
HAL Id: hal-01394886
https://hal.sorbonne-universite.fr/hal-01394886v1

Submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast diffeomorphic matching to learn globally
asymptotically stable nonlinear dynamical systems

Nicolas Perrin, Philipp Schlehuber-Caissier

To cite this version:
Nicolas Perrin, Philipp Schlehuber-Caissier. Fast diffeomorphic matching to learn globally asymp-
totically stable nonlinear dynamical systems. Systems and Control Letters, 2016, 96, pp.51 - 59.
�10.1016/j.sysconle.2016.06.018�. �hal-01394886�

https://hal.sorbonne-universite.fr/hal-01394886v1
https://hal.archives-ouvertes.fr


Fast diffeomorphic matching to learn stable nonlinear dynamical systems

Nicolas Perrina,b, Philipp Schlehuber-Caissiera,

aSorbonne Universités, UPMC University Paris 06, UMR 7222, ISIR, F-75005, Paris, France (e-mail: {perrin, schlehuber}@isir.upmc.fr).
bCNRS, UMR 7222, ISIR, F-75005, Paris, France.

Abstract

We propose a new diffeomorphic matching algorithm and use it to learn nonlinear dynamical systems with the guarantee that the
learned systems have global asymptotic stability. For a given set of demonstration trajectories, we compute a diffeomorphism that
maps forward orbits of a reference stable time-invariant system onto the demonstrations, thereby deforming the whole reference
system into one that reproduces the demonstrations, and is still stable.

Keywords:
Nonlinear dynamical systems, Diffeomorphic mapping, Imitation learning, Lyapunov stability, Dynamical movement primitives

1. Introduction

We consider the problem of learning dynamical systems (DS)
from demonstrations. More precisely, given a list of trajectories
(xi(t)) observed as timed sequences of points in Rd, the objec-
tive is to build a smooth autonomous system ẋ = f (x) (i.e. a
vector field) that reproduces the demonstrations as closely as
possible.

The ability to construct such DS is an important skill in imi-
tation learning (see for example [1]). The learned systems can
be used as dynamical movement primitives generating goal-
directed behaviors [2].

Modeling motion primitives with DS is convenient for closed
loop implementations, and their generalization to unseen parts
of the state space provides robustness to spatial perturbations.
Moreover, the choice of autonomous (i.e. time-invariant) sys-
tems, while not always suitable or preferable, is interesting in
many situations as they are inherently robust to temporal per-
turbations.

The most common motion primitives consist of point-to-
point motions, i.e. movements in space that stop at a given
target. They correspond to globally asymptotically stable DS.
But classical learning algorithms cannot provide the guaran-
tee that their output is always stable. They might produce DS
with instabilities or spurious attractors. This issue has recently
been studied by Khansari-Zadeh and Billard [3, 4] who pro-
posed several approaches to learn stable nonlinear DS. One of
the main ideas they investigated consists in learning a Lyapunov
function candidate1 L that is highly compatible with the demon-
strations in the following sense: at almost every point xi(t j),
the estimated or measured velocity vi(t j) is such that its scalar
product with the gradient of L is negative: vi(t j) ·∇L(xi(t j)) < 0.

1In this paper, a Lyapunov function candidate (or simply Lyapunov candi-
date) is a continuously differentiable function from Rd to R≥0 taking the value
0 at the target point 0 and with no other local minimum.

Once L is found, a learning algorithm optimizes a weighted sum
of DS that admit L as a common Lyapunov function, therefore
ensuring the global stability of the resulting DS. Alternatively,
L can be used to modify motion primitives by correcting trajec-
tories whenever they would violate the compatibility condition.

