temporal Fourier transform of Eq. (1) writes  

 ( ) ( ) ( )
E

1

N

ji ji ii
i

R f H f E ω
=

=∑ ,        (2) 

with f the frequency and Rj(f), Hji(f), Ei(f) the temporal Fourier transforms of rj(t), hji(t), ei(t) 

respectively. The NR×NE  matrix R contains the NR×NE Fourier transforms Rji(f). Likewise, the 

NE× NE  diagonal matrix E contains the NE Fourier transforms Eii(f). The relation between the 

two vectors R and E writes, at a given frequency f  

 R = H. E ,           (3) 
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with H the NR×NE matrix containing the elements Hji(f) equal to the Fourier transforms of the 

impulse responses hji(t). The R matrix, called afterward “response matrix”, is characteristic of 

the “emission –propagation medium – reception” system (Fig. 1).  

 

B. Singular vectors basis 

The Singular Value Decomposition (SVD) of the response matrix R writes 

 
E

*

1

N
t

n n n
n

σ
=

=∑R U V ,          (4) 

where the notations t and * denote the transpose and conjugation operations. The number of 

experimental singular values σn is equal to minimum size of the arrays, i.e. the minimum 

between NE and NR, equal in the following to NE. The notation Vn refers to an emission 

singular vector, of dimension NE×1, and Un to a reception singular vector, of dimension NR×1. 

These two vectors are associated with the singular value σn. The reception singular vectors Un 

are the eigenvectors of R. tR*, whereas, the emission vectors Vn are the eigenvectors of 

tR*. R. In both cases the eigenvalues are the square of the singular values σn.30 In the 

following, the singular values are considered as sorted in a decreasing order, i.e. σ1 > σ2 >  … 

 

The singular vectors Un (resp. Vn) are normalized and define an orthogonal basis of the 

received (resp. emitted) signals. In particular any spatial plane wave, propagating along the 

reception array direction, i.e. along the x axis (Fig. 1), can be expressed in the reception basis. 

Consider a spatial plane wave epw(f, c) depending on the phase velocity c and the frequency f, 

defined on the jth receiver as 

( ) R

R

1 2, exp ipw
j j

fe f c x
cN
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
,       (5) 
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The previous vector is normalized. As the phase velocity c is real, equation 5 corresponds to 

the propagating part of the spatial plane wave. Its expression on the basis defined by the 

reception singular vectors Un is  

( ) ( )
E

1
, ,

N
pw pw

n n
n

f c f c
=

=∑e e U U ,       (6) 

with the notation ( ),pw
nf ce U  corresponding to the Hermitian scalar product, equal to 

( ) *
, .

t pw
nf c⎡ ⎤⎣ ⎦e U . If the array is placed along the (Oy) direction (Fig. 1), as for example a 

vertical array in shallow water guide,28 each reception singular vector Un is associated with a 

single guided mode. If the array is distant from the wave guide in the DORT configuration, 

DORT being the French acronym for decomposition of the time-reversal operator, the 

singular vectors are associated with guided mode scattering directions.30 In the axial 

transmission geometry, as the received signals are measured along the (Ox) direction, a 

reception singular vector corresponds to a combination of guided modes as discussed in 

paragraph III.D. 

 

C. Noise and signal separation  

One of the advantages of the SVD approach is its ability to separate noise and signal 

subspaces.29-31 Indeed, using an intermediate order m corresponding to the limit between the 

two subspaces, Eq. (6) can be rewritten as 

( ) ( ) ( )
E

1 1

, , ,
m N

pw pw pw
n n n n

n n m
f c f c f c

= = +

= +∑ ∑e e U U e U U .    (7) 

The order m is defined at each frequency using a threshold t1 applied to the singular values σn. 

On the one hand, if the singular value is larger than that the threshold t1, the corresponding 

reception singular vector Un is associated with the signal subspace. On the other hand, if the 

singular value is less than that the threshold t1, the corresponding reception singular vector Un 
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is associated with noise. In the following, the signal singular vectors are retained whereas the 

noise singular vectors are eliminated. Thus the norm of the propagating spatial plane wave on 

the basis of the signal subspace becomes 

( ) { } ( )
2

1
, ,

n m

m
pw pw

n
n

f c f c
≤ =

= ∑U
e e U ,     (8) 

with the notation | | used for the modulus of complex numbers.  

The value of the threshold t1 is heuristically chosen, based on an estimation of the 

signal-to-noise ratio. It depends on the estimated number of measurable guided modes and on 

the noise level at each frequency as discussed in Ref. 31. The threshold can be chosen fixed or 

variable with frequency and attenuation. Examples are discussed in Sec. III.  

