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I. INTRODUCTION

HE topic of humanoid balancing has been studied extensively as its importance has undergone a steady increase in recent years, owing to the development of numerous humanoids possessing distinct mechanical structures. Among the most important contributions that aided in the shaping of the theories developed thereafter, was the introduction of the zero-moment-point (ZMP), that has been offered to the field through the work presented in [START_REF] Vukobratovic | Zero-moment point -Thirty Five Years of its Life[END_REF], wherein the authors propose a point under the foot sole whose position defines the dynamic balance of a bipedal system. There have also been noteworthy extensions of this theory that have aided in the clarification of certain aspects pertaining to the original ZMP notion. The work in [START_REF] Sardain | Forces Acting on a Biped Robot. Center of Pressure -Zero Moment Point[END_REF] rigorously describes the center of pressure (CoP) and ZMP concepts, highlighting their differences as well as the cases in which they are equivalent. Another important balance criterion known as the foot rotation indicator (FRI) [START_REF] Goswami | Postural Stability of Biped Robots and the Foot-Rotation Indicator FRI Point[END_REF] has been defined as the point on a humanoid's foot at which the net normal force must act in order to ensure that the foot remains stationary, although this only applies to the single support stance. As far as balancing strategies are concerned, there have been several works dealing with this topic. [START_REF] Stephens | Integral Control of Humanoid Balance[END_REF] proposes dynamic balancing through the use of ankle and hip strategies. The former involves movement of the entire system about the ankle and has been studied in [START_REF] Kajita | Study of Dynamic Biped Locomotion on Rugged Terrain[END_REF] and [START_REF] Stephens | Humanoid Push Recovery[END_REF], where the authors have utilized torque control of the ankles. [START_REF] Stephens | Humanoid Push Recovery[END_REF] assumes a direct torque control of the stiff ankle, rendering it possible to control the CoP in a delay-free manner, whereas this paper demonstrates how the presence of under-actuated elastic elements in compliant humanoids prevents the latter from holding true. A natural extension of these schemes, namely the hip strategy, has been examined in addition to how a humanoid can switch between various stabilization techniques [START_REF] Stephens | Humanoid Push Recovery[END_REF], i.e. hip/ankle strategies, and stepping, to ensure that stability is maintained. [START_REF] Hyon | Passivity-Based Full-Body Force Control for Humanoids and Application to Dynamic Balancing and Locomotion[END_REF] proposes a method of passivating a humanoid through a combination of translating the ground reaction forces (GRFs) to joint torques and gravity compensation control. [START_REF] Kim | Landing Force Control for Humanoid Robot by Time-Domain Passivity Approach[END_REF] also focuses on a passivity-based approach that is aimed at absorbing the GRFs acting on a humanoid during walking. [START_REF] Goswami | Rate of change of angular momentum and balance maintenance of biped robots[END_REF] demonstrates that the monitoring and modification of the rate of change of angular momentum as both a stability criterion and control variable, can be used to balance a bipedal robot. ZMP preview control schemes are a common choice for stabilization and have been described in [START_REF] Azevedo | Moving horizon control for biped robots without reference trajectory[END_REF] [START_REF] Wieber | Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations[END_REF][12], while ZMP feedback controllers have been presented and adapted to the field of stepping in the presence of external perturbations [START_REF] Napoleon | Balance Control Analysis of Humanoid Robot based on ZMP Feedback Control[END_REF]. This leads to the next topic of stepping, where [START_REF] Pratt | Capture Point: A Step toward Humanoid Push Recovery[END_REF] provides an answer to the question of 'when and where must a step be taken' in order to stabilize a given system, by introducing the Capture Region concept. These are regions on the terrain, within which a robot can take a step in order to stabilize its structure. The problem of humanoid balance monitoring and fall detection has been approached using several methods, ranging from the utilization of attitude sensors and reflexes [START_REF] Renner | Instability Detection and Fall Avoidance for a Humanoid Using Attitude Sensors and Reflexes[END_REF], to viability theory [START_REF] Wieber | Viability and Predictive Control for Safe Locomotion[END_REF] and probabilistic techniques [START_REF] Höhn | Probabilistic Balance Monitoring for Bipedal Robots[END_REF], while it is crucial to mention the utilization of the Maximal Output Admissible (MOA) set technique that was recently proposed [START_REF] Yamamoto | Maximal Output Admissible Set for Trajectory Tracking Control of Biped Robots and its Application to Falling Avoidance Control[END_REF]. Contrarily, this paper aims at addressing the aforementioned problem through the consideration of dynamical models of increased complexity and closed-loop energy functions that are used to generate values corresponding to unstable states, from which the robot would not be capable of recovering its balance. The idea of utilizing Lyapunov Stability Margins for the assessment of a robot's dynamical balance, was initially introduced in the pioneering work seen in [START_REF] Wieber | On the stability of walking systems[END_REF], for two reasons. Firstly, the ZMP/CoP is incapable of providing a useful measure of stability on uneven terrain and secondly, the Energy Stability Margins unanimously conclude that tipping over a contact point edge is an unstable
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Emmanouil Spyrakos-Papastavridis, Nicolas Perrin, Nikos G. Tsagarakis, Jian S. Dai and Darwin G. Caldwell T situation for walking systems, even though this phenomenon is frequently encountered in stable walking [START_REF] Wieber | On the stability of walking systems[END_REF]. While [START_REF] Wieber | On the stability of walking systems[END_REF] introduced the Lyapunov Stability Margin concept without giving a practical and computationally tractable example, our proposed approach contributes by providing a specific Lyapunov Stability Margin for a humanoid robot that can be computed quickly through a simple relationship between the CoP deviation and the closed-loop energy using specific Lyapunov functions. Furthermore, it distinguishes itself from the orbital energy [START_REF] Kajita | Dynamic Walking Control of a Biped Robot Along a Potential Energy Conserving Orbit[END_REF] and energy stability margin methods [START_REF] Garcia | An improved energy stability margin for walking machines subject to dynamic effects[END_REF] of monitoring balance, in the sense that it considers not only more intricate dynamical models that include compliance but it also accounts for the closed-loop system properties. An additional contribution of this work is that it presents a control scheme that ensures the closed-loop system's asymptotical stability and offers a method, based on this same control scheme, through which the robot's dynamical stability can be monitored. The rest of the paper is structured as follows; section II introduces the dynamical models and the joint controller, section III describes the balance controllability, section IV provides a mathematical proof of the method's validity, section V reports on the experimental results, section VI extends the relevant theory to walking, and finally section VII discusses the conclusions.

