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Abstract — Some pioneering studies have shown the clinical feasibility of long bones evaluation using 1 

ultrasonic guided waves. Such a strategy is typically designed to determine the dispersion information of 2 

the guided modes to infer the elastic and structural characteristics of cortical bone. However, there are still 3 

some challenges to extract multimode dispersion curves due to many practical limitations, e.g., high 4 

spectral density of modes, limited spectral resolution and poor signal-to-noise ratio (SNR). Recently, two 5 

representative signal processing methods have been proposed to improve the dispersion curves extraction. 6 

The first method is based on singular value decomposition (SVD) with advantages of multi-emitter and 7 

multi-receiver configuration for enhanced mode extraction; the second one uses linear Radon transform 8 

(LRT) with high-resolution imaging of the dispersion curves. To clarify the pros and cons, a face to face 9 

comparison was performed between the two methods. The results suggest that the LRT method is suitable 10 

to separate the guided modes at low frequency-thickness-product (𝒇 ∙ 𝒉) range; for multimode signals in 11 

broadband 𝒇 ∙ 𝒉  range, the SVD-based method shows more robust performances for weak mode 12 

enhancement and noise filtering. Different methods are valuable to cover the entire 𝒇 ∙ 𝒉  range for 13 

processing ultrasonic axial transmission signals measured in long cortical bones. 14 

 15 

Keywords: Waveguides; Singular value decomposition; Linear Radon transform; Dispersion curves 16 

PACS: 43.60.Fg, 43.60.Gk, 43.80.Vj, 43.80.Jz, 43.80.Ev 17 
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 1 

I. INTRODUCTION 2 

In the past decade, significant progress has been achieved in quantitative ultrasound (QUS) assessment 3 

of cortical bone using axial transmission techniques 1,2. Such techniques are intended to osteoporotic 4 

fracture discrimination 3 or to fracture healing monitoring 4,5. Several axial transmission techniques have 5 

been explored using either one transmitter/one receiver 6, one transmitter/multiple-receiver 7, or 6 

multiple-transmitter/multiple-receiver configurations 8. Signal analysis developed for clinical applications 7 

are based on velocity measurement of a single signal, such as the first arriving signal (FAS) 6, or a slower 8 

second energetic wave which has been interpreted as the fundamental anti-symmetrical A0 Lamb mode 9 

based on plate model 7. If the cortical thickness is much smaller than the longitudinal wavelength, FAS can 10 

be seen as the S0 Lamb mode. If the cortical thickness is much larger than the longitudinal wavelength, the 11 

FAS corresponds to the non-dispersive lateral compression wave 7. In between, when the thickness is 12 

comparable to the wavelength (e.g., at 1 MHz, the wavelength in cortical bone is 3 to 4 mm), a physical 13 

interpretation of the FAS has yet to be provided. Besides FAS, reflection and conversion of ultrasonic body 14 

waves have been observed in the relatively thick bovine tibia ex vivo 9. 15 

Whereas the signal analysis techniques applied so far in axial transmission meet the need for simplicity 16 

and pragmatism, the corresponding biomarkers extracted from a single signal (either FAS or A0 mode) 17 

provide an incomplete biomechanical characterization of bone strength. Such a consideration has 18 

motivated the research aiming at fully characterizing the response of cortical long bones to an ultrasonic 19 

excitation. Particularly, considering that long bones actually support the propagation of multiple guided 20 

modes, several studies have shown interest in measuring and interpreting the dispersion curves of guided 21 

waves within a wideband frequency-wavenumber range 1,2. Measurement of dispersion curves, along with 22 

suitable waveguide modeling, has been proposed for concurrent estimation of cortical thickness and elastic 23 

properties 10-14. However, the extraction and accurate interpretation of the dispersion characteristics of 24 

guided modes propagating along the cortical shell of long bones pose difficulties, such as the high spectral 25 

density of modes, limited spectral resolution and poor signal-to-noise ratio (SNR).  26 

Particularly, because of the limited spatial sampling or resolution achievable in clinical measurements 27 

with clinical probes (typically a few cm-long array), the traditional two-dimensional (or spatio-temporal) 28 

