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Abstract 15 

Measuring guided waves in cortical bone arouses a growing interest to assess skeletal status. 16 

In most studies, a model of waveguide is proposed to assist in the interpretation of the 17 

dispersion curves. In all the reported investigations, the bone is mimicked as a waveguide 18 

with a constant thickness, which only approximates the irregular geometry of cortical bone. In 19 

this study, guided mode propagation in cortical bone-mimicking wedged plates is investigated 20 

with the aim to document the influence on measured dispersion curves of a waveguide of 21 

varying thickness and to propose a method to overcome the measurement limitations induced 22 

by such thickness variations. The singular value decomposition-based signal processing 23 

method, previously introduced for the detection of guided modes in plates of constant 24 

thickness, is adapted to the case of waveguides of slowly linearly variable thickness. The 25 

modification consists in the compensation at each frequency of the wavenumber variations 26 

induced by the local variation in thickness. The modified method, tested on bone-mimicking 27 

wedged plates, allows an enhanced and more accurate detection of the wavenumbers. 28 

Moreover, the propagation in the directions of increasing and decreasing thickness along the 29 

waveguide is investigated. 30 

 31 

PACS numbers 43.35 Cg, 43.80.Vj, 43.20.Ye, 43.20.Mv, 43.60.Fg, 87.15.La 32 

 33 

34 
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I. Introduction  35 

The cortical envelope of long bones has been reported to behave like a waveguide with 36 

respect to ultrasound propagation.
1, 2

 The potential of guided waves as a diagnostic tool to 37 

assess bone status is now considered by several research groups mostly because the 38 

propagation characteristics of guided waves convey information on bone strength-relevant 39 

characteristics, such as cortical thickness and elasticity, that cannot be readily assessed by 40 

currently available X-ray imaging modalities.
3, 4

 Moreover, compared to X-rays, ultrasound 41 

technology is also less expensive, non-ionizing and portable.    42 

Guided mode propagation in cortical bone is investigated using the so-called axial 43 

transmission technique in which the signal propagating along the bone axis is recorded at 44 

multiple positions aligned along a same side of a skeletal site, by moving a receiver,
5-8

 or 45 

moving both the transmitter and the receiver in parallel,
9
 or using a multiple element array,

10-
46 

12
, or using photo-acoustic excitation and optical detection.

13
 The first version of the axial 47 

transmission approach consisted in recording the time-of-flight of the earliest component of 48 

the signal recorded at the receivers, the so-called first arriving signal (FAS).
14-18

 In subsequent 49 

developments, a multiple frequency approach in which FAS velocity is measured at different 50 

frequencies has also been described.
9, 19, 20

  51 

A different approach, based on a more complete analysis of the recorded time signals, 52 

consists in detecting one or more particular guided modes which are then identified by 53 

coupling the experimental analysis to a model of the waveguide. For example, Moilanen et al. 54 

have proposed to specifically detect a thickness-sensitive fundamental flexural guided 55 

wave.
12, 21

 Other authors analyze the full response of the waveguide using various signal 56 

processing techniques (e.g., time-frequency distributions, two-dimensional spatio-temporal 57 

Fourier transform) to measure the dispersion curves of multiple guided modes.
6, 22

  58 

A method combining an ultrasonic multi-element array with a singular value 59 
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decomposition (SVD)-based signal processing has recently been proposed by our group to 60 

measure the propagation of guided waves in cortical bone.
11, 23

 A small array has been 61 

specifically designed for in vivo measurements and to accommodate to the limited access to 62 

cortical skeletal sites, such as the distal radius at the forearm. The method, extensively 63 

described in previous publications, has been tested successfully with bone mimicking plate-64 

like waveguides
11, 23-25

 and ex vivo human radius specimens.
26, 27

  65 

In most studies, a model of waveguide is proposed to assist in the interpretation of the 66 

dispersion curves. Various models have been proposed,
2
 including the free 2-D elastic plate,

11, 
67 

23, 28
 the free 2-D gradient elastic plate

29, 30
 or the free 3-D elastic tube.

6, 13, 27, 31
 They only 68 

approximate the complex heterogeneous and geometrically irregular structure of cortical 69 

bone. In particular, in all the reported investigations, the bone is mimicked as a waveguide 70 

with a constant thickness. However, experimental observations indicate that at the distal 71 

radius, the most frequently investigated skeletal site using axial transmission, the thickness of 72 

the cortical shell varies slowly, being thinner at the proximal end (epiphysis) and thicker in 73 

the mid section (diaphysis). To the authors’ best knowledge, the effect of a varying bone 74 

cortical thickness on guided modes dispersion curves has not been reported so far.  75 

Propagation in waveguide with variable thickness has been studied theoretically,
32-34

 76 

experimentally
35-37

 or numerically
36, 38

 in the context of non destructive testing,
39

 ocean 77 

waveguide,
40

 or study of musical instruments such as horns.
34

 In the context of ultrasonic 78 

characterization of bone, the aim of this paper is first to document the influence on measured 79 

dispersion curves of a waveguide of varying thickness and second to propose a method to 80 

overcome the measurement limitations induced by such thickness variations. A free 2-D 81 

elastic plate waveguide with slowly linearly varying thickness (typical to the configuration 82 

encountered at the distal human radius), supporting “adiabatic” propagating waves, is 83 

considered. The main advantage of such a model rather than a more realistic cortical bone 84 
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geometry or a not-rigorously linear variation in thickness is its simplicity: it allows deriving 85 

simple analytic expressions to describe the impact on the wave numbers of a varying 86 

thickness and facilitates understanding of the effect of the varying thickness on guided mode 87 

propagation. The disadvantage, of course, is that it only approximates complex bone structure. 88 