II. DYNAMICAL MODEL AND JOINT CONTROL

A. Compliant Robot Dynamics

For the double support case, we consider a generic 𝑗-degree of freedom robot with 𝑛 𝑖 -drives for each degree of freedom 𝑖 = 1,2 … 𝑗. The total number of drives is 𝑛 = ∑ 𝑛 𝑖 𝑗 𝑖=1

. The link and motor dynamics may be described as follows [START_REF] Spyrakos-Papastavridis | Gravity Compensation Control of Compliant Joint Systems with Multiple Drives[END_REF]: 𝑀 𝐽 (𝑞)𝑞̈+ 𝑁𝑞̇+ 𝐶(𝑞, 𝑞̇)𝑞̇+ 𝑆 𝑚 𝑇 𝑃(𝑆 𝑚 𝑞 -𝜃) = 𝜏 𝑔 (𝑞) (1)

𝐽𝜃 ̈+ 𝐷𝜃 ̇-𝑃𝑆 𝑚 𝑞 + 𝑃𝜃 = 𝑉 𝑇𝐺 𝑉 𝑚 [START_REF] Sardain | Forces Acting on a Biped Robot. Center of Pressure -Zero Moment Point[END_REF] where 𝑞 and 𝜃 are the link and motor positions, 𝑀 𝐽 (𝑞), 𝑁 and 𝐶(𝑞, 𝑞̇) ∈ 𝑅 𝑗×𝑗 are the inertia, damping and Coriolis/centripetal matrices respectively, 𝜏 𝑔 (𝑞) is the gravity torque vector, 𝑉 𝑇𝐺 ∈ 𝑅 𝑛×𝑛 is the voltage-to-torque gain matrix and 𝑉 𝑚 represents the motor voltages. 𝑃 ∈ 𝑅 𝑛×𝑛 is a diagonal matrix with positive entries representing the passive spring stiffness between the motors and the robot links, while 𝐽, 𝐷 ∈ 𝑅 𝑛×𝑛 are the motor inertia and damping. 𝑆 𝑚 𝑇 ∈ 𝑅 𝑗×𝑛 possesses the following structure:

𝑆 𝑚 𝑇 = [ 1 1 ⋯ 1 ⏟ 𝑛 1 0 ⋯ 0 0 1 1 ⋯ 1 ⏟ 𝑛 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 1 ⋯ 1 ⏟ 𝑛 𝑗 ] (3) 
A substantial degree of modeling accuracy was preserved by including all the sagittal joints in the system's mathematical description. However, the over-actuated nature of the double support stance led to the six joints being treated as three (Fig. 1), although all six actuators were considered. This approach provides greater precision as compared to approximating the whole humanoid's structure as a single inverted pendulum. Fig. 1 depicts the correspondence between the actual robot's joints with those of the model. The elements of the 3-DOF double support vector were arranged as follows:

𝜏 𝑔0 = [ 𝜏 𝑔𝑎 𝜏 𝑔𝑘 𝜏 𝑔ℎ ] 𝑇
with 𝜏 𝑎 , 𝜏 𝑘 , 𝜏 ℎ representing the ankle, knee and hip torques respectively. One of the main properties of the gravity vector, to be used in subsequent sections, is the following:

‖ 𝜕𝜏 𝑔 (𝑞) 𝜕𝑞 ‖ = ‖ 𝜕 2 𝑈 𝑔 (𝑞) 𝜕𝑞 2 ‖ < 𝛼 ( 4 
)
for some 𝛼 > 0 ; here 𝑈 𝑔 (𝑞) denotes the potential energy due to gravity, 𝜏 𝑔 (𝑞) = -(𝜕𝑈 𝑔 (𝑞)/𝜕𝑞) 𝑇 and the operator norm ‖𝐴‖ = 𝑚𝑎𝑥{‖𝐴𝑥‖/‖𝑥‖} is considered. 

B. Desired Gravity Compensation Controller

The low-level joint controller was based upon gravity compensation control, employing both motor and link feedback. The associated control law may be represented as follows:

𝑉 𝑚 = 𝐾 𝑚1 (𝑆 𝑚 𝑞 𝑑 -𝜃) -𝐾 𝑚2 𝜃 ̇-𝐾 𝑗2 𝑞̇+ 𝑢 𝑔𝑐 ( 5 
)
where 𝑢 𝑔𝑐 is the gravity compensation term and 𝑞 𝑑 is the desired position, while 𝐾 𝑚1 , 𝐾 𝑚2 and 𝐾 𝑗2 are the diagonal, positive definite motor position, motor velocity and link velocity feedback gain matrices.

For the double support, 𝑢 𝑔𝑐 is given by:

𝑢 𝑔𝑐 = -𝑉 𝑇𝐺 -1 (𝑉 𝑇𝐺 𝐾 𝑚1 𝑃 -1 + 𝐼)(𝑆 𝑚 𝑇 ) + 𝜏 𝑔 (𝑞 𝑑 ) (6) 
where 𝑞 has been replaced with 𝑞 𝑑 since we are considering a desired gravity compensation controller, while (𝑆 𝑚 𝑇 ) + denotes the Moore-Penrose pseudoinverse of 𝑆 𝑚 𝑇 . By considering the closed-loop system's steady state equations, we can define the following matrix that plays a central role in the stability analysis since it must satisfy certain conditions in order for closed-loop stability to be guaranteed, as shown in [START_REF] Spyrakos-Papastavridis | A Compliant Humanoid Walking Strategy Based on the Switching of State Feedback Gravity Compensation Controllers[END_REF]:

𝑇 𝐷 = [ 𝑆 𝑚 𝑇 𝑃𝑆 𝑚 -𝑆 𝑚 𝑇 𝑃 -𝑃𝑆 𝑚 𝑉 𝑇𝐺 𝐾 𝑚1 + 𝑃 ] (7) 
The desired motor and link positions are related by:

𝜃 𝑑 = 𝑆 𝑚 𝑞 𝑑 -𝑃 -1 (𝑆 𝑚 𝑇 ) + 𝜏 𝑔 (𝑞 𝑑 ) (8) 
Additionally, the following matrix is defined:

𝛾 = 𝑁 • (𝐷 + 𝑉 𝑇𝐺 𝐾 𝑚2 ) - (𝑉 𝑇𝐺 𝐾 𝑗2 ) 2 4 ( 9 
)
in order to be used together with 𝑇 𝐷 for the stability criteria statements.

