L. Campanella, R. Roversi, M. Sammartino, and M. Tomassetti, Hydrogen peroxide determination in pharmaceutical formulations and cosmetics using a new catalase biosensor, Journal of Pharmaceutical and Biomedical Analysis, vol.18, issue.1-2, pp.105-116, 1998.
DOI : 10.1016/S0731-7085(98)00155-1

Y. Usui, K. Sato, and M. Tanaka, Catalytic Dihydroxylation of Olefins with Hydrogen Peroxide: An Organic-Solvent- and Metal-Free System, Angewandte Chemie International Edition, vol.42, issue.45, pp.5623-5625, 2003.
DOI : 10.1002/anie.200352568

P. Niethammer, C. Grabher, A. Look, and T. Mitchison, A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish, Nature, vol.134, issue.7249, pp.996-999, 2009.
DOI : 10.1038/nature08119

T. Wang, H. Zhu, J. Zhuo, Z. Zhu, P. Papakonstantinou et al., Released by Cells at the Nanomolar Level, Analytical Chemistry, vol.85, issue.21, pp.10289-10295, 2013.
DOI : 10.1021/ac402114c

Y. Wang, J. Huang, C. Zhang, J. Wei, and X. Zhou, Determination of Hydrogen Peroxide in Rainwater by Using a Polyaniline Film and Platinum Particles Co-Modified Carbon Fiber Microelectrode, Electroanalysis, vol.395, issue.11, pp.776-778, 1998.
DOI : 10.1002/(SICI)1521-4109(199809)10:11<776::AID-ELAN776>3.0.CO;2-5

P. Kirchner, B. Li, H. Spelthahn, H. Henkel, A. Schneider et al., Thin-film calorimetric H2O2 gas sensor for the validation of germicidal effectivity in aseptic filling processes, Sensors and Actuators B: Chemical, vol.154, issue.2, pp.257-263, 2011.
DOI : 10.1016/j.snb.2010.01.058

P. Mahbub, R. Wilson, P. Nesterenko, Y. Shuai, X. Junhui et al., Ultra-fast continuous-flow photo degradation of organic peroxide explosives for their efficient conversion into hydrogen peroxide and possible application A hydrogen peroxide sensor based on colloidal MnO 2 /Na-montmorillonite, Appl Clay Sci, vol.33, pp.35-42, 2006.

S. Reisert, B. Schneider, H. Geissler, M. Van-gompel, P. Wagner et al., in the ppm range, physica status solidi (a), vol.64, issue.5, pp.898-904, 2013.
DOI : 10.1002/pssa.201200930

J. Hennemann, C. Kohl, S. Reisert, P. Kirchner, and M. Schoning, Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations, physica status solidi (a), vol.155, issue.5, pp.859-863, 2013.
DOI : 10.1002/pssa.201200775

J. Wiedemair, H. Van-dorp, W. Olthuis, . Van-den, and A. Berg, Developing an amperometric hydrogen peroxide sensor for an exhaled breath analysis system, ELECTROPHORESIS, vol.19, issue.112, pp.3181-3186, 2012.
DOI : 10.1002/elps.201200218

D. Mcquade, A. Pullen, and T. Swager, Conjugated Polymer-Based Chemical Sensors, Chemical Reviews, vol.100, issue.7, pp.2537-2574, 2000.
DOI : 10.1021/cr9801014

Y. Fu, J. Yao, W. Xu, T. Fan, Z. Jiao et al., Schiff base substituenttriggered efficient deboration reaction and its application in highly sensitive hydrogen peroxide vapor detection, Anal Chem, vol.14, 2016.

F. Bohrer, C. Colesniuc, J. Park, I. Schuller, A. Kummel et al., Selective Detection of Vapor Phase Hydrogen Peroxide with Phthalocyanine Chemiresistors, Journal of the American Chemical Society, vol.130, issue.12, p.3712, 2008.
DOI : 10.1021/ja710324f

A. Verma, S. Saxena, G. Saini, V. Gaur, and V. Jain, Hydrogen peroxide vapor sensor using metal-phthalocyanine functionalized carbon nanotubes, Thin Solid Films, vol.519, issue.22, pp.8144-8148, 2011.
DOI : 10.1016/j.tsf.2011.06.034

A. Lukowiak and W. Strek, Sensing abilities of materials prepared by sol???gel technology, Journal of Sol-Gel Science and Technology, vol.75, issue.112, pp.201-215, 2009.
DOI : 10.1007/s10971-009-1952-z

K. Riwotzki and M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles, J Phys Chem B, vol.4, issue.102, pp.10129-10135, 1998.