 

D. Evaluation of the guided mode phase velocities 

As m, the dimension of the signal subspace, is less than the number of receivers NR, 

i.e. the dimension of the vector epw(f, c) [Eq. (5)], the basis defined by the signal reception 

singular vectors Un≤m is incomplete. It implies that the norm of the propagating spatial plane 

wave expressed on the basis of the signal subspace, i.e. ( ) { }
,

n m

pw f c
≤U

e  [Eq. (8)], is less than 

1. Consequently, each value in the (f, c) domain of that norm ranges from 0 to 1. This value 

reflects how the spatial plane wave is represented in the basis of the signal subspace. On the 

one hand, if the value is small compared to 1, the spatial plane wave is absent of the received 

signals. On the other hand, if the value is close to 1, the spatial plane wave corresponds to a 

experimental propagating guided mode, present in the received signals. To enhance the 

contrast between the low and high values, the square of the norm is used in the following. 

And a second threshold t2 is then applied to the norm in order to reduce the range from t2 to 1. 

Thus a new function, denoted Norm(f, c), is defined as  
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( ) ( ) { } ( ) { }

( ) ( ) { }

2 2

2

2

2

, ,                      ,

, 0                                           ,

n m n m

n m

pw pw

pw

Norm f c f c if f c t

Norm f c if f c t

≤ ≤

≤

⎧ = ≥
⎪
⎨
⎪ = <
⎩

U U

U

e e

e
.  (9) 

A maximum of the Norm function in the (f, c) domain, larger than t2, provides the 

phase velocity c of a guided mode present in the signal subspace at the frequency f. The value 

of the second threshold t2 is also heuristically chosen considering the variations of the square 

of the norm ( ) { }

2
,

n m

pw f c
≤U

e . In the examples discussed in Sec. III the threshold t2 is chosen 

equal to 0.5. 

 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental set up 

Two probes developed at the LIP (Laboratoire d’Imagerie Paramétrique), for the bone 

characterization, are used.13 Their central frequencies f0 are equal respectively to 1 and 2 

MHz. The number NE of emitters is equal to 3 (f0 = 1 MHz) and 8 (f0 = 2 MHz). In both cases, 

the number of receivers NR is equal to 14. Thus the number of emitters, which is less than the 

number of receivers, corresponds to the number of experimental singular values. A coupling 

gel is used in order to improve the acoustical impedance matching. Emitted signals are pulses 

with bandwidth centred on the central frequency f0. The reception array pitch is equal to 

0.80 mm (f0 = 1 MHz) and 0.38 mm (f0 = 2 MHz). 

The experimental scattering medium is a 2 mm thickness copper plate. The free plate 

guided modes are given by the Rayleigh-Lamb dispersion equation.32 No attenuation is 

considered in this model. The modes are numerated following their cut-off frequencies fc.32,33 

The cut-off frequencies of the A2n+1 and A2n modes satisfy respectively fc
 e = (n+½)cT and ncL, 

with e the plate thickness (Fig. 1). Likewise, the cut-off frequencies of the S2n+1 and S2n modes 
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satisfy respectively fc
 e = (n + ½)cL and ncT. These frequencies are shown in the upper scale of 

Fig. 4.  

 

B. Resolution and evaluation domain of the system 

The resolution is defined similarly to the spatio-temporal Fourier transform as the 

ability of the system to discriminate two different phase velocities. The resolution can be 

estimated considering an ideal case of a spatial plane wave of phase velocity cn, denoted 

epw(f, cn), with a constant amplitude along the array. In this case, the Norm function is given 

by the scalar product ( ) ( )
2

, ,pw pw
nf c f ce e  equal to 

( )
2

R, sinc n

n

c cNorm f c f L
c c

π
⎛ ⎞−= ⎜ ⎟
⎝ ⎠

,      (10) 

with LR the length of the reception array. Thus, the resolution is given by the size of the main 

lobe of the sinc function, i.e. fΔcLR / c2 ≈ 1 , where Δc is the difference between cn and c. 

With λ the wavelength satisfying λ = c / f, the resolution condition writes  

R

c
c L

λΔ ≥ .          (11) 

Previous equation means that two velocities are resolved when their difference Δc/c is larger 

than the ratio λ/LR. If the amplitude of a guided mode decreases along the array, due to 

attenuation or geometric dispersion, the resolution function, defined by Eq. (10), will be 

affected in two ways: its maximum will decrease and its width will increase. Thus, the second 

threshold value t2 has to be adapted to each experiment. 