However, 2-D elastic plate or tube models with constant thickness have previously 89 

demonstrated a high level of consistency with experimental observations in cortical bone 90 

measured ex-vivo.  91 

The aims of this paper are twofold, (1) to gain insights into the influence of a slowly 92 

linearly varying thickness of the waveguide on guided modes, (2) to propose a method, 93 

adapted from the currently existing SVD-based signal processing, to overcome the guided 94 

mode measurement limitations induced by these thickness variations. The paper is organized 95 

as follows. A model is proposed to predict the effect on guided mode wavenumbers of a 96 

waveguide of slowly linearly varying thickness (Sec. II). The predicted variations are taken 97 

into account in the adapted signal processing technique (Sect. III). Both the model and the 98 

adapted signal processing are then validated on experimental data from bone-mimicking 99 

wedged plates (Sec. IV). Finally, the direction of propagation of the guided waves is 100 

investigated.  101 

 102 

II. Influence of the varying thickness on adiabatic mode wavenumbers  103 

 104 

A. Cortical bone is considered as a plate with a linear varying thickness 105 

In order to illustrate the thickness variation of the cortical bone, two cross-sections images 106 

derived from 3-D X-ray computed tomography data (Siemens, Somaton 4 Plus, 200 µm- 107 

voxel size) of a human distal radius are shown in Fig. 1(a). These images, excerpted from Ref. 108 

41, are illustrative of the general structure of the cortical shell of the 39 human radius 109 

specimens for which the FAS velocity was reported in Ref. 16. As illustrated on the 110 
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longitudinal cross-section, the cortical thickness decreases regularly with a moderate slope 111 

from the mid-diaphysis (left) to the epiphysis (distal end, right). By reanalyzing the X-ray 112 

computed tomography radius database, the thickness variation along the bone axis in the 113 

measurement region, highlighted with a white square on Fig. 1(a), can reasonably be 114 

approximated with a linear fit. The analysis of the 39 excised human radii evidenced a mean 115 

cortical thickness of 2.2 ± 0.6 mm with a mean cortical angle equal to 1.2 ± 0.7°. 116 

 The relevance of a plate versus a tube model to represent the cortical shell of human 117 

radius specimens has been discussed in several studies.
6, 27, 31

 Predictions using a plate model 118 

have been found to fit well the experimental data observe on ex vivo radius specimens.
26, 28

 119 

Moreover, on bone mimicking phantoms covered by a soft tissue mimicking layer,
13, 24, 42, 43

 120 

indicate that the measured guided modes can be interpreted using a free plate model. Thus, an 121 

elastic plate model with a linear varying thickness, although it represents a simplification 122 

compared to the complex structure of bone, is adopted here in order to evidence the effect of 123 

the thickness variation on the guided mode measurement. 124 

 125 

B. Adiabatic guided modes 126 

  The slowly varying thickness is associated with guided modes that are supposed to be 127 

adiabatic: they locally correspond to guided modes of a plate of constant thickness. If k(e, f) is 128 

a valid frequency-wavenumber curve for a free elastic plate whose thickness is e, then the 129 

frequency-wavenumber curve k( e, f )  for a plate of any thickness  e can be deduced using 130 

the equation 131 

k( e,  f ) = 1/  k(e, f ) ,       (1) 132 

where  is a generic waveguide thickness scaling factor. The two wavenumbers given in Eq. 133 

(1) correspond to identical frequency  thickness and wavenumber  thickness products. They 134 

also correspond to identical phase velocity and group velocity.  135 
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Consider two close positions x and x +dx along the waveguide that are associated with 136 

thicknesses such that e(x +dx) is equal to e(x) + de [Fig. 1(a)]. In order to discuss the 137 

expression given by Eq. (1), two particular plate modes A1 and S2 are illustrated on Figs. 1(b) 138 

and (c). The transition from the modes k(x, f) associated with the largest thickness e(x) (shown 139 

as thick lines) to the modes k(x +dx, f) associated with the smallest thickness e(x) +de (de 140 

chosen negative in this example, dashed lines) ) is manifested as a shift of the dispersion 141 

curves towards higher frequencies. An opposite effect, i.e. a shift towards lower frequencies, 142 

is observed when the thickness increases (positive de). Figure 1(c) is a zoom of a small 143 

portion of the (f, k) 2-D space shown in figure 1(b) indicating the small variations df, dk and 144 

k defined in Eqs. (3) and (4). 145 

The scaling factor  equal to e(x +dx) / e(x) can be expressed as 1 + de/e(x). The ratio 146 

de/e(x) is assumed to be small compared to 1 and thus further calculus will be done with the 147 

perturbation method at the first order of the quantity de/e(x). Equation (1) can be written as   148 

k(x +dx, f ) = k(x, f df ) +dk.        (2) 149 

The previous equation links two wavenumbers for two different positions x and x +dx at two 150 

different frequencies, f and f df. The small variations df and dk, induced by the thickness 151 

variation de, satisfy 152 

 
de

df f
e x

  ,         (3a) 153 

 
 