The main limitation of this method comes from the diffi-
culty to find good Lyapunov candidates. In SEDS (Stable Es-
timator of Dynamical Systems), one of the first algorithms pro-
posed by Khansari-Zadeh and Billard, the Lyapunov function
is set to be the l2-norm squared (‖ · ‖2), which means that all
trajectories produced by the learned DS can only monotoni-
cally decrease in norm. In their more recent algorithm CLF-
DM (Control Lyapunov Function-based Dynamic Movements),
the search for a Lyapunov function candidate is done among a
set called Weighted Sums of Asymmetric Quadratic Functions
(WSAQF). It highly increases the set of DS that can be learned,
but the restrictions remain significant (for instance, no WSAQF
can take the same value on two distinct points x and λx with
λ > 0). Neumann et al. [5] compute a “Neurally Imprinted
Lyapunov Candidate” (NILC) via quadratic programming, ob-
taining similar restrictions to that of WSAQF. In short, a way
to efficiently find Lyapunov candidates is to fix a simple stable
DS with which they must be compatible (ẋ = −x in the case
of WSAQF and NILC). An issue with this approach is that it
necessarily restricts the search to a small convex subset of the
whole set of Lyapunov candidates.

To go further, Neumann and Steil [6] suggested to initially
compute a Lyapunov candidate with one of the above meth-
ods, and then apply a simple diffeomorphism (of the form
x 7→ η(x)x, with η(x) ∈ R≥0) that deforms the space and trans-
forms the Lyapunov candidate into the function x 7→ ‖x‖2, thus
simplifying the trajectories of the demonstrations. In the de-
formed space, an algorithm like SEDS is then more likely to
learn a stable DS that reproduces faithfully the demonstrations.

In this paper, we propose a more direct diffeomorphism-
based approach. Our contribution is twofold.

Preprint submitted to Systems & Control Letters December 18, 2015



• First, we introduce a new algorithm for diffeomorphic
matching (Sections 2 and 3) and show from experimental
comparisons that it tends to be one or two orders of mag-
nitude faster than one of the state-of-the-art algorithms.

• Then, we explain how it can be used to directly map sim-
ple trajectories of a DS like ẋ = −x onto the trajectories
of the training data (Section 4). This gives a new way to
generate Lyapunov candidates as well as globally asymp-
totically stable smooth autonomous systems reproducing
the demonstrations.

The most direct applications of this work are in motor control
and robotics, but we believe that learning stable nonlinear DS
and computing Lyapunov candidates can be useful for various
types of systems and control design problems.

2. Diffeomorphic locally weighted translations

Given a smooth (symmetric positive definite) kernel func-
tion kρ(x, y), depending on some parameter ρ, such that
∀x, kρ(x, x) = 1 and kρ(x, y) → 0 when ‖y − x‖ → ∞, given
a “direction” v ∈ Rd and a “center” c ∈ Rd, we consider the
following locally weighted translation:

ψρ,c,v(x) = x + kρ(x, c)v.

Theorem 1. If ∀(x, y) ∈ Rd × Rd, ∂kρ
∂x (x, y) · v > −1, then ψρ,c,v

is a diffeomorphism.

Proof. For x ∈ Rd, let us define:

hx : r ∈ R 7→ r + kρ(x + rv, c) ∈ R.

If ∂kρ
∂x (x, y) · v > −1, we get: ∀r ∈ R, dhx

dr (r) > 0. Since hx(r)
tends to −∞ when r tends to −∞, and to +∞ when r tends
to +∞, we deduce that there exists a unique s(x) ∈ R such
that hx(s(x)) = 0. Moreover, ψρ,c,v(x + rv) = x + hx(r)v, thus
ψρ,c,v(x + rv) = x if and only if r = s(x) or v = 0. Besides, any
y ∈ Rd verifying ψρ,c,v(y) = x is necessarily of the form x + rv,
so ψρ,c,v(y) = x implies y = x + s(x)v.

We conclude that ψρ,c,v is invertible, and:

ψ−1
ρ,c,v(x) = x + s(x)v.

Finally, the inverse function theorem can be applied to prove
that ψρ,c,v is a diffeomorphism.