C. Closed-Loop System Lyapunov Function Using control law (5), the closed-loop system was rendered globally asymptotically stable, as was demonstrated in the analysis presented in [START_REF] Spyrakos-Papastavridis | A Compliant Humanoid Walking Strategy Based on the Switching of State Feedback Gravity Compensation Controllers[END_REF]. Hence, the following Lyapunov function shall be considered throughout the paper:

𝑉 𝑇 (𝑞 𝐹 , 𝑞̇𝐹) = 1 2 𝑞̇𝐹 𝑇 𝑀(𝑞)𝑞̇𝐹 + 1 2 𝑞 𝐸 𝑇 𝑇 𝐷 𝑞 𝐸 + 𝑈 𝑔 (𝑞) -𝑈 𝑔 (𝑞 𝑑 ) + 𝑞 𝐸 𝑇 [ 𝜏 𝑔 (𝑞 𝑑 ) 0 ] ≥ 0 (10) 
, where

𝑀(𝑞) = [ 𝑀 𝐽 (𝑞) 0 0 𝐽 ], 𝑞 𝐹 = [ 𝑞 𝜃 ], 𝑞 𝐹 𝑑 = [ 𝑞 𝑑 𝜃 𝑑 ], 𝑞 𝐸 = (𝑞 𝐹 -𝑞 𝐹 𝑑 ).
Explicit calculations proving that the time derivative is negative definite are omitted here as they can be found in [START_REF] Spyrakos-Papastavridis | Gravity Compensation Control of Compliant Joint Systems with Multiple Drives[END_REF]. It is essential to state that global stability holds if and only if the following conditions are satisfied [START_REF] Spyrakos-Papastavridis | A Compliant Humanoid Walking Strategy Based on the Switching of State Feedback Gravity Compensation Controllers[END_REF]:

𝜆 𝑚𝑖𝑛 (𝑇 𝐷 ) > 𝛼 and 𝜆 𝑚𝑖𝑛 (𝛾) > 0

where 𝜆 𝑚𝑖𝑛 denotes the minimum Eigenvalue. The satisfaction of these conditions is contingent upon the tuning of the controller, which in this case is related to the selection of the 𝐾 𝑚1 , 𝐾 𝑚2 and 𝐾 𝑗2 matrices. Furthermore, global stability does not imply the humanoid's possession of a dynamically balanced state in the CoP sense, and for this reason, the subsequent section will focus on describing and proving how the CoP deviation can be bounded by a constant multiplied by the square root of the value of the Lyapunov function [START_REF] Azevedo | Moving horizon control for biped robots without reference trajectory[END_REF].

III. BALANCE MONITORING

A. Dynamical CoP Expression for Compliant Bipeds

This sub-section provides an expression for a compliant biped's CoP, revealing that this variable may not be controlled in a direct manner, as opposed to a stiff biped's CoP. We need to express the CoP in terms of the system's dynamics and shall commence with the following equation:

𝑋 𝐶𝑜𝑃 =
𝜏 𝑎 𝐹 𝑍 [START_REF] Wieber | Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations[END_REF] with 𝜏 𝑎 and 𝐹 𝑍 representing the ankle torque and the vertical component of the GRF, that may also be expressed as:

𝐹 𝑍 = 𝑚 𝑇 (𝑍 ̈𝐶 + 𝑔) (12)
where 𝑚 𝑇 is the robot's total mass and 𝑍 ̈𝐶 is the CoM acceleration along the z-axis, while the acceleration of gravity, 𝑔 = 9.81 𝑚 𝑠 2 . The relationship presented in [START_REF] Stephens | Humanoid Push Recovery[END_REF] may now be employed, although it needs to be appropriately modified for the treatment of compliant humanoids beforehand. Thus, (1) -( 2) may be expressed as follows:

𝑀𝑞̈𝐹 = 𝜏 -𝑊 ( 13 
)
where 

𝑋 𝐶𝑜𝑃 = -𝐺 • 𝑆 𝑚 𝑇 𝑃(𝑆 𝑚 𝑞 -𝜃) 𝑚 𝑇 (𝑍 ̈𝐶 + 𝑔) ( 15 
)
where 𝐺 is a selection matrix that selects the ankle torque.