,
de

dk k x f
e x

  .         (3b).  154 

The first order Taylor expansion along frequency of wavenumber k(x, f df ) [right hand part 155 

of Eq. (2)]  writes as  156 

   , ,
k

k x f df k x f df
f


  


.       (4) 157 

Using Eq. (3) and the definition of the phase and group velocities v and vg, the derivative 158 
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term 
k

df
f




 can be approximated by 

 

 

,

,g

v x f
dk

v x f


. This term is shown as k on Fig. 1(c). 159 

Combining Eqs. (2) to (4), the difference between k(x, f) and k(x +dx, f), illustrated as a thick 160 

arrow on Fig. 1(c), is equal to dk –k. Finally, the variation of the wavenumber at a fixed 161 

frequency writes 162 

   
 

 

 

,
, , 1 1

,g

v x fde
k x dx f k x f

e x v x f


  

      
   

.     (5) 163 

Next, we introduce the term (x, f) defined as 164 

 
 

 

 

,
, 1

,g

v x fde
x f

e x v x f




 
   

 

.       (6) 165 

This term is dimensionless and can be interpreted as a deviation rate measuring the 166 

wavenumber variation in response to the thickness variation. Hereafter it will be referred to as 167 

the “deviation term”. It depends on the waveguide thickness variation rate de/e(x), on the 168 

guided mode being considered and on its velocity dispersion. 169 

 170 

   171 

C. Adiabatic condition 172 

The “adiabatic condition”, introduced in paragraph II.A, is satisfied if the deviation 173 

term (x, f), given by Eq. (6), is small compared to 1. This case is satisfied for moderate 174 

dispersion and weak thickness variation. If mode dispersion is large, i.e. v is large compared 175 

to vg, e.g., for frequencies close to cut-off frequencies,  could be non negligible even if the 176 

thickness variation de/e(x) is small. On the contrary, if mode dispersion is null, i.e. vg and v 177 

are equal,  is null and the thickness variation has not effect on the wavenumber. This is the 178 

case for example for the Rayleigh wave which corresponds to a surface wave and is not 179 

influenced by the opposite interface. Moreover, the dispersion term v / vg 1 is mostly 180 
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positive. It implies that de and  have the same sign: thus, an increase (respectively a 181 

decrease) in thickness leads to an increase (respectively a decrease) in the wavenumber. 182 

Exceptions are mode A0, for which vg is inferior to v, and modes associated with ZGV (zero 183 

group velocity) resonances, for which group and phase velocities have opposite signs.
44

 184 

Consider that the adiabatic condition is satisfied along the propagation path of n close 185 

positions xi shown in Fig. 1(a), associated with n local thicknesses e(xi). At a fixed frequency 186 

f, along its propagation the wavenumber k(x, f) undergoes a series of homothetic transforms 187 

given by Eqs. (5) and (6). The n
th

 position is linked to the first one with the following 188 

relationship 189 

      
1

1

1

, , 1 ,
n

n i

i

k x f k x f x f




  ,      (7) 190 

with i the position index ranging from 1 to n [Fig 1(a)]. As all the deviation terms  are 191 

assumed to be small compared to 1, the previous equation can be approximated to the first 192 

order in (xi, f) with 193 

     
1

1

1

, , 1 ,
n

n i

i

k x f k x f x f




 
  

 
 .      (8) 194 

At each step, a small variation (xi, f).k(x1, f) is added to the reference wavenumber k(x1, f). 195 

The measurement of the spatial variations of the wavenumber has been proposed to 196 

reconstruct the profile variation de(x) of the waveguide in case of moderate dispersion.
45

 197 

  198 

D. Wavenumber variation for a linearly varying thickness waveguide 199 

Consider a linear array with a group of receivers surrounded with two groups of transmitters. 200 

The array is in contact with a waveguide with a linearly varying thickness (Fig. 2). The 201 

receivers are equally spaced, with an array pitch denoted p. The reference of axis (Ox), i.e. the 202 

position x = 0, is located at the center of the receiving array. This position is associated with 203 

the reference thickness e0. Thus, the varying thickness e(x) is given by  204 
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e(x) = e0 + x.tan ,          (9)  205 

with the subscript 0 associated with values at position x = 0. Notation “+” (respectively ““) 206 

denotes the increasing (respectively decreasing) thickness direction. By convention, the first 207 

receiver is placed on the thickest side, i.e., at a negative position (Fig. 2). The variation of the 208 

wavenumbers along the receivers at a fixed frequency can be obtained using Eq. (7), as long 209 

as the adiabatic condition << 1 [Eq. (6)] is satisfied at each adiabatic transform, i.e., from 210 

one receiver to the next one in this case. Moreover, the variation of the wavenumber can be 211 

expressed as 212 

   
 0

0

,
, , 1

x f
k x f k x f x

p

 
  