With Gaussian Radial Basis Function (RBF) kernel:
We now consider the following kernel (with ρ ∈ R>0):

kρ(x, y) = exp
(
−ρ2‖x − y‖2

)
.

We have:

∂kρ
∂x

(x, y) · v = −2ρ2 exp
(
−ρ2‖x − y‖2

)
(x − y) · v,

with the lower bound:

∂kρ
∂x

(x, y) · v ≥ −2ρ2 exp
(
−ρ2‖x − y‖2

)
‖x − y‖.‖v‖.

The expression on the right takes its minimum for ‖x−y‖ = 1
√

2ρ
,

which yields:

∂kρ
∂x

(x, y) · v ≥ −
√

2‖v‖ρ exp
(
−

1
2

)
.

Applying Theorem 1, v = 0 or ρ < ρmax(v) = 1
√

2‖v‖
exp

(
1
2

)
implies that ψρ,c,v is a diffeomorphism.

In that case, s(x), and as a result ψ−1
ρ,c,v(x), can be very effi-

ciently computed with Newton’s method.

3. A diffeomorphic matching algorithm

In this section we are interested in the following problem:
given two sequences of distinct points X = (xi)i∈{0,...,N} and
Y = (yi)i∈{0,...,N}, compute a diffeomorphism Φ that maps each xi

onto yi, either exactly or approximately. More formally, defin-
ing dist(A,B) = 1

N+1
∑
i
‖ai − bi‖

2 for two sequences A and B

of N + 1 points, and denoting by Φ(X) the sequence of points
(Φ(xi))i∈{0,...,N}, we want to find a diffeomorphism Φ that mini-
mizes dist(Φ(X),Y).

Since the sequences X and Y can be very different in shape,
to the best of our knowledge the state-of-the-art existing tech-
niques to solve this problem are based on the Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) framework in-
troduced in the seminal article by Joshi and Miller [7]. Its core
idea is to work with a time dependent vector field v(x, t) ∈ Rd

(t ∈ [0, 1]), and define a flow φ(x, t) via the transport equation:

dφ(x, t)
dt

= v(φ(x, t), t),

with φ(x, 0) = x. With a few regularity conditions on v (see
[8] for specific requirements), x 7→ φ(x, t) is a diffeomorphism.
The resulting diffeomorphism Φ(x) = φ(x, 1) is given by:

Φ(x) = x +

∫ 1

0
v(φ(x, t), t)dt.

Using an appropriate Hilbert space for the vector fields x 7→
v(x, t), they can be associated with an infinitesimal cost whose
integration is interpreted as a deformation energy.

Various gradient descent algorithms have been proposed to
optimize v with respect to a cost that depends both on the de-
formation energy and on the accuracy of the mapping, whether
the objective is to map curves [9], surfaces [10], or, as in our
case, points [11].

The LDDMM framework has several advantages. For exam-
ple, it tries to minimize the deformation, and allows the compu-
tation of similarity measures between diffeomorphic geometri-
cal objects. However, Φ is not in closed-form, so once obtained,
evaluating it requires an integration that can be slightly time-
costly. In our context, Φ can be used inside a control law, so its
evaluation (and that of Φ−1) needs to be very fast.

We propose a completely different approach to diffeomorphic
matching, based on the diffeomorphic locally weighted transla-
tions presented in the previous section, which are functions that
can be evaluated extremely quickly. The proposed algorithm is
based on simple principles, yet it does not seem to have been
studied in the past.

2



3.1. The algorithm
We fix a number of iterations K, and two parameters 0 < µ <

1 and 0 < β ≤ 1. Typically, on the examples presented in this
paper, we use K = 150, µ ≈ 0.9 and β ≈ 0.5.

Initially, we define Z := X. Every iteration j updates Z, and
can be briefly described by the three following steps:

1. we select the point p j in Z that is the furthest from its
corresponding target q in Y;

2. we consider the locally weighted translation ψρ j,p j,v j of di-
rection v j = β(q−p j), center p j, and Gaussian RBF kernel
kρ j , optimizing ρ j ∈ [0, µρmax(v j)] to minimize the error
between ψρ j,p j,v j (Z) and Y;

3. we perform the update: Z := ψρ j,p j,v j (Z).