The above equation sheds light on the fact that a compliant robot's CoP may not be directly controlled, since the torque input 𝜏 𝑎 = -𝐺 • 𝑆 𝑚 𝑇 𝑃(𝑆 𝑚 𝑞 -𝜃) is not directly controllable.

B. Trigger Energy and CoP

The aim is to obtain an energy value corresponding to a state that has been assumed by the robot, from which it may not be able to recover its balance [START_REF] Wieber | On the stability of walking systems[END_REF], and to set this as the trigger energy. Given the fact that our dynamical model and energy function are concerned solely with sagittal motions, this would imply the CoP reaching either one of the x-axis limits of the support polygon. Lateral motions are not considered since the relevant joints do not incorporate compliant elements and would hence require a different control law that would be accompanied with a distinct Lyapunov function. It is noted that the robot is to be operated around the point of maximal balance which would imply 𝑋 𝐶𝑜𝑃 = 0, that in our case corresponds to 𝑞 𝐹 𝑑 = 0. The method works not only for this specific operating point of 'maximal balance' but also for arbitrary equilibrium points. Furthermore, the trigger energy can be computed using equation (36) that is presented in the next sub-section, while the Lyapunov function [START_REF] Azevedo | Moving horizon control for biped robots without reference trajectory[END_REF] is to be used for the measurement of the total energy during the experiments. Thus, the difference between the measured and trigger energy values will provide insight into the robot's state of stability at a given time, as described in [START_REF] Wieber | On the stability of walking systems[END_REF]. To elaborate, the energy value tends to increase as the CoP moves from the center of the polygon towards its edges, although the two are not related in a linear manner. Additionally, this approach can be used for trajectory generation entailing models that are more intricate than the linear inverted pendulum model (LIPM).

IV. LYAPUNOV ENERGY-COP EXPRESSION

A. Relationship Formulation

For a bipedal robot whose closed-loop energy is described by [START_REF] Azevedo | Moving horizon control for biped robots without reference trajectory[END_REF], there exists a range of energy values for which the CoP can only remain within the support polygon, as will be demonstrated in the subsequent lines. It shall be assumed that the value of 𝑍 ̈𝐶 is small in comparison to that of 𝑔, as it is in practice, and has also been considered in several other works [START_REF] Kajita | Study of Dynamic Biped Locomotion on Rugged Terrain[END_REF][6] [START_REF] Napoleon | Balance Control Analysis of Humanoid Robot based on ZMP Feedback Control[END_REF], such that:

𝑋 𝐶𝑜𝑃 = 𝜏 𝑎 𝑚 𝑇 𝑔 ( 16 
)
where 𝜏 𝑎 = -𝐺 • 𝑆 𝑚 𝑇 𝑃(𝑆 𝑚 𝑞 -𝜃). Additionally, we define the CoP position and the ankle torque at equilibrium (𝑋 𝐶𝑜𝑃 𝑑 and 𝜏 𝑑 ):

𝑋 𝐶𝑜𝑃 𝑑 = 𝜏 𝑑 𝑚 𝑇 𝑔 (17) 
with 𝜏 𝑑 = -𝐺 • 𝑆 𝑚 𝑇 𝑃(𝑆 𝑚 𝑞 𝑑 -𝜃 𝑑 ). Besides, we recall that 𝜏 𝑎 = -𝐺 • 𝑆 𝑚 𝑇 𝑃(𝑆 𝑚 𝑞 -𝜃), hence: The following expression is therefore acquired:

𝜏 𝑎 -𝜏 𝑑 = -
|𝑋 𝐶𝑜𝑃 -𝑋 𝐶𝑜𝑃 𝑑 | ≤ √2(𝑛 𝑚𝑎𝑥 + 1)‖𝐺 • 𝑆 𝑚 𝑇 𝑃‖ √𝛿 • 𝑚 𝑇 𝑔 √𝑉 𝑇 (36)
A relationship between the total energy and the 𝑋 𝐶𝑜𝑃 has thus been established, while a number of calculations allow one to conclude the soundness of the units. This may be viewed as the first proof demonstrating that for a specific low-level joint controller, CoP positions can be bounded by values that are proportional to the square root of a Lyapunov function (the total closed-loop energy). This property leads to the existence of critical energy values, below which it is certain that the CoP position is to forever remain within the support region, provided the absence of future external perturbations (i.e. energy injections). The analysis can be extended by considering any equilibrium point since its validity is not restricted to the 𝑞 𝐹 𝑑 = 0 configuration. Equation (36) can be used to compute the trigger energy values based on the 𝑋 𝐶𝑜𝑃 values corresponding to the support polygon's limits. This provides a systematic approach to obtaining Regions of Trust, as opposed to defining them arbitrarily [START_REF] Giftthaler | Increased robustness of humanoid standing balance in the sagittal plane through adaptive joint torque reduction[END_REF]. Although we have only considered a double support model in this work, it is evident that the same formulae can be applied to the single support phase with minor modifications. Due to the Lyapunov function's inclusion of the kinetic energy terms of all the joints, this method's applicability is not restricted to ankle strategies. Furthermore, for every energy value corresponding to a balanced state in terms of the CoP value, the controller will also ensure that the robot is asymptotically stable at the joint level, and as a result, this will also imply that the CoP converges to the desired equilibrium position. It should be pointed out that there is absolutely no difficulty in computing the numerical values of the variables constituting the final expression (36), i.e. 𝛿, 𝐸, ‖𝐺 • 𝑆 𝑚 𝑇 𝑃‖, and 𝑛 𝑚𝑎𝑥 .

B. Stepping Algorithm

Prior to presenting a succinct version of our algorithm, it is important to state that for a given push, there will be two distinct positive energy values pertaining to the CoP's position in either the frontmost or rearmost sections of the support polygon. If the robot were agnostic to the direction of the push, it would then utilize the smallest of these two positive values to trigger a step. Since however our robot is equipped with FT sensors at the feet, these are used to measure the CoP position and hence the robot's direction of motion at a given point in time. Nevertheless, there is still a need for the observance of the center of pressure velocity, 𝑋 ̇𝐶𝑜𝑃 , that could be crucial in certain situations, such as ones in which the robot is moving towards a point that is close to either of the CoP limits and is then perturbed in the direction opposite to that of its current motion. The energy function itself would be agnostic to the fact that the velocity due to the disturbance was in fact a stabilizing one (i.e. returning it back to 𝑋 𝐶𝑜𝑃 = 0) and would require further directional information, that could be directly provided by the 𝑋 ̇𝐶𝑜𝑃 . Hence, a prerequisite for the selection of a trigger energy is the 𝑋 𝐶𝑜𝑃 's and 𝑋 ̇𝐶𝑜𝑃 's possession of equal signs. Having elucidated these aspects of our strategy, we may now summarize the energy computation and balance monitoring algorithm: 1. The 𝐸 𝐹 and 𝐸 𝐵 energies required to drive the CoP to the front and rear edges of the support polygon can be computed either by using theoretical upper bounds given by equation (36), or through experimental means. 2. The 𝐸 𝐹 and 𝐸 𝐵 values are both set as trigger energies whose selection is dependent upon the x-axis CoP measurements read by the force/torque sensors and the corresponding CoP velocities. 3. The energy value is monitored in real-time using [START_REF] Azevedo | Moving horizon control for biped robots without reference trajectory[END_REF], hence serving as an indicator of the humanoid's state of balance.

The 𝐸 𝐹 and 𝐸 𝐵 values may differ significantly, in accordance with the dimensions of the support polygon, although in the majority of cases, including the one considered in this paper, the 𝐸 𝐹 value will tend to be larger.