 
,       (10) 213 

The term (x0, f), being the deviation term at the array center, is given by Eq. (6). In order to 214 

discuss the validity of Eq. (10), two frequencies, corresponding to two different deviation 215 

terms (x0, f), respectively, are considered in the following.  216 

Examples are given in Fig. 3 for two modes, A1 and S2 shown in Fig. 1, propagating 217 

at frequencies of interest in a bone-mimicking wedged plate with an angle α = 2° and a 218 

thickness e0 = 2.25 mm. The geometrical characteristics of the wedged plate are representative 219 

of the typical values estimated from Ref. 16. The typical thickness variation de/e(x), equal to 220 

ptan()/e0, is about 1.4 %, with p = 0.892 mm. Figure 3(a) shows first the dispersion curves 221 

k(x0, f) of this plate at x = 0. The corresponding variations of the deviation terms (x0, f) are 222 

shown in Fig. 3(b). Two selected frequencies are marked with symbols in Figs. 3(a) and (b). 223 

The first case marked with a star (mode A1 at f1 equal to 0.8 MHz), corresponds to a deviation 224 

term x0, f1) equal to 0.9 %. The second case marked with a circle (mode S2 at f2 equal to 0.8 225 

MHz), is associated with a more pronounced deviation term x0, f2) equal to 7.7 %. Finally, 226 

figures 3(c) and (d) show the variation in x of the wavenumbers kx, f1) and kx, f2) and their 227 

corresponding amplitudes sin[ kx, f1) x] and sin[ kx, f2) x] for the two modes at the two 228 
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selected frequencies f1 and f2. The receiver positions are marked with black dots.  229 

It can be observed that both wavenumbers kx, f1) and kx, f2) decrease in the direction 230 

of decreasing thickness (direction ““). On the contrary, for the opposite direction “+”, i.e., 231 

when thickness increases, the wavenumbers increase. Moreover, the variation of the 232 

wavenumbers along the axis (Ox) are well described by the linear approximation, given by 233 

Eq. (10) and shown with thin lines, even for the deviation x0, f2) = 7.7 %. These modes with 234 

varying wavenumber can be seen as being spatially modulated, as for example classical 235 

chirps, but in the spatial domain instead of the temporal domain [Fig. 3(d)].  236 

 237 

III. Material and methods 238 

A. Experimental set up 239 

The axial transmission setup is composed of a 1 MHz-centre frequency cMUT 240 

ultrasonic array (Vermon, Tours, France), a multi-channel array controller (Althaïs, Tours, 241 

France) and a custom made graphic interface. The cMUT array has been described in Ref. 46. 242 

Its configuration is detailed in Fig. 2: it consists of two sets of 5 transmitters on each side of a 243 

group of 24 receivers located at the centre of the array. This array with its two sets of 244 

transmitters was initially designed for soft tissues bidirectional correction.
10, 42

 In the present 245 

work, this configuration allows waves propagation to be studied in both opposite directions, 246 

denoted “+” and “” in Fig. 2. The array is controlled by the array controller and the graphic 247 

interface allows real-time visualization of the calculated (f k) diagrams. The pitch of the 248 

elements, denoted p, is equal to 0.892 mm. The frequency bandwidth of the emitted signal, a 249 

one period burst of 1MHz corresponds to a 6 dB power spectrum spanning the frequency 250 

range of 0.5 to 1.6 MHz. Signals are recorded at a sampling frequency of 20 MHz and a 12-bit 251 

resolution with 16 time averages. The signals corresponding to all possible transmit-receive 252 

pairs in the array are recorded. The probe is placed in contact with the wedged plate using a 253 
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coupling gel (Aquasonic, Parker Labs, Inc, Fairfield, NJ, USA).  254 

The bone-mimicking plate is made of glass fibres embedded in epoxy (Sawbones 255 

Pacific Research Laboratories, Vashon, WA, USA). The following mechanical properties,
47

 256 

obtained with resonant ultrasound spectroscopy,
48

 were used to compute the guided wave 257 

dispersion curves in the bone-mimicking plate using a 2-D transverse isotropic free plate 258 

model:
24, 25, 49

 mass density 1.64 g.cm
-3

 and stiffness coefficients (in GPa) c11 = 13.9; c33 = 259 

20.9; c55 = 4.3; c13 = 6.9. The guided modes are labelled An and Sn considering their 260 

symmetry and their apparition order in frequency. In the following, measurements were 261 

performed on a bone-mimicking wedged plate, the angle of which is denoted α. Two wedged 262 

plates with α equal to 1° and 2° were measured. A plate without angle was also measured as a 263 

reference. 264 

 265 

B. SVD-based signal processing  266 

The experimental setup described in section III.A allows the measurement of 2 sets of M x N 267 

temporal signals, each of which consisting of all the signals that correspond to one of the 2 268 

directions of propagation. M and N are the number of receivers and transmitters, respectively. 269 

Waveguides with varying thickness have been already studied in non-destructive evaluation 270 