Fourier transform (2D-FT) 15 cannot achieve a high wavenumber resolution for complete multimode 29 

separation 2. From guided signal processing point of view, several methods have been described to 30 

distinguish overlapped modes and to extract the corresponding dispersion curves. These include 31 

dispersion-based short-time Fourier transform 16, group velocity filtering 17, time-frequency representation 32 
18, warped frequency transform 19, time-frequency ridge extraction 20,21, dispersion compensation 22, blind 33 

identification 13, generalized warblet transform 23, adaptive Chirplet transform 24, orthogonality 34 

relation-based method 25 and compressed sensing method 26. Recently, two methods taking advantage of a 35 

multiple-transmitter/multiple-receiver implementation of axial transmission have been proposed, singular 36 

vector decomposition (SVD) 8,27 and linear Radon transform (LRT) 28,29.  37 

The SVD-based approach is able to significantly enhance the weak-amplitude modes by selecting the 38 

singular values and singular vectors corresponding to the signals and by filtering out the small singular 39 

values corresponding to the noise 8. This method, applied in vitro on radius specimens 14 and in vivo at the 40 

forearm10, has shown a good performance to estimate cortical thickness. The LRT method is widely known 41 

in seismic data processing 30,31. Taking advantage of the sparse inversion, the LRT methods are capable of 42 

achieving an energy focusing or so-called high-resolution dispersive energy imaging of the wave-packets 43 

whose arrival times are linearly dependent on the propagation path 32,33. The LRT methods have already 44 

been applied to study the surface-wave data for Rayleigh wave dispersive energy imaging 34. Recently, the 45 

high-resolution LRT method has been introduced to analyze the ultrasonic guided signals in long bone, and 46 
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was observed to provide enhanced resolution of the extracted dispersion curves in comparison to the 2D-FT 1 

method 28,29. 2 

While results on bone have been reported with SVD-based and LRT approach by different groups, the 3 

pros and cons as well as the applicability conditions of the two different signal processing techniques have 4 

not been thoroughly discussed. In this study, a face to face comparison is performed using SVD-based, 5 

LRT and the classical 2D-FT method. Synthetic and experimental signals on bone-mimicking phantoms 6 

and on ex-vivo human radius are analyzed.  7 

II. BRIEF REVIEW OF THE PROPOSED SIGNAL PROCESSING METHODS  8 

Typically, the frequencies used for the axial transmission measurement of long cortical bone are in the 9 

range between 50 kHz and 2 MHz and the typical cortical thickness of human radius and tibia are in the 10 

range between 1 to 6 mm approximately. According to the characteristics of the guided signals observed in 11 

different ranges of the frequency-thickness product (𝑓 ∙ ℎ), three representatives cases can be distinguished, 12 

as shown in Table 1: (1) low frequency-thickness product 𝑓 ∙ ℎ < 1 MHz·mm, corresponding to thin 13 

cortical bone about 1 mm to 4 mm (mainly for radius), where mainly two fundamental Lamb modes S0 and 14 

A0 are observed, (2) intermediate 𝑓 ∙ ℎ range (1 <𝑓 ∙ ℎ<6 MHz·mm) where multiple guided modes overlap 15 

without temporally separated wave-packets, and (3) high 𝑓 ∙ ℎ > 6 MHz·mm, corresponding to the thick 16 

cortical bone, e.g., tibia, which is mainly in the range of body waves propagation. 17 

Various signal processing techniques have been reported to identify and disentangle the overlapping 18 

modes for short axial propagation distances. Table II lists the different signal processing approaches 19 

proposed for axial transmission, together with a brief description of the methods and conditions of 20 

application.  21 

III. THEORY AND METHODS 22 

A. Guided Waves Dispersion 23 

Lamb modes in plates are classified as symmetric (S) and antisymmetric (A) modes, briefly named as 24 

𝑆𝑛  and 𝐴𝑛  modes (𝑛 = 0,1, 2, … ), which are solutions of the Rayleigh-Lamb equations 35,36. The 25 

dispersion curves can be expressed as wavenumber 𝑘 versus 𝑓 or 𝑓 ∙ ℎ.  26 

The 2D-FT provides a general relationship between the distance-time space (𝑥, 𝑡)  and 27 

frequency-wavenumber space  (𝑓, 𝑘).  28 

𝑆(𝑘, 𝑓) = ∬ 𝑔(𝑥, 𝑡)𝑒𝑗(𝑘𝑥−2𝜋𝑓𝑡)𝑑𝑥𝑑𝑡.                                                                        (1),