The resulting diffeomorphism is:

Φ = ψρK ,pK ,vK ◦ · · · ◦ ψρ2,p2,v2 ◦ ψρ1,p1,v1

Here is a description of the algorithm in pseudo-code:

1: Input: X = (xi)i∈{0,...,N} and Y = (yi)i∈{0,...,N}
2: Parameters: K ∈ N>0, 0 < µ < 1, 0 < β ≤ 1
3:
4: Z = (zi)i∈{0,...,N}
5: Z := X
6: for j = 1 to K do
7: m := arg max

i∈{0,...,N}

(
‖zi − yi‖

)
8: p j := zm

9: q := ym

10: v j := β(q − p j)
11: ρ j := arg min

ρ∈[0,µρmax(v j)]

(
dist(ψρ,p j,v j (Z),Y)

)
12: Z := ψρ j,p j,v j (Z)
13: end for
14: return (ρ j) j∈{1,...,K}, (p j) j∈{1,...,K}, (v j) j∈{1,...,K}

Remarks:

• Here we have presented a version of the algorithm in
which the parameter β is constant, but we can also make
it vary iteration after iteration, for example by slowly in-
creasing towards 1.

• The line 11 of the algorithm performs a nonlinear opti-
mization, but since it depends only on one bounded real
variable, a minimum can be found very quickly and pre-
cisely.

• We can add a fixed upper bound ρM > 0 for all ρ j, and
a regularization term in the cost of the optimization prob-
lem of line 11, to prevent the diffeomorphism from overly
deforming the space to get a perfect matching. Simply us-
ing sequences with a large number of points has a similar
effect (and it almost does not slow the algorithm down).

• Again in line 11, dist can be replaced by any other dis-
tance. In practice, writing X and Y as (N+1)-by-2 matrices
and taking the largest singular value norm of (X−Y) seems
to give slightly better results than with the Euclidean dis-
tance.

Figure 1: On the left, the dashed curve is a trajectory represented by a sequence
of points Y = (yi)i∈{0,...,N}. The solid line is X =

(
y0 + i

N (yN − y0)
)
i∈{0,...,N}.

The right side shows the result of the application of the diffeomorphism Φ con-
structed by our algorithm to map X onto Y.

• Nothing prevents the algorithm from getting stuck in a lo-
cal minimum, so a general proof of convergence cannot be
found. However, as we show in the next sections, exper-
imental results give empirical evidence that the algorithm
is efficient and converges quickly in practice, even on dif-
ficult matching problems. In future work, we will try to
further improve the algorithm and get convergence proofs
under realistic assumptions.

3.2. Experimental evaluation

We compare our algorithm to an implementation of diffeo-
morphic matching in the LDDMM framework developed by J.
Glaunès (the “Matchine” software [12]).

3



N our algorithm LDDMM
Learning: average 20 0.25 s 2.78 s

duration of the 50 0.25 s 14.5 s
construction of Φ 100 0.26 s 53.3 s

Forward evaluation: 20 3.05 ms 157 ms
average duration of the 50 3.35 ms 804 ms
computation of Φ(X) 100 3.72 ms 3130 ms
Backward evaluation: 20 29.8 ms 145 ms
average duration of the 50 35 ms 798 ms
computation of Φ−1(Y) 100 38.5 ms 3110 ms

Accuracy: average 20 3.49×10−3 18.2×10−3

value of dist(Φ(X),Y) 50 8.32×10−3 22.2×10−3

100 9.51×10−3 22×10−3

Table 1: Comparison of experimental results

Given a sequence of points Y = (yi)i∈{0,...,N} representing a
trajectory, we set X = (xi)i∈{0,...,N} =

(
y0 + i

N (yN − y0)
)

i∈{0,...,N}
and apply our algorithm or the LDDMM algorithm to construct
a diffeomorphism Φ such that Φ(X) and Y match. Figure 1
displays the result of our algorithm on four 2D trajectories, and
Table 1 shows a comparison of the results obtained on these
trajectories with our algorithm and the LDDMM algorithm. For
each trajectory, we try with representations as sequences of 21,
51 and 101 points (i.e. N = 20, N = 50, N = 100). For both
algorithms, the same parameters are kept across all the trials.