(NDE), where materials generally have light damping and large dimensions compared to the 271 

wavelength. Thus, large propagation paths can be recorded and analyzed using a standard 272 

post-processing technique, the so-called spatio-temporal Fourier transform,
50

 with the 273 

assumption that the thickness of the waveguide remains constant along the receiving 274 

aperture.
35, 36

 Time-frequency analysis
33, 36

 and analysis of the reflection coefficient
39

 have 275 

also been proposed. Correction in the time domain have been recently investigated to 276 

compensate the pulse dispersion caused by a varying thickness.
51

 In contrast to the materials 277 

investigated in NDE, cortical bone and specifically the bone mimicking material investigated 278 

here are highly damping materials. The combination of absorption and of the limited 279 
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receiving length of the array makes that specific signal processing is therefore required to 280 

enhance the wavenumber evaluation. 281 

A SVD-based signal processing technique was recently developed for this purpose and 282 

has been extensively detailed in our previous publications.
11, 23

 Briefly, it takes advantage of 283 

the multi-transmit, multi-receive configuration of the ultrasonic array. If snm(t) denotes the 284 

temporal signal recorded at the receiver positioned at xm
R 

after transmission by the n
th

 285 

transmitter, the main steps of the SVD-based signal processing can be summarized as follows: 286 

1) computation of the temporal Fourier transform Snm(f) of the N by M responses 287 

snm(t).  288 

2) singular value decomposition of the transfer matrix S at each frequency: S is 289 

decomposed on N reception singular vectors Un, and we denote by σn the associated singular 290 

value. 291 

3) separation of signal from noise by identifying the singular values larger than a 292 

heuristically determined threshold, and by keeping only the corresponding number of singular 293 

vectors. This sets the rank of the matrix S at each frequency. 294 

4) definition of appropriate test vectors e
test

 with a norm equal to 1, expressed in the 295 

receivers basis. The projection of these test vectors onto the signal subspace (i.e. the reception 296 

singular vectors) leads to the so-called normalized Norm function, defined by
11, 23 

297 

 
2

1

,
rank

test

n

n

Norm f k


 U e .       (11) 298 

5) extraction of the guided mode wavenumbers corresponding to the maxima of the 299 

Norm function. To this end, a second threshold is heuristically defined. 300 

 301 

These operations are performed on matrices of signals recorded with both sets of transmitters, 302 

so that two Norm functions are calculated, one for each propagation direction. This signal 303 

processing technique significantly enhances the identification of the branches in the f  k 304 



Moreau et al.  JASA  

 14 

diagrams, for two reasons: first, the signal is separated from noise; second, the matrix Norm is 305 

normalized, i.e. all points have their values between 0 and 1. The maxima values do not 306 

depends on the mode energy. Maxima of the Norm function close to 1 mean that the testing 307 

vector is close to a measured mode.  308 

However, the choice of the test vectors is critical to enhance the guide mode 309 

wavenumber measurement. In Ref.
 
11, the test vectors are plane waves 310 

   
R1
mikxtest

me k e
M

 ,       (12) 311 

where k is a wavenumber corresponding to a plane wave. These test vectors are appropriate 312 

for modes propagating in a waveguide of constant thickness. Indeed, the projection of plane 313 

waves onto the basis of the singular vectors is equivalent to performing the spatial Fourier 314 

transform of the singular vectors. The method has been extended to dissipative waveguides by 315 

using a complex wavenumber.
23

 While this approach is  appropriate for modes propagating in 316 

a waveguide of constant thickness, the developments presented in section II indicate that the 317 

approach may no longer be adapted in case of a thickness-varying waveguide. 318 

 319 

C. Test vector with varying wavenumber 320 

Paragraph II.C shows that the wavenumbers of the guided modes is affected by changes in the 321 

thickness of the waveguide. However, in the current SVD-based signal processing, the test 322 

vectors include a constant wavenumber. It may be preferable to use test vectors that fit better 323 

the physics of the problem. Towards this goal, the plane waves [Eq. (12)] are replaced by 324 

waves with a varying wavenumber following 325 

 
 R R1

,
test

m mik x xtest

me k e
M

  ,        (13) 326 

with k
test

(x) defined with coefficients k and of a first order Taylor expansion following 327 

Eq. (10) as 328 
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  1testk x k x
p

 
  

 
.         (14) 329 

The example of a simple case of a single propagating mode associated with a single singular 330 

vector U1 is given to illustrate this adaptation of the signal processing. The singular vector is 331 

defined using Eqs. (10) and (14) with two arbitrary values k0 and 0. In this case, the scalar 332 

product < e
test

(k, ) | U1 > writes as  333 

    R R0
1 0 0

1

1
, exp

M
test

m m

m

k i k k k k x x
M p p

 




   
      

    
e U .   (15) 334 

The Norm function [Eq. (11)] expresses as 335 

   
2

1, ,testNorm k k  e U .       (16) 336 

 337 

D. Comparison with the spatial Fourier transform and validity domain 338 

The two examples shown in Fig. 3 are discussed. They correspond to guided waves 339 

propagating in a bone-mimicking wedged plate with an angle α = 2° and a thickness e0 = 340 

2.25 mm.  The propagation of modes A1 and S2 was computed using Eq. (7) at a frequency of 341 

0.8 MHz. In the first example, the propagation of mode A1 is investigated. It is represented 342 

with a star in the figures, and one can see that it corresponds to 0 = 0.9 % and 343 

k0 = 1.5 rad.mm
-1

. This is considered to be a moderate wavenumber variation between the first 344 

and the last receivers, the term M0k0 having a value of about 0.2 rad.mm
-1 

[Eq. (10)]. In the 345 

second example, we consider the propagation of mode S2, represented with a circle in the 346 

figures. Although the frequency is the same as for mode A1, in this case 0 = 7.7% and k0 = 347 