G. Pan, H. Song, X. Bai, Z. Liu, H. Yu et al., Novel energy-transfer route and enhanced luminescent properties in YVO 4, Chem Mater, vol.3, issue.18, pp.4526-4532, 2006.

Z. Hou, P. Yang, C. Li, L. Wang, H. Lian et al., ) Nanofibers and Microbelts by Sol???Gel/Electrospinning Process, Chemistry of Materials, vol.20, issue.21, pp.6686-6696, 2008.
DOI : 10.1021/cm801538t

C. Wu, K. Chen, C. Lee, T. Chen, and B. Cheng, as a Potential Red-emitting PDP Phosphor, Chemistry of Materials, vol.19, issue.13, pp.3278-3285, 2007.
DOI : 10.1021/cm061042a

M. Abdesselem, M. Schoeffel, I. Maurin, R. Ramodiharilafy, G. Autret et al., Multifunctional Rare-Earth Vanadate Nanoparticles: Luminescent Labels, Oxidant Sensors, and MRI Contrast Agents, ACS Nano, vol.8, issue.11, pp.11126-11137, 2014.
DOI : 10.1021/nn504170x

URL : https://hal.archives-ouvertes.fr/hal-01102505

D. Casanova, C. Bouzigues, T. Nguyen, R. Ramodiharilafy, L. Bouzhir-sima et al., Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells, Nature Nanotechnology, vol.129, issue.9, pp.581-585, 2009.
DOI : 10.1038/nnano.2009.200

URL : https://hal.archives-ouvertes.fr/hal-00818493

N. Duée, C. Ambard, F. Pereira, D. Portehault, B. Viana et al., Selective Sensing Properties, Chemistry of Materials, vol.27, issue.15, pp.5198-5205, 2015.
DOI : 10.1021/acs.chemmater.5b01083

K. Aslan and C. Geddes, Microwave-Accelerated Metal-Enhanced Fluorescence:?? Platform Technology for Ultrafast and Ultrabright Assays, Analytical Chemistry, vol.77, issue.24, pp.8057-8067, 2005.
DOI : 10.1021/ac0516077

Y. He, Y. Zhong, F. Peng, X. Wei, Y. Su et al., One-Pot Microwave Synthesis of Water-Dispersible, Ultraphoto- and pH-Stable, and Highly Fluorescent Silicon Quantum Dots, Journal of the American Chemical Society, vol.133, issue.36, p.14192, 2011.
DOI : 10.1021/ja2048804

T. Huong, V. Tu, T. Anh, L. Vinh, and L. Minh, Fabrication and characterization of YVO4:Eu3+ nanomaterials by the micro-wave technique, Journal of Rare Earths, vol.29, issue.12, p.1137, 2011.
DOI : 10.1016/S1002-0721(10)60612-6

A. Huignard, T. Gacoin, and J. Boilot, :Eu Phosphors, Chemistry of Materials, vol.12, issue.4, pp.1090-1094, 2000.
DOI : 10.1021/cm990722t

A. Huignard, V. Buissette, A. Franville, T. Gacoin, and J. Boilot, :Eu Nanoparticles, The Journal of Physical Chemistry B, vol.107, issue.28, pp.6754-6759, 2003.
DOI : 10.1021/jp0342226

K. Riwotzki and M. Haase, :Eu Nanoparticles:?? Luminescence and Energy Transfer Processes, The Journal of Physical Chemistry B, vol.105, issue.51, pp.12709-12713, 2001.
DOI : 10.1021/jp0113735

S. Takeshita, H. Ogata, T. Isobe, T. Sawayama, and S. Niikura, Effects of Citrate Additive on Transparency and Photostability Properties of YVO[sub 4]:Bi[sup 3+],Eu[sup 3+] Nanophosphor, Journal of The Electrochemical Society, vol.157, issue.3, pp.74-80, 2010.
DOI : 10.1149/1.3276095

V. Buissette, D. Giaume, T. Gacoin, and J. Boilot, Aqueous routes to lanthanide-doped oxide nanophosphors, J. Mater. Chem., vol.16, issue.23???24, pp.529-539, 2006.
DOI : 10.1039/B508656F

C. Ambard, N. Duée, K. Vallé, D. Portehault, and C. Sanchez, Procédé de préparation d'une solution colloïdale de nanoparticules d'un oxyde de vanadium, 2014.