In all cases, our algorithm provides a substantial speedup.
For example, with 51 points, Φ is learned in average 58
times faster and evaluated 240 times faster, while the error
dist(Φ(X),Y) is 2.67 times smaller. The tests were made on an
Intel(R) Core(TM) i7-4700MQ @ 2.4 GHz with 4GB of RAM.

4. Learning stable nonlinear dynamical systems

4.1. Overview of the method
Two autonomous systems ẋ = f (x) and ẋ = g(x) are said

diffeomorphic, or smoothly equivalent, if there exists a diffeo-
morphism Φ : Rd → Rd such that:

g(Φ(x)) = JΦ(x) f (x),

where JΦ(x) is the Jacobian matrix: JΦ(x) = ∂Φ
∂x (x). When this

equation is verified, Φ maps the orbits of the DS ẋ = f (x) onto
the orbits of the DS ẋ = g(x). In particular, if one of the two
diffeomorphic DS is globally asymptotically stable, then both
are. And if L is a Lyapunov function for the DS ẋ = f (x) , then
L ◦ Φ−1 is a Lyapunov function for the DS ẋ = g(x) .

The objective of our approach is to learn a diffeomorphism
Φ that maps forward orbits of the DS ẋ = −x (i.e. line
segments) onto the observed trajectories. As a consequence,
x 7→ ‖Φ−1(x)‖ will be a Lyapunov candidate. Additionally,
it will be possible to directly get a stable DS of the form
ẋ = −γ(Φ−1(x))JΦ(Φ−1(x))Φ−1(x), with γ : Rd → R>0, that
reproduces approximately the demonstrations. Remark: this

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

Figure 2: The diffeomorphism Φ, that maps the trajectory X onto Y, transforms
a stable DS with X as a forward orbit into a stable DS with Y as a forward
orbit (top row). Using this property, we can modulate the initial vector field
while keeping X unchanged to obtain systems with different behaviors that all
reproduce the demonstration Y.

system can be written x = Φ(z), with ż = −γ(z)z (the DS
ż = −γ(z)z and ż = −z have the same orbits).

Trajectories being represented as sequences of points, this
problem of orbits mapping can be cast as diffeomorphic match-
ing. In the case of a unique demonstration Y = (y(ti))i∈{0,...,N},
with ti = i∆t, we want to find a diffeomorphism that maps
X =

(
y(0) + i

N
(
0 − y(0)

))
i∈{0,...,N}

onto Y (the trajectory is as-
sumed to arrive at the target: y(tN) = 0). To do so, we simply
use the algorithm presented in the previous section. The dif-
feomorphism ΦK obtained after K iterations can be such that
ΦK(0) , 0, so we add an extra iteration that picks pK+1 = ΦK(0)
and vK+1 = 0 − ΦK(0). This ensures that the final diffeomor-
phism Φ verifies ΦK(0) = 0. Remark: the structure of Φ makes
it easy to efficiently compute JΦ(x) at any given point.

4.2. Results
The top row of Figure 2 shows the result of mapping the

straight trajectory X (on the left) onto the trajectory Y (on the
right). The diffeomorphism Φ that realizes this matching also
transforms the entire DS ẋ = −x into a nonlinear stable DS that
reproduces the trajectory Y (as the forward orbit of y(0)).