0.5 rad.mm
-1

. This corresponds to a larger wavenumber variation of about 1 rad.mm
-1

. The 348 

spatial Fourier transform of these two examples is shown in Figs. 4(a) and (b) with a thick 349 

gray line. In the first example (mode A1), the peak is located at k = k0, and thus the 350 

corresponding moderate wavenumber variation does not affect the ability of the spatial 351 
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Fourier transform to evaluate the wavenumber at the center of the array. On the other hand, in 352 

the second example (mode S2), the spatial Fourier transform exhibits two maxima that are 353 

shifted compared to the pick value located at k0. Thus, the larger wavenumber variation 354 

prevents the evaluation of an accurate estimate of the wavenumber. In the single mode case 355 

discussed here, the spatial Fourier transform corresponds to the plane wave test vectors 356 

[Eq. (12)] as described in Ref. 11. It is then calculated with  = 0 in Eq. (16) and therefore it is 357 

indicated as Norm(k, 0) in Figs. 4(a) and (b).  358 

 In order to illustrate the signal processing using a modified test vector [Eqs. (13) to 359 

(16)], the Norm function is shown in the (k, ) plane in Figs. 4(c) and (d). The Norm function 360 

presents a single peak centered at the point (k0, 0), shown with a star (A1) and a circle (S2). 361 

In order to compare with the spatial Fourier transform, the line corresponding to  = 0  is 362 

shown as a thin black line, and is indicated as Norm(k, 0) in Figs. 4(a) and (b). It can be 363 

observed that the value of the maxima is 1. A maximum value close to 1 suggests that the 364 

correction proposed in Eq. (14), using the modified test vector, has succeeded to compensate 365 

for the wavenumber variation due to the varying thickness.  366 

The measurement limit domains are indicated with thick lines. The lowest measurable 367 

wavenumber,  / L, corresponds to a wavelength equal to half the extent of the receiving area 368 

equal to L or Mp. The highest measurable wavenumber, 2/p, corresponds to the sampling 369 

wavenumber, denoted ks. In this case, the wavelength is equal to the array pitch p. Indeed, as 370 

the guided modes are recorded in only one propagation direction, the measured wavenumber 371 

have only one (positive) sign and thus the Nysquist limit (k inferior to ks/2) can be exceeded 372 

until k equal to ks. The line  = 10 % corresponds to the upper limit of the adiabatic condition 373 

discussed in paragraph II.C. Thus below 10%, the deviation term (x, f) given by Eq. (6) is 374 

considered small compared to 1, and the linear variation of the wavenumber [Eq. (10)] is 375 

valid. 376 
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The resolution is given by the mid peak values. Resolutions in k and , denoted k and 377 

, respectively, are equal to  378 

k = 2 /L,           (17) 379 

 = 4/(M k0L) ,          (18) 380 

These values are illustrated in Fig. 4 with horizontal and vertical thin arrows around the 381 

peaks. The resolution k is the same as in the case of the plane wave test vectors and depends 382 

only on the receiving length L.
11

 In addition to L, the resolution  depends on the 383 

wavenumber k0 and the number of receivers M. The domain of validity is divided into two 384 

zones, denoted I and II. If the couple (0, k0) is located in zone I, the associated peak 385 

intercepts the  = 0 line. Thus following Eq. (18), the limit between the two zones corresponds 386 

to  k less than 4/(M L). Thus in zone I, is it possible to localize the position of the maxima 387 

(i.e., k = k0) using the spatial Fourier Transform as illustrated with the A1 mode. The peaks 388 

given by the two methods are located at the same wavenumbers equal to k0, but the peak 389 

maximum given by the spatial Fourier transform is lower than the value given by the 390 

proposed method (about 0.8 instead of 1). On the contrary, if the couple (0, k0) is located in 391 

zone II, i.e., 0k0 larger than 4/(M L), then the peak does not intercept the  = 0 line and 392 

therefore it is not possible to localize the maxima using the spatial Fourier Transform as 393 

illustrated with the S2 mode. However, the correction proposed in Eq. (14), allows the 394 

detection of the modes, even in zone II as long as the deviation term is less than 10 %, and the 395 

function Norm(k, ) exhibits a unique peak associated with a maximum value close to 1 and 396 

located at (k0, 0).  397 

In conclusion, these examples illustrate that the proposed approach where the plane 398 

wave vector has been changed to a test vector with a varying wavenumber leads to a better 399 

mode detection, and consequently to a more accurate wavenumber measurement.  400 

 401 
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IV. Results and discussion  402 