+∞

−∞

 29 

where 𝑔(𝑥, 𝑡 ) is the temporal signals recorded at a series of space positions x. The dispersion curves can 30 

thus be obtained by locating the wavenumbers at each frequency where the amplitude of 2D-FT result 31 

 𝑆(𝑘, 𝑓) reaches the maxima. 32 

With a given dispersion curve and an excitation signal, spectrum of the dispersive signal at distance 𝑥0 33 

can be computed by multiplying a phase-spectrum adjustment term 𝑒−𝑗𝑘(𝑓) 𝑥0 to the spectrum of excitation. 34 

The temporal waveforms can thus be obtained by using inverse Fourier transform to the phase-adjusted 35 

spectrum of excitation. Such a procedure provides us an efficient way to synthesize the temporal signal 36 

𝑔(𝑥, 𝑡) 22. 37 

B. Singular Value Decomposition-based Wavenumber Extraction 38 

The 3D multi-emitter and multi-receiver signals matrix is denoted as 𝑀(𝐸, 𝑥, 𝑡), where 𝑥 is the distance 39 

sampled by 𝑁𝑟 receivers, and 𝐸 denotes different emitters, 𝐸 = 1, 2, … , 𝑁𝑒. ℳ(𝐸, 𝑥, 𝑓) is the spectrum of 40 

𝑀(𝐸, 𝑥, 𝑡) in frequency domain. After the SVD decomposition of the 2D response matrix ℳ(𝐸, 𝑥, 𝑓 = 𝑓0) 41 
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at each frequency 𝑓0, we obtain two unitary matrices, i.e., an 𝑁𝑒 × 𝑁𝑒 matrix 𝑈 and an  𝑁𝑟 × 𝑁𝑟 matrix 𝑉, 1 

and an 𝑁𝑒 × 𝑁𝑟 rectangular matrix ∑ with the singular values as the diagonal entries 𝜎𝑖 (𝑖 = 1, … , 𝑁𝑒). 2 

The 𝑁𝑟 columns of 𝑉, i.e., 𝑣𝑖  (𝑖 = 1, … , 𝑁𝑟), are the reception singular vectors. At a particular frequency, 3 

only the first 𝑁𝑟𝑘 singular vectors 𝑣𝑖 associated with the most energetic singular values 𝜎𝑖 (𝑖 = 1, … , 𝑁𝑟𝑘) 4 

are retained as a basis of the received signal subspace. The wavenumber determination is then achieved by 5 

projecting a testing vector onto this basis.  6 

The testing vector is expressed as an attenuated spatial plane wave with a complex wavenumber 𝑘 + 𝑗𝛼 7 
27 8 

𝑣𝑡𝑒𝑠𝑡(𝑘, 𝛼) =
1

√ 𝑁𝑟

2𝛼𝐿 (1 − 𝑒−2𝛼𝐿)

𝑒−𝑗𝑘𝑥−𝛼𝑥                                                      (2a), 9 

Denominator term √
𝑁𝑟

2𝛼𝐿
(1 − 𝑒−2𝛼𝐿) is used to normalize 𝑣𝑡𝑒𝑠𝑡(𝑘, 𝛼)27. 𝛼 is the attenuation coefficient 10 

and in the study, a constant was adopted, i.e., 𝛼 = 0.05 𝑁𝑝 ∙ 𝑚𝑚−1. Such a value is close to the average 11 

attenuation coefficients of the low-order guided modes in the bone mimicking materials 27. With a constant 12 

attenuation coefficient, 𝑣𝑡𝑒𝑠𝑡(𝑘, 𝛼) is a function of 𝑘. 13 

At each frequency (𝑘0, 𝑓0), the projection of 𝑣𝑡𝑒𝑠𝑡 onto the 𝑁𝑟𝑘 first reception singular vector basis 14 