Furthermore the evaluation domain can be estimated comparing the wavelength λ with 

two typical lengths: the size of the array LR and the array pitch, equal to LR/NR. First, the 

Shannon criterion is verified when the half wavelength λ/2 is larger than the array pitch. 
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Secondly, the half wavelength should also be smaller than the array size. Thus the range 

R R

2 2
N L

λ≤ ≤  corresponds to the evaluation domain, where the guided mode phase velocities 

cn
exp can be evaluated. Figure 2 shows this domain in the frequency-phase velocity (f, c) 

plane. Thus, each linear function passing through the origin satisfies c = λ f.  

 

 

Fig. 2. The evaluation domain is shown outside the dashed domain. The resolution condition 
is given by Eq. (11): two velocities are resolved when their difference Δc/c is larger than the 
ratio λ/LR shown as linear function. The boundaries are shown on the experimental results 
(Fig. 4).  
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C. Experimental results: Singular values and phase velocities  

Figure 3 shows the singular values σn as function of the frequency-thickness fe product 

obtained with the two probes, 1 MHz (a) and 2 MHz (b),for a 2 mm thick copper plate. In 

both cases, the first singular value σ1 is predominant at low frequency, for fe < 1 MHz.mm. It 

is related to the strong normal displacement associated with the first anti-symmetric A0 

mode.34 The large peaks correspond to thickness resonance of modes, associated with the cut-

off frequencies, as for example the A1 mode (fe around 1.6 MHz.mm) and A2 mode (fe around 

5.5 MHz.mm). The thin peaks corresponds to the resonances associated with the zero group 

velocity (ZGV) modes,33 for the S2 mode (fe = 2.10 MHz.mm) and S6 mode (fe = 

6.85 MHz.mm). These modes are listed on the upper scale of Fig. 4 showing the 

corresponding guided mode phase velocities. 

The number of significant singular values ranges from 1 to 5 depending on frequency. 

That number corresponds to the number m of significant singular vectors used in Eq. (8). It 

depends on the signal to noise threshold t1, shown with a curved line. The threshold t1 has 

been heuristically fixed for the two probes by searching the best experimental separation 

between the signal and noise subspaces. The 1 MHz probe [Fig. 3(a)] presents a second 

harmonic bandwidth, for f ranging from 2.5 to 4 MHz, i.e. for fe ranging from 5 to 

8 MHz.mm.  
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Fig. 3. (color online) Normalized singular values in dB scale versus frequency-thickness fe 
(MHz.mm) for a 2 mm thick copper plate: the central frequency of the probe is equal to 1 
MHz (a) and 2 MHz (b). The number of experimental singular values (3 or 8) corresponds to 
the number of emitters. The signal-to-noise threshold t1 is shown with a curved line. The 
singular values above the threshold define the signal subspace. 
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Figure 4 shows the experimental guided mode phase velocities cn
exp corresponding to 

the maxima of the Norm function [Eq. (9)] in the whole frequency-thickness bandwidth for 

the two probes, 1 MHz (a) and 2 MHz (b). The cut-off frequencies of each mode are indicated 

in the upper scale. Experimental values are in good agreement with the theoretical Lamb ones. 

At low frequencies, for fe < 1 MHz.mm, only the A0 mode is measured in both cases. At 

higher frequencies, most of the modes are evaluated. The S2 backward wave, described for 

example in Ref. 33, is measured with the 1 MHz probe (a). These points are obtained using a 

negative phase velocity c. The cusp point for fe = 2.10 MHz.mm and c ≈ 8,000 m.s-1 is 

associated with the thin resonance peak on the singular values shown on Fig. 3. There is also a 

backward wave associated with the S6 mode, for fe = 6.85 MHz.mm, but the cusp point is 

outside the evaluation domain (i.e. c > 25,000 m.s-1). The phase velocities obtained with the 

spatio-temporal Fourier transform are marked with circles. The two methods are discussed in 

the next paragraph.  