In this section, experimental data are collected on three wedged plates made of bone-403 

mimicking material. The thickness e0 of the plates at the center of the receiving area is equal 404 

to 2.25 mm. The wedge angles  are equal to 0, 1 and 2°. All calculations have been done 405 

keeping the five singular vectors [i.e., the rank is equal to 5 in Eq. (11)] and with a second 406 

threshold equal to 0.6. Whereas the Norm function computed with a plane wave test vector 407 

depends on two parameters (f, k) using the plane wave test vector [Eq. (12)], the new Norm 408 

function computed with a test vector with varying wavenumber [Eqs. (13) and (14)]  depends 409 

on the three parameters f, k and  The results are represented in Fig. 5 for the bone-410 

mimicking wedged plates with a wedge angle  = 1° [Fig. 5(b) and (c)] and  = 2° [Fig. 5(d) 411 

and (e)].  Results calculated with the modified test vector k
test

(x) (circles) are compared with 412 

those obtained with the plane wave test vector (dots) for both directions “+” and “”. The case 413 

of the plate of constant thickness ( = 0°), is shown in Fig. 5(a) for reference. The main 414 

observations are as follows: 415 

1.  Incomplete portions of branches of guided modes are detected in the wedged plates 416 

compared to the plate of constant thickness.  417 

2. This effect is more pronounced in the direction “+” compared to the opposite 418 

direction. 419 

3. The length of the detected branches with the plane wave test vector decreases when 420 

the angle increases.  421 

4. Several branches of guided modes in the wedged plates that are incompletely detected  422 

with the plane test vector (e.g., S0, A3 plate with  = 1°, direction ““; S0, A1, S1, A3 423 

plate with  = 1°, direction ““) can be detected using the modified test vector. 424 

Guided mode branches measured only with the modified method are indicated with 425 

thin arrows. It corresponds to wavenumbers located in zone II of Fig. 4. 426 
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5. Some modes are even not detected at all (e.g., A3; directions “+”)  with either the 427 

plane wave or modified test vector. Guided mode branches not measured with any of 428 

the two methods are marked with thick black arrows.  429 

 430 

Results are now discussed in details. Five guided modes are measured in the reference 431 

case [Fig. 5(a)]. The two first modes A0 and S0 do not have cut-off frequencies unlike the 432 

three following modes A1 (0.4 MHz), S2 (0.7 MHz) and A3 (1.3 MHz). Modes A2 and S3 are 433 

not measured. Let us consider first the results obtained with the plane wave test vectors (dots). 434 

Direction “+” (right panels) is more severely affected compared to direction “”. At 1°, the 435 

mode A3 is no longer detected. For modes A1 and S2, low wavenumbers with values below 436 

0.5 rad.mm
-1

, are missing. The mode A1 also disappears at high wavenumbers, with values 437 

above 2 rad.mm
-1

. For the 2° wedged plate, in addition to the mode A3, the mode S2 also 438 

completely disappears. The mode A1 is not measured for wavenumbers below 1 rad.mm
-1

. 439 

For direction “” (left panels), similar but less important alterations of the branches can be 440 

observed. For example, at 1°, A3 is partially detected while A1 and S2 seem to be correctly 441 

detected. At 2°, A3 is no longer detected and S2 is partially detected. For high wavenumbers, 442 

modes S0 and A1 are not detected. Mode A0 is the only mode that does not seem to be 443 

affected  for both directions. 444 

Some branches of guided modes that are not detected with the plane test vector can be 445 

measured using the modified test vector k
test

(x) [Eq. (14)]. These branches are indicated with 446 

thin arrows. This effect is particularly visible for the 2° wedged plate and direction “” [Fig. 447 

5(d)] on modes S0, A1, S2, A3. Almost all branches lost using the plane test vector  can be 448 

recovered. Similar effect is observed for the 2° wedged plate and direction “” [Fig. 5(e)]. 449 

Note that mode A3 cannot be measured in both wedged plates with any of the two methods. 450 

These observations are in agreement with the comments of Figs. (3) and (4). First, the 451 
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effect of the varying thickness increases with the wedge angle and with mode dispersion. 452 

Remember that the mode dispersion is high close to cut off frequencies, particularly for 453 

modes S2 and A3. The effect also increases with the wavenumber values as observed for 454 

modes S0 and A1. Secondly, the observation of direction “+” being more affected than 455 

direction “” can be interpreted by the fact that, the plate being too thin under the 456 

transmitters, some modes such as S2 and A3 cannot be excited and subsequently cannot be 457 

measured by the receivers. On the contrary, for direction “”, these modes are excited under 458 

the transmitters and can propagate and can be measured. However these modes may vanish 459 

before the end of the receiving length, as for example S2 at 0.8 MHz and x about 10 mm 460 

[Fig. 3(c)]. This is similar to the phenomenon described as “acoustic black holes” for the 461 

flexural waves propagating in wedges with thickness decreasing with a power law exponent 462 

larger than 2.
52

 Moreover in our case, as the bone-mimicking material is absorbing, no 463 

reflections are observed.
53

  464 

Using the modified test vector allows the estimation not only of the wavenumbers as 465 

discussed above, but also of the deviation term  as shown in Fig. 4. The theoretical value of 466 