𝑣𝑖  (𝑖 = 1, … , 𝑁𝑟𝑘) yields the so-called Norm function 𝑆SVD(𝑘, 𝑓) 8 15 

𝑆𝑆𝑉𝐷(𝑘0, 𝑓0) = ∑ |⟨𝑣𝑡𝑒𝑠𝑡(𝑘0, 𝛼)| 𝑣𝑖(𝑓0)⟩|2

𝑁𝑟𝑘(𝑓0)

𝑖=1

                                            (2b),  16 

where ⟨𝑣𝑡𝑒𝑠𝑡(𝑘0, 𝛼)| 𝑣𝑖(𝑓0)⟩ is the Hermitian scalar product between the 𝑣𝑡𝑒𝑠𝑡(𝑘0, 𝛼) and 𝑣𝑖(𝑓0). Thus, at 17 

each frequency 𝑓0, the Norm function is a function of 𝑘 and the maxima correspond to wavenumbers of the 18 

guided waves presented in the received signals. 19 

Due to the normalized characteristics of the orthogonal basis, the values of Norm function range from 0 20 

to 1. This value can be interpreted as follows: if a guided mode exists in the signal, the corresponding Norm 21 

function value is close to 1; otherwise, the value is close to 0 8. Details of the SVD-based method and 22 

corresponding examples can be learned from 8,37. Note that the method can be adapted to achieve a more 23 

accurate dispersion extraction when the cortical thickness is not uniform but with linear changes in the 24 

direction of wave propagation 38. 25 

C. Linear Radon Transformation based Wavenumber Extraction 26 

For convenience of the inversion problem, the LRT is usually formulated as the forward relationship 27 

between the (𝑥, 𝑡) and the Radon domain. Let 𝑔(𝑥, 𝑡) represent a distance-time matrix measured by single 28 

emitter and 𝑁𝑟 receivers. The LRT can be defined using the following equation 30,31 29 

𝑔(𝑥, 𝑡) = ∫ 𝑤(𝑝, 𝜏 = 𝑡 − 𝑝𝑥)𝑑𝑝

𝑝

                                                                         (3), 30 

where 𝜏  and 𝑝 denote the intercept time and slope parameter or phase slowness, respectively; 𝑤(𝑝, 𝜏 =31 

𝑡﹣𝑝𝑥) designates the signal in the (𝜏, 𝑝) domain. The LRT is commonly named as 𝜏‐ 𝑝 transform or slant 32 

stack.  33 

Equation (3) can be rewritten in frequency domain as 28,31 34 
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𝐺(𝑥, 𝑓) = ∫ 𝑊(𝑝, 𝑓)𝑒−𝑗2𝜋𝑓𝑝𝑥𝑑𝑝

𝑝

                                                                      (4). 1 

Using matrix notation, we have  2 

𝐺 = 𝐿𝑊                                                                                        (5), 3 

The 𝑁𝑟 × 𝑁𝑝 linear operator 𝐿 is  4 

𝐿 =  [
𝑒−𝑗2𝜋𝑓𝑝1𝑥1 … 𝑒−𝑗2𝜋𝑓𝑝𝑁𝑝𝑥1

⋮ ⋱ ⋮

𝑒−𝑗2𝜋𝑓𝑝1𝑥𝑁𝑟 … 𝑒−𝑗2𝜋𝑓𝑝𝑁𝑝𝑥𝑁𝑟

]         𝑝 =  𝑝1, 𝑝2, … , 𝑝𝑁𝑝
                                               (6), 5 

where 𝑁𝑝 is the number of the slowness sampling points.  6 

A penalized least-squares (LS) solution to Eq. (5) has been introduced by minimizing the following cost 7 

function 31,32  8 

𝐽 = ‖𝐺 − 𝐿𝑊‖2
2  + 𝜇𝑄(𝑊)                                                                     (7), 9 

where the Lagrange multiplier 𝜇, also referred as regularization hyperpameter 39, determines the trade-off 10 

between the misfit term ‖𝐺 − 𝐿𝑊‖2
2 describing the data fidelity and the penalty term 𝑄(𝑊) in Radon 11 

domain.  12 

A typical implementation of the penalty term is to use the quadratic 𝑙2-norm, i.e., 𝑄(𝑊) = ‖𝑊‖2
2. So 13 

that, the LS solution can be analytically obtained as 14 

�̃� = (𝐿𝐻𝐿 + 𝜇𝐼)−1𝐿𝐻𝐺                                                                      (8). 15 

where 𝐿𝐻 is the complex-conjugate transpose of 𝐿. It should be noticed that 𝐿𝐻𝐿 is not a unitary matrix. 16 