The two limits of the evaluation domain described in paragraph III.B are marked. The 

lowest limit corresponds to Δc/c ≈ 2/NR = 1/7 ≈ 0.13. The highest limit corresponds to Δc/c ≈ 

2. Some resolution values (1/4, 1/2, 1) are marked with dashed lines for reference. Following  

the resolution condition [Eq. (11)], two velocities are resolved when the ratio λ/LR is less than 

the velocity difference Δc/c. In example (a), A1 and S2 modes are non-resolved for fe about 2.2 

MHz.mm, with Δc/c ≈ 0.3. In example (b), A3 and S1 modes are also non resolved for fe about 

4.5 MHz.mm with Δc/c ≈ 0.2. In these two cases the ratio λ/LR ranging from 0.25 to 0.5 is 

larger than the difference Δc/c. In other cases, the resolution condition is verified and the 

experimental phase velocities are resolved. 
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Fig. 4. (color online) Phase velocities for 2 mm thick copper plate, evaluated with probes of 
central frequency f0 equal to 1 MHz (a) and 2 MHz (b). Theoretical Lamb values are shown in 
continuous (symmetric modes Sn) and dashed lines (anti-symmetric modes An). Experimental 
values, obtained with the maxima of the Norm function [Eq. (9)], are shown in dot. The phase 
velocities obtained with the spatio-temporal Fourier transform are marked with circles. The 
evaluation domain limit is shown with respect to Fig. 2. The ratios λ/LR 1/7, 1/4, 1/2, 1 and 2 
are shown in thin dashed lines. The vertical lines show the domains discussed in Fig. 6.  
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The values of the Lamb phase velocities depend on three physical parameters: the 

thickness e and the transverse and longitudinal velocities, denoted cT and cL.32 It is possible to 

evaluate these parameters by searching the best fit between theoretical and experimental 

phase velocities, denoted cn
th and cn

exp, over the whole frequency bandwidth.35-37 The 

agreement is obtained here by minimizing the fitting error defined by the normalized sum of 

all individual fitting errors for each mode at each frequency 

( ) ( ) ( )
( )

mode
max

min

exp th
L T

L T exp th
1 L T

, , ,1 , , 100
, , ,

f N
n n

f n n

c f c c c e f
fitting error c c e

N c c c e f=

−
= ∑ ∑ ,  (12) 

with Nexp the number of experimental phase velocities, and n the mode label, i.e. An or Sn. The 

fitting errors are shown in Fig. 5 for the two probes as a function of cL and cT at a fixed 

thickness e equal to 2 mm. The fitting error values range from 5 % to 30 %. Minima of the 

fitting errors yielded values of cT = 2250 m.s-1 and cL = 4700 m.s-1 for both probes. These 

values are consistent with the usual values for copper. 
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Fig. 5. Fitting error (%) given by Eq. (12) as a function of cL and cT for a fixed thickness e, for 
a 2 mm thick copper plate, evaluated with probes of central frequency f0 equal to 1 MHz (a) 
and 2 MHz (b), respectively. 
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D. Discussion, comparison with the spatio-temporal Fourier transform 

Figure 6 shows two examples of the evaluation of the guided mode phase velocities 

using the function Norm(f, c) and the spatio-temporal Fourier transform. Results are shown 

for a variable phase velocity c at a fixed frequency : f.e = 1.6 MHz.mm, with the 1 MHz probe 

(a) and f.e = 3.8 MHz.mm with the 2 MHz probe (b). The domains are shown in Fig. 4 with 

vertical lines. The square of the scalar products ( )
2

,pw
nf ce U  between the spatial plane 

wave and the three first singular vectors, U1 to U3,  are shown with symbols (•, + and o). The 

width of the peaks corresponds to the resolution given by Eqs. (10) and (11).  

The scalar products show how the singular vectors depend on the guided modes. In 

example (a), for c around 3,200 m.s-1, the first singular vector U1 is close to the guided mode 

S0. For c around 2,000 and 6,000 m.s-1, the other singular vectors U2 and U3 are combination 

of the A0 and A1 modes. In example (b), for c around 6,500 m.s-1, the first singular vector U1 is 

close to the guided mode S1. The other singular vectors U2 to U3 are combination of the A1, S2 

and S1 modes, for c around 2,500 4,000 and 6,500 m.s-1. Thus the guided mode phase 

velocities could be evaluated by searching the maxima of the moduli of the scalar products 

( )
2

,pw
nf ce U . However, the accuracy of that evaluation is improved if the different 

contributions are added in the function Norm(f, c) defined by Eqs. (8) and (9) and shown by a 

continuous line. The maxima of the Norm function, shown in these two examples, range from 

0.6 to 0.95: that is why the threshold t2 described in paragraph II.C has been chosen equal to 

0.5. Thus, the ability to determine guided mode phase velocities is improved by the use of the 

Norm function.  