Modifying the initial DS without changing the forward orbit
of x(0) leads, by application of Φ, to another DS that still re-
produces Y. On the bottom row of Figure 2, we use a linear
system that keeps x(0) as an eigenvector associated with eigen-
value −1 (ensuring that its orbit is not modified), but has an
eigenvalue smaller than −1 in the orthogonal direction (unlike
the DS ẋ = −x). This results in a transformed DS that “tracks”
more agressively the trajectory Y.

4



0 1 2 3 4 5
-0.5

0

0.5

1

1.5

0 1 2 3 4 5
-4

-2

0

2

Figure 3: On the left: a smooth autonomous systems, learned with our method, that reproduces a motion pattern (demonstrations are in black, reproduced trajectories
in red). The trajectories on the right show that the velocity profiles are quite accurately reproduced as well (again, demonstrations in black and reproductions in red).

We evaluated our approach on the LASA Handwriting
Dataset, similarly to [3, 4, 6]. On all cases shown in Fig-
ure 4, a set of 7 trajectories ending at the same point demon-
strate a single pattern of handwriting motion. For each of
these patterns, we create an average timed sequence of points
Y = (y(i∆t))i∈{0,...,N} based on the 7 trajectories, and apply our
matching algorithm to construct a diffeomorphism Φ that maps
X =

(N−i
N y(0)

)
i∈{0,...,N} onto Y. This gives a Lyapunov candidate

x 7→ ‖Φ−1(x)‖. We compare it to the optimized WSAQF Lya-
punov candidates obtained with the method of Khansari-Zadeh
and Billard [4] also used in [6]. On the 1st column are displayed
level sets of the WSAQF Lyapunov candidates, and on the 2nd
column level sets of our Lyapunov candidates. We can observe
that the level sets of the Lyapunov candidates produced by our
method have a richer geometry and exhibit variations that are
more suitably adapted to the training data.

Of course, following the method of Khansari-Zadeh and Bil-
lard [4], these Lyapunov candidates can be used to correct any
learned DS to ensure global asymptotic stability. But as men-
tioned above, the diffeomorphism also provides a way to di-
rectly get a stable DS that reproduces the motion pattern. We
define a function γ : Rd → R>0 such that, starting at x(0) = y(0)
with t = 0, the DS ẋ = −γ(x)x produces a trajectory that passes
by the points N−i

N y(0) at times i∆t, for i ∈ {1, . . . ,N − 1}, and
converges asymptotically towards 0 for t > (N−1)∆t. A simple
choice for γ is γ(x) =

‖y(0)‖
N∆t‖x‖ for ‖x‖ ≥ ‖y(0)‖

N and γ(x) =
‖y(0)‖

N
otherwise (but it is easy to design a smoother function with the
same desired properties).

Φ transforms the DS ẋ = −γ(x)x into one that reproduces the
demonstrations and their velocity profiles, as shown in Figure 3.
The eigenvalue in the direction orthogonal to y(0) can be ad-
justed according to the variability of the 7 demonstrations. The
vector fields we obtained are shown on the 4th column of Fig-
ure 4, and the vector fields obtained with the τ-SEDS (WSAQF)
method of Neumann and Steil [6] are shown on the 3rd column.

5. Conclusion

In this paper, we presented a new algorithm for diffeomor-
phic matching and a way to use it to learn stable nonlinear au-

tonomous dynamical systems from demonstrations.
While the demonstrations were 2D single motion patterns

in the results we presented, our algorithm scales well to
higher dimensions (because all its parameters are dimension-
independent) and can handle multiple motion patterns, although
in some cases topological issues may prevent the convergence
of the matching. It should also be noted that we can only pro-
duce vector fields that are diffeomorphic to the DS ẋ = −x,
which is not true for all globally asymptotically stable smooth
autonomous systems. A related limitation concerns 2D spiral
trajectories, which cannot be reproduced. In future work, we
will try to combine our approach with existing methods to ex-
tend its possibilities. For instance, Kronander et al. [13] suggest
to iteratively reshape DS by locally applying full-rank modula-
tions such as scalings and rotations. It does not guarantee the
global asymptotic stability of the resulting DS, but we see in
this work an approach that could be complementary to ours.