The 𝑊(𝑝, 𝑓)  in the Radon field can be readily mapped to the (𝑘, 𝑓)  domain via 𝑘 = 2𝜋𝑓𝑝  28. The 17 

dispersion curves can also be obtained from |𝑆𝐿𝑅𝑇(𝑘, 𝑓) |2 by using LRT method. 18 

If certain non-quadratic terms, which enable to quantify the amount of sparsity of a vector, are adopted 19 

as the penalty terms, then we can focus the signal energy on the “best” subspace of the solution spaces. That 20 

is actually the sparse solution leading to the high-resolution LRT method. Therefore, the penalty term 21 

actually controls the high resolution constraints and also indicates the sparsity of the results. Two typical 22 

non-quadratic penalty terms, i.e., 𝑙1-norm 𝑄(𝑊) = ‖𝑊‖1  and Cauchy norm, are usually adopted for 23 

achieving sparsity. The Cauchy norm penalty term is defined as 33 24 

𝑄(𝑊) =  ∑ 𝑙𝑛[1 + 𝑊(𝑝𝑖, 𝑓)/𝜀2]                                                              (9). 

𝑁𝑝

𝑖=1

 25 

where the scale factor of the Cauchy distribution 𝜀2 actually indicates the default power in absence of 26 

hyperbolic events33. According to the discrepancy principle, a proper 𝜀2 value should be selected to ensure 27 

that the misfit matches the power of noise 40. The one-dimension Brent parabolic interpolation method has 28 

been used to compute the epsilon 40,41. It is fixed as a constant 𝜀 = 0.8 in 29. In the study, 𝜀 = 1  was used 29 

for the Cauchy LRT computation. Although there is no analytical solution to high-resolution LRT, it can be 30 

solved efficiently by conjugate gradient technique. Details of that can be found in literature 39,40. 31 

The trade-off curve, so-called L-curve 42, is usually applied for empirical optimization of the 𝜇 value for 32 

the penalized LS-LRT and high-resolution LRT method. A small hyperparameter 𝜇  value leads to a 33 

solution with minimized misfit term but with less energy focusing; conversely, a larger 𝜇 value can achieve 34 

a high resolution by emphasizing the regularization term. For simplicity and methodology comparison, a 35 
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fixed value of trade-off 𝜇 = 0.05 were used for the results presented in Section IV. Detailed discussion of 1 

trade-off parameter using L-curve can be found in Section V(1). 2 

D. Experiments 3 

Experiments are achieved using an array transducer consisting in 5 emitters and 24 receivers (Vermon, 4 

Tours, France) associated with a specific driving electronic device (Althaïs, Tours, France). The pitch of 5 

the array transducer is 0.8 mm and the length and width of each rectangular element are 0.8 mm and 8 mm, 6 

respectively. The central frequency is 1 MHz and the ‐6 dB bandwidth goes from 0.5 to 1.6 MHz10.  7 

For case II in Table I, experiments are carried out in two phantoms, i.e., a 4 mm-thick bone-mimicking 8 

material (Sawbones, Pacific Research Laboratory Inc, Vashon, WA) and 2.5 mm-thick ex-vivo human 9 

radius. A 25.5 mm-thick polymethylacrylate (PMMA) plate is also measured for case III in Table 1. 10 

Ultrasound gel (Aquasonic, Parker Labs, Inc, Fairfield, NJ) is used to ensure the coupling between the 11 

probe and the sample. The characteristics of the specimens are listed in table III. 𝑉𝑇  is the shear velocity, 12 

and 𝑉𝐿‖, and 𝑉𝐿⊥ are the pure compression bulk wave velocities in the direction parallel and normal to the 13 

direction of the fibers (bone-mimicking material) or to the long axis of the bone (human radius). The 14 

density and thickness are denoted by ρ and h. Typical values for human radius density, shear and 15 

longitudinal velocity, derived from the literature, are used for computation of the theoretical dispersion 16 

curves of the 2D transverse isotropic free plate model 14. The average thickness of the human radius 17 

specimen was obtained by X-ray computed tomography (XtremCT, Scanco Medical, Bruttisellen, 18 