V. BALANCE MONITORING AND STEPPING EXPERIMENTS

A. Balance Monitoring Experiments The propounded method was corroborated through experimental means that involved the lower body of the COMAN [START_REF] Tsagarakis | Compliant Humanoid COMAN: Optimal Joint Stiffness Tuning for Modal Frequency Control[END_REF][27] [START_REF] Tsagarakis | The Design of the Lower Body of the Compliant Humanoid Robot "cCub[END_REF] being placed on the floor and subjected to a series of perturbations. The first set of tests served the purpose of demonstrating the validity of (36) by moving the robot's waist to arbitrary locations while it was in a double support stance. The force/torque sensors mounted on the robot's foot soles enabled the acquirement of x-axis force readings that indicated the direction from which the push had been applied and thus the energy limit to be utilized for signaling whether or not the robot was stable. Fig. 2 displays the pertinent results, wherein it is evident that the real CoP (𝑋 𝐶𝑜𝑃 𝑟𝑒𝑎𝑙 ) is always confined within the limits defined by the value of the theoretical bound (𝑋 𝐶𝑜𝑃 𝑇ℎ ), as described by (36), thus allowing us to conclude that the estimate is a conservative one guaranteeing that the CoP will reside within a safe region of operation at all times. Additionally, an imperative aspect of these results is that both the energy and the CoP asymptotically converge towards the equilibrium point, as described by (36). Moreover, Figs. 4 and5 portray the evolution of the energy and the CoP throughout the course of the frontal pushing experiments, while the orange lines on each plot denote the actual energy (𝐸 𝐹𝐸 , 𝐸 𝐵𝐸 in Table I) and CoP limits, and the green line represents the theoretical energy limits (𝐸 𝐹𝑇 , 𝐸 𝐵𝑇 in Table I). During the tests, the robot lost its balance at the instances when the energy exceeded the 𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑎𝑙 and 𝑋 𝐶𝑜𝑃 𝑟𝑒𝑎𝑙 values, hence signifying that the limits were accurately calculated. Fig. 5 also displays the energy decrease that occurs once the robot loses balance, and this is attributed to the fact that the humanoid was held in place and manually moved back to the equilibrium position once the energy limit was exceeded, in order to prevent it from hitting the floor and damaging its structure. A similar experiment entailing the application of rear-side disturbances also permitted the observation that the robot's balance was lost once the energy threshold was exceeded, as depicted in Figs. 6 and7. Fig. 8 was acquired during experiments that involved getting hold of the robot's pelvis and moving it rapidly, in a reciprocating manner, leading to the generation of relatively higher joint velocities as compared to those seen in the above figures. Consequently, the discrepancy between the overall and potential energies is perspicuous, thus highlighting the importance of the kinetic energy in dynamical cases, as is to be expected. of the system, a stepping recovery experiment was carried out, involving the COMAN being pushed while standing in an upright position and then using the trigger energy to perform a step, as shown in the video attachment.
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VII. CONCLUSIONS

A balance monitoring strategy for humanoid robots was presented in the paper and experimentally validated on the COMAN. The main concept behind the proposed method was the use of a closed-loop energy function aimed at accurately describing bounds on the robot's state of stability at a given point in time. A mathematical proof pertaining to the validity of the proposed approach has been provided, by establishing a relationship between the CoP and the closedloop energy, thus also attesting the fact that for certain energy values, the CoP can only remain within the support polygon. This can be viewed as an extension of the Lyapunov Stability Margin concept that was initially propounded in [START_REF] Wieber | On the stability of walking systems[END_REF]. Hence, our approach addresses the critical problem of robot balance in a mathematically sound way, and it proves that it is actually possible to compute Lyapunov Stability Margins that are not overly conservative, even when considering a complex control law that takes the passive elements of the robot actuation into account. In situations where the robot could perform various types of motion, tuning values becomes a feeble, impractical option. In such a context, the possibility of swiftly computing Lyapunov Stability Margins will enhance the degree of the robot's balance awareness, and its ability to make sound decisions based on the circumstances. Additionally, as safety becomes an increasingly important topic in robotics, the mathematical proofs associated with these Lyapunov Stability Margins will be invaluable in terms of certifying that a robot will always behave as expected.
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 1 Figure 1. Lower body of compliant humanoid COMAN and corresponding double support model.
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 23 Figure 2. CoP response during handling test.
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 45678 Figure 4. CoP motion during rear-side perturbation test.

TABLE I TRIGGER

 I ENERGY VALUESB. Stepping Recovery ExperimentsIn order to demonstrate the practicability of the trigger energy values in terms of aiding in the balance maintenance

	Variable	Value
	𝐸 𝐹𝐸	1.96
	𝐸 𝐹𝑇	1.03
	𝐸 𝐵𝐸	0.71
	𝐸 𝐵𝑇	0.34