(x0, f) is plotted versus frequency for modes A1, S1 and A3 in Fig. 6 for both angles 1 467 

and  2°. Experimental values (shown with symbols), measured in direction ““, are 468 

compared to the theoretical ones, showing good agreement for both plates. The experimental 469 

deviation term  is slightly underestimated. Moreover, close to cut off frequencies, the 470 

detection of the maxima can become unstable because the dispersion term v / vg –1 tends 471 

towards infinity. This suggests that the limit to the linear approximation for the variations of 472 

the wavenumbers is  of the order of 10 % (Fig. 4). Above this value, the test vectors defined 473 

in Eq. (14) are not adapted anymore and another type of variation should be considered (e.g. 474 

polynomial approximation of higher order). Attenuation could be also taken into account as 475 

the imaginary part of the wavenumber also varies spatially.  476 
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Given the relatively low signal-to-noise ratio in axial transmission measurements of 477 

cortical bone, we believe that the improvement in the detection of branches brought by the 478 

modified version of the test vector may represent a significant progress. Moreover, previous 479 

results suggest that direction “” is potentially better for cortical bone characterization. As a 480 

consequence, further assessment of the method on ex vivo specimens as well as in in vivo 481 

measurement conditions is warranted.  482 

 483 

V. Conclusion 484 

This paper introduces a modified signal processing approach adapted to the measurement of 485 

guided wave propagation in waveguides of variable thickness. The method is based on an 486 

equation that describes the evolution of the guided modes wavenumbers with respect to 487 

position along the direction of propagation in the wedged plate. Both the equation and the 488 

signal processing were validated using experimental data recorded with bone-mimicking 489 

wedged plates. This new approach to detect guided waves in wedged plates exhibits enhanced 490 

sensitivity and accuracy compared to the previous one that does not account for the thickness-491 

related variations of the wavenumbers. Indeed, typical angles of approximately 1° to 2° 492 

observed in the cortical layer of the radius affect the propagation of the guided waves and 493 

prevent large parts of the guided mode branches to be detected with the current signal 494 

processing. The modified signal processing has therefore a better potential for investigation of 495 

the inverse problem aiming at retrieving estimates of thickness and elastic properties of the 496 

cortical bone waveguide.  497 
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Figure 1. X-ray computed tomography cross sections of a human distal radius (Siemens, 673 

Somaton 4 Plus) excerpted from Ref. 41, illustrating cortical bone thickness variations in a 674 

typical ultrasound measurement region (a), wavenumber k vs frequency f for two particular 675 

guided modes A1 and S2 (b) associated with the thickness e at position x (thick lines) and 676 

e+de at position x+dx (thin lines), panel (c) is a zoom of (b) showing the small variations df, 677 

dk and k used in Eqs. (3) to (6). 678 

 679 

Figure 2. Configuration of the wedged plate with the elements of the ultrasonic array. 680 

 681 

Figure 3. Wavenumbers k(x0, f) of modes A1 and S2 vs frequency in a 2.25 mm-thick bone 682 

mimicking plate (a), corresponding deviation terms (x0, f) [Eq. (6)] for  = 2° (b), 683 

wavenumbers k(x, f1) and k(x, f2) (c) and associated spatial variations sin[k(x, f1,)x]  and 684 

sin[k(x, f2)x] (d) of the two modes with respect to the propagation distance x at two particular 685 

frequencies shown with symbols for A1 at f1 = 0.8 MHz (star) and S2 at f2 = 0.8 MHz (circle)  686 

in (a) and (b) (points indicate the position of the receivers of the array). 687 

 688 

Figure 4. Norm functions given by Eq. (16) in the (k, ) 2-D space in a case of a single mode 689 

given by Eq. (10) for the two examples shown in Fig. 3: mode S2 at 0.8 MHz with 0 equal to 690 

7.7% and k0 equal to 0.5 rad.mm
-1

 (a) and (c) and mode A1 at 0.8 MHz with 0 equal to 0.9% 691 

and k0 equal to 1.5 rad.mm
-1

 (b) and (d). The Norm functions are also represented for  = 0 692 

(thick gray lines) and  = 0 (thin black lines) in (a) and (b). The case  = 0 corresponds to the 693 

previous signal processing using plane wave test vectors [Eq. (12)] and is equivalent to the 694 

spatial Fourier transform in the single mode case. The resolution values in the (k -) 2-D space 695 

given by Eqs. (17) and (18) are shown with thin arrows. The thick lines corresponds to 696 

validity domains of zone I (spatial Fourier transform) and zone II (modified test vector). 697 
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  698 

 699 

Figure 5. (color online) Experimental wavenumbers obtained with the plane wave test vector 700 

for a plate of constant thickness e= 2.25 mm (a). Experimental wavenumbers obtained with 701 

the plane wave test vector (dots) and the modified test vectors k
test

(x) (circles) on wedged 702 

bone mimicking plates with central thickness e0 equal to 2.25 mm and  equal to 1° (b) and 703 

(c) and 2° (d) and (e). Experimental wavenumbers are compared with the theoretical modes of 704 

the free plate of constant thickness e0 (continuous and dashed lines). Results of the 705 

propagation in the decreasing thickness direction (direction “”) are shown in (b) and (d). 706 

Results of the propagation in the increasing thickness direction (direction “”) are shown in 707 

(c) and (e). Thick arrows indicate portions of branches of guided mode not measured with any 708 

of the two methods. Thin arrows indicate portions of branches of guided modes measured 709 

only with the modified method. It corresponds to wavenumbers located in zone II of Fig. 4. 710 

The two examples shown in Figs. 3 an 4 are reported in (d) with the same symbols (large 711 

circle and star). 712 

 713 

Figure 6. Theoretical (continuous and dashed lines) and experimentalvalues of the deviation 714 

term (x0, f) for  = 1° (a) and  = 2° (b), for modes A1 (circles), S2 (stars) and A3 (dots) for 715 

direction “–”. 716 
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