The two dimensional spatio-temporal Fourier transform is one of the usual methods 

used to determine the guided mode phase velocities.16 The scalar product ( ),pw
nf ce U  can 

be interpreted as the spatial Fourier transform of the reception singular vector Un(xR), the 
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spatial vector k being equal to 2π f/c. The normalized spatio-temporal Fourier transform of the 

received signals on the array after the first emission, i.e. ( ) ( )
2

1,pw f c fe R , is shown by a 

dashed line. In example (a), only one of the three present modes, S0 is clearly resolved by the 

spatial Fourier transform. In example (b), the three modes are resolved by the spatial Fourier 

transform, but the maxima ranges from 0.2 to 1. As a comparison, the maxima of the Norm 

function are larger than 0.98 in this case. Thus the method proposed here appears to be more 

robust: the experimental guided modes phases velocities are better evaluated in the whole 

frequency domain as shown in Fig. 4. 
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Fig. 6. (color online) Evaluation of the guided modes phase velocities at a fixed frequency: (a) 
fe = 1.6 MHz.mm (1 MHz probe) and (b) fe = 3.8 MHz.mm (2 MHz probe). The moduli of 

the first scalar products 
2

pw
ne U  are shown with symbols (• + o). The norm of the plane 

wave on the basis of the signal subspace 
2pwe  [Eq. (8)] is shown in thin dashed line. The 

phase velocities are given by the maxima of the function Norm(f, c) [Eq. (9)] above the 
threshold t2 (shown with an arrow on the right side). The normalized spatio-temporal Fourier 
transform (2DFT) of the received signal after the first emission is shown in dashed thick line 
for comparison.  
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4. Conclusion 

An original method for evaluating without a priori the guided mode phase velocities, 

using a probe consisting of two separated emission and reception arrays in contact, is exposed 

in this paper. The phase velocities are obtained using the received signal subspace defined by 

the singular vectors of the experimental response matrix. The two main advantages of the 

method are presented: the signal-to-noise separation and the improvement of the ability to 

evaluate phase velocity compared to the spatio-temporal Fourier transform. To this end, two 

specific thresholds are described. Experimental results are in good agreement with the 

theoretical Lamb modes. These results hold promises in terms of evaluation of the wave guide 

structural and material properties using limited aperture array, andin terms of bone strength 

assessment. Further applications will concern in particular the evaluation of elastic properties 

of cortical bone. Attenuation non-isotropic medium, and variable thickness will be taken into 

account.  
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Fig. 1. Geometry of the problem: the emission and reception arrays are in contact with the 

metallic plate. 

 

Fig. 2. The evaluation domain is shown outside the dashed domain. The resolution condition 

is given by Eq. (11): two velocities are resolved when their difference Δc/c is larger than the 

ratio λ/LR shown as linear function. The boundaries are shown on the experimental results 

(Fig. 4). 

 

Fig. 3. (color online) Normalized singular values in dB scale versus frequency-thickness fe 

(MHz.mm) for a 2 mm thick copper plate: the central frequency of the probe is equal to 1 

MHz (a) and 2 MHz (b). The number of experimental singular values (3 or 8) corresponds to 

the number of emitters. The signal-to-noise threshold t1 is shown with a curved line. The 

singular values above the threshold define the signal subspace. 

 

Fig. 4. (color online) Phase velocities for 2 mm thick copper plate, evaluated with probes of 

central frequency f0 equal to 1 MHz (a) and 2 MHz (b). Theoretical Lamb values are shown in 

continuous (symmetric modes Sn) and dashed lines (anti-symmetric modes An). Experimental 

values, obtained with the maxima of the Norm function [Eq. (9)], are shown in dot. The phase 

velocities obtained with the spatio-temporal Fourier transform are marked with circles. The 

evaluation domain limit is shown with respect to Fig. 2. The ratios λ/LR 1/7, 1/4, 1/2, 1 and 2 

are shown in thin dashed lines. The vertical lines show the domains discussed in Fig. 6. 
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Fig. 5. Fitting error (%) given by Eq. (12) as a function of cL and cT for a fixed thickness e, for 

a 2 mm-thick copper plate, evaluated with probes of central frequency f0 equal to 1 MHz (a) 

and 2 MHz (b), respectively. 

 

 

Fig. 6. (color online) Evaluation of the guided modes phase velocities at a fixed frequency: (a) 

fe = 1.6 MHz.mm (1 MHz probe) and (b) fe = 3.8 MHz.mm (2 MHz probe). The moduli of 

the first scalar products 
2

pw
ne U  are shown with symbols (• + o). The norm of the plane 

wave on the basis of the signal subspace 
2pwe  [Eq. (8)] is shown in thin dashed line. The 

phase velocities are given by the maxima of the function Norm(f, c) [Eq. (9)] above the 

threshold t2 (shown with an arrow on the right side). The normalized spatio-temporal Fourier 

transform (2DFT) of the received signal after the first emission is shown in dashed thick line 

for comparison. 
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