The main advantages of our method are:

1. speed: unlike [4] and [6], we do not need a second learn-
ing phase once the Lyapunov candidate has been found,
and we do not rely on numerical optimization of parame-
ters whose number rapidly increases with the dimension-
ality; instead, the simple iterative algorithm we use has a
constant number of parameters, and we have empirically
verified its quick convergence for many difficult matching
problems.

2. simplicity: of implementation because the algorithm is
very short, but also of use thanks to the small number of
parameters to adjust.

For these reasons, we believe it can be applied with ease to
efficiently learn a large variety of stable autonomous systems,
with applications in dynamic movement primitives construction
or more generally in control design. If instead of ẋ = −x, we
start with an initial DS that has a stable limit cycle, our approach
can be adapted to learn limit cycle systems.

Finally, being significantly faster than a state-of-the-art algo-
rithm, our diffeomorphic matching algorithm itself might be of
interest for completely different applications, such as for exam-
ple image registration.

5



Figure 4: • 1st column: level sets of the WSAQF Lyapunov candidates [4, 6]. • 2nd column: level sets of the Lyapunov candidates obtained with our approach.
• 3rd column: streamlines of the stable DS produced by the τ-SEDS (WSAQF) approach [6]. • 4th column: streamlines of the stable DS produced by our approach.
• All columns: the demonstrations are displayed in black. • 3rd & 4th columns: the reproduced trajectories are in red.

6



References

[1] S. Schaal, A. Ijspeert, A. Billard, Computational approaches to motor
learning by imitation, Philosophical Transactions of the Royal Society B:
Biological Sciences 358 (1431) (2003) 537–547.

[2] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynami-
cal movement primitives: learning attractor models for motor behaviors,
Neural computation 25 (2) (2013) 328–373.

[3] S. M. Khansari-Zadeh, A. Billard, Learning stable nonlinear dynamical
systems with gaussian mixture models, IEEE Transactions on Robotics
27 (5) (2011) 943–957.

[4] S. M. Khansari-Zadeh, A. Billard, Learning control lyapunov function
to ensure stability of dynamical system-based robot reaching motions,
Robotics and Autonomous Systems 62 (6) (2014) 752–765.

[5] K. Neumann, A. Lemme, J. J. Steil, Neural learning of stable dynamical
systems based on data-driven lyapunov candidates, in: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2013, pp.
1216–1222.

[6] K. Neumann, J. J. Steil, Learning robot motions with stable dynamical
systems under diffeomorphic transformations, Robotics and Autonomous
Systems 70 (2015) 1–15.

[7] S. C. Joshi, M. Miller, et al., Landmark matching via large deformation
diffeomorphisms, IEEE Transactions on Image Processing 9 (8) (2000)
1357–1370.

[8] P. Dupuis, U. Grenander, M. I. Miller, Variational problems on flows of
diffeomorphisms for image matching, Quarterly of applied mathematics
56 (3) (1998) 587–600.

[9] J. Glaunès, A. Qiu, M. I. Miller, L. Younes, Large deformation diffeomor-
phic metric curve mapping., Int J Comput Vis 80 (3) (2008) 317–336.

[10] M. Vaillant, J. Glaunès, Surface matching via currents, in: Information
Processing in Medical Imaging, 2005, pp. 381–392.

[11] H. Guo, A. Rangarajan, S. Joshi, Diffeomorphic point matching, in:
Handbook of Mathematical Models in Computer Vision, Springer, 2006,
pp. 205–219.

[12] ”Matchine” software by J. A. Glaunès, Copyright (C) Université Paris
Descartes, http://www.mi.parisdescartes.fr/∼glaunes/matchine.zip.

[13] K. Kronander, M. Khansari, A. Billard, Incremental motion learning with
locally modulated dynamical systems, Robotics and Autonomous Sys-
tems 70 (C) (2015) 52–62.

7