Switzerland). 19 

IV. RESULTS 20 

A. Synthetic signals, narrow wavenumber-band Lamb modes S0 and A0 21 

This example corresponds to case I in Table I. Two fundamental narrow k-band (0 < 𝑘 ≤ 2 𝑟𝑎𝑑 ∙22 

𝑚𝑚−1 ) Lamb modes A0 and S0 on a 2 mm-thick bone-mimicking plate were synthesized with 23 

peak-to-peak amplitudes of 1 and 0.3, respectively (see Fig. 1a). A Gaussian random noise was added with 24 

SNR of 30dB. The SNR is defined as the ratio of the power of the signal and that of the noise. Fig. 1b 25 

presents the 2D-FT results in the (𝑘, 𝑓) domain. After SVD decomposition, the singular values were 26 

normalized in dB scale. Those singular vectors associated with singular values above the threshold 21dB 27 

were remained as the signal subspaces and the rest were filtered out as noise (see Fig. 7a ). The SVD result 28 

is depicted in Fig. 1c. Fig. 1d is the (𝜏, 𝑝) result obtained by LRT with  𝑙2-norm. Since there is a large 29 

velocity difference between the S0 and A0 modes (see Fig. 1a), they are projected as two separate regions 30 

in the (𝜏, 𝑝) domain (Fig. 1d). As shown in Figs. 1e-f, the high-resolution LRT results using 𝑙1-norm and 31 

Cauchy norm are able to significantly concentrate the 𝑘﹣𝑓 energy of the narrow wavenumber-band and 32 

S0 and A0 modes. The colors of the 𝑘﹣𝑓 and 𝜏﹣𝑝 energy distribution present the mode energy with 33 

highest values in red and lowest values in blue.  34 

B. Phantom signals 35 

 (1) Wide wavenumber-band and multiple guided modes 36 

This example corresponds to case II in Table I. Figure 2 presents the experimental signals measured in a 37 

4 mm-thick bone-mimicking plate. Fig. 2a is the distance-time diagram of the array-signal. As shown by 38 

the 2D-FT and SVD 𝑘﹣𝑓 results (Figs. 2b-c), the detectable wavenumber dispersion is in the range of 0 <39 

𝑘 < 4  𝑟𝑎𝑑 ∙ 𝑚𝑚−1 with more than 5 modes. The experimental SNR is around 60dB. Those singular 40 

vectors associated with singular values higher than an heuristic threshold of 20dB were remained as the 41 

signal subspaces and the rest were filtered out as noise. Fig. 2d plots the 𝑙2-norm-based energy distributions 42 

in the (𝜏, 𝑝) domain. Figs 2e-f depict the high-resolution LRT results of the multimode energy distribution 43 

in  𝑘﹣𝑓 field using 𝑙1-norm and the Cauchy norm.  44 
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Compared with the 2D-FT method, using the SVD-based method, the multimode dispersion curves can 1 

be identified with an enhancement of the weak modes, e.g., A0, A1, S0, S4 etc., and also the low-amplitude 2 

S0 and A1 mode energy in wavenumber range of 3 < 𝑘 < 4 𝑟𝑎𝑑 ∙ 𝑚𝑚−1. In Fig. 2d, the LRT method can 3 

obtain a projection in the (𝜏, 𝑝) domain with focused energy points. But as shown in Figs. 2e-f, the 4 

concentrated region in the (𝜏, 𝑝) domain only represents the strong modal energy close to the center 5 

frequency, which actually cannot lead to an effective reconstruction of the dispersion trajectories of the 6 

weak modes. For example, the A0, A1 and S4 modes, whose energy is far from the center frequency of the 7 

probe, are not clearly depicted on the LRT results. 8 

 (2) Body waves 9 

This example corresponds to case III in Table I. A 25.5 mm-thick PMMA plate was measured to obtain 10 

the signals mainly consisting of ultrasonic body waves. The experimental SNR is as the previous example 11 

around 60dB. As ultrasonic body waves have been investigated in a 6.5 mm-thick bovine bone ex vivo 9, 12 

such a very-thick plate is also prepared to clarify the performance of the two methods in the high 𝑓 ∙ ℎ 13 

range. It should be noted that 25.5 mm-thick waveguides are unlikely to be encountered in human cortical 14 

bone whose thickness varies from less than a millimeter to a few millimeters at best.  15 

Different from the highly dispersive guided modes in the thin plates (Table I, case II), in a thick plate, 16 

there mainly exist body waves propagating as temporally separated wave-packets. As shown in Fig. 3a, 17 

there are five different wave-fronts in the distance-time diagram with different ray paths. Pd and Sd 18 

represent the longitudinal and shear waves axially propagating along the plate surface. PrP and SrS 19 

correspond to the first reflection of the longitudinal and shear waves on the bottom wall. PrS corresponds to 20 

the longitudinal-to-shear wave conversion when the P wave is reflected on the bottom surface of the plate. 21 

The markers on Fig. 3a were computed according to the distance-velocity relationship. Figs. 3b-c are the 22 

2D-FT and SVD 𝑘﹣𝑓 results, respectively. After projecting the array-signal from distance-time domain to 23 

Radon field, accurate slowness and amplitude of each wave-packet can be obtained from those energy 24 

focusing maxima in τ-p domain, which is convenient for detecting the components with different ray paths. 25 

Furthermore, such a slant-stack operator is very suitable to detect the weak components (see Fig. 3d). 26 

However, as shown in Figs. 3e-f, for the signals measured in high 𝑓 ∙ ℎ range, there is still no evidence that 27 

the 𝑙1-norm and Cauchy norm LRT method can improve the k-f resolution for better dispersive energy 28 

imaging. The SVD-based method still provides a result with best dispersion energy extraction in 𝑘﹣𝑓 29 

domain.  30 

C. Ex vivo guided signals analysis in a human radius 31 

This example corresponds to case II in Table I. The guided signals measured from an ex-vivo 2.5 32 

mm-thick human radius can be seen in Fig. 4a. Figs. 4b-c are the 2D-FT and SVD 𝑘﹣𝑓  results, 33 

respectively. Fig. 4d is the multimode energy distributions in the (𝜏, 𝑝) domain using the  𝑙2-norm LRT 34 

method. The experimental SNR is around 55dB (see Fig. 7b). The threshold of singular values is 20dB. 35 

Figs. 4e-f show the 𝑘﹣𝑓 energy distribution obtained by 𝑙1-norm and Cauchy norm high-resolution LRT 36 

methods. Comparing with the LRT and 2D-FT method, SVD-based method is capable of detecting the 37 

noise polluted A0 and S0 mode and also part of A1, A2, S1 and S2 modes in wideband frequency-thickness 38 

range. Similar to the 4 mm-thick phantom signals (Fig. 2), because of high dispersive characteristics, the 39 

wideband guided modes in the human radius cannot be readily separated and enhanced in the Radon field. 40 

The resolution improvement of the fundamental A1, S1 and S2 modes can be observed close to center 41 

frequency bandwidth in Fig. 4e using the  𝑙1-norm LRT method, but for the relatively weak and wideband 42 

modes, e.g., A0, A2 and S0, the LRT cannot provide sufficient mode enhancement. As shown in Fig. 4f, 43 

due to the improper value of the regularization parameter, it seems that the Cauchy norm LRT method 44 

enforces the results with “all-zero” solution. The reason of that will be discussed in Section V. 45 
  46 
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V. DISCUSSION 1 

In this study, we performed a face to face comparison between two signal processing approaches, 2 

namely the SVD-based and LRT method, which have been recently proposed to extract the dispersion 3 

curves of guided waves transmitted in long bone. To this goal, the methods were applied to synthetic 4 

signals and experimental signals recorded on a bone-mimicking plate and on a human radius ex vivo. 5 

A. Parameter optimization of the LRT and SVD-based method 6 

The hyperparameter 𝜇 of the LRT methods, which controls the trade-off between data fidelity and mode 7 

energy concentration (or sparseness), can be heuristically determined by the L-curve. The optimal value of 8 

hyperparameter, usually determined on the “elbow” of L-curves, actually corresponds to the maximal 9 

curvature point where the misfit and penalty terms are minimized together 28,42. For the SVD-based method, 10 

a SNR threshold is used to selectively separate the noise and signal spaces.  11 

 (1) Hyperparameter μ of the LRT method 12 

It has been observed in Section IV that for case I in Table 1, the LRT methods provide similar 𝑘﹣𝑓 13 

dispersion loci as 2D-FT method; but for cases II and III, the over-sparse solutions of k-f energy 14 

distributions are readily to be obtained when using the high-resolution LRT methods. To clarify the reason 15 

of that, the L-curves are investigated for case I: synthetic signals of narrow wavenumber-band Lamb modes 16 

A0 and S0 on a 2 mm-thick phantom plate (Fig. 5) and for case II: 2.5 mm-thick human bone ex vivo (Fig. 17 

6). Strictly speaking, the hyperparameter μ needs to be optimized as a function of f, slowness, penalty term 18 

and misfit term. Therefore, different L-curves at different frequencies are shown at 3D space of μ, penalty 19 

term and misfit term. The optimal values of μ parameter are searched from 2−15  to 27  in different 20 

bandwidths of the interest.  21 

As shown in Fig. 5, for the narrowband case, the L-curves are computed with the slowness range of 0 <22 

𝑝 <2.56  𝜇s ∙ 𝑚𝑚−1 and frequency 0.1 < 𝑓 <0.7 MHz. A group of stable L-curves is obtained with values 23 

of the hyperparameter 𝜇 =  0.001,  0.001 and  0.015 for 𝑙2-norm, 𝑙1-norm and Cauchy norm, respectively. 24 

Thus, for Case I (see Fig. 1), both high resolution and noise filtering can be achieved using LRT methods 25 

with a fixed μ value for all frequencies.  26 

The L-curves obtained from the signals of a 2.5 mm-thick human bone ex vivo (case II) are depicted in 27 

Fig. 6, with the slowness and frequency ranges of 0 < 𝑝 <2.56  𝜇s ∙ 𝑚𝑚−1  and 1.1 < 𝑓 <1.6 MHz. 28 

According to the L-curves, small hyperparameter values of 𝜇 < 1  are still preferable for this case. 29 

However, different from Fig. 5, even using such a small 𝜇 value, most of the penalty terms are still obtained 30 

with the values below 0.01, which actually indicates the “all-zero” solutions. Such a result explains why in 31 

Fig. 4, mode enhancement cannot be achieved by using the LRT methods in bandwidth of 1.1 < 𝑓 < 1.6 32 

MHz.  33 

 (2) SNR threshold of the SVD-based method 34 

The performance of the SVD-based method mainly depends on the singular value selection, which can 35 

be optimized by a SNR threshold. Fig. 7 presents the 5 singular values 𝜎𝑖 as functions of the frequency in 36 

dB scale, where the signals are obtained in (a) case I: synthetic signals, narrow wavenumber-band Lamb 37 

modes A0 and S0 on a 2 mm-thick Sawbones plate (see Fig. 1), and (b) case II: 2.5 mm-thick human bone 38 

ex vivo (see Fig. 4). Our typical experimental signals are recorded with general SNR around 60 dB, but for 39 

some low-amplitude modes, the SNR can be less than 10 dB, for example, the 𝜎4(𝑓) in dash line between 40 

0.5 MHz and 1 MHz (Fig. 7b). It can be found that in both cases, SNR thresholds can be heuristically 41 

determined from the 𝜎𝑖 functions. 42 

 B. Application Condition 43 

For guided signals measured on a relatively large reception length (> 50 mm), the 2D-FT method is able 44 

to characterize the dispersion curves of several fundamental Lamb modes, e.g., S0, A0 and S1 in the plate 45 
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model, or longitudinal guided modes, e.g., L(0,1), L(0,2), and L(0,3) in the cylindrical model 43,44. However, 1 

the limited spatial sampling achievable with clinical probes (typically a few cm-long transducer arrays) 2 

results in a poor wavenumber resolution with the consequence that only high-amplitude and 3 

non-overlapped modes can be readily identified using the classical 2D-FT method. Such a limitation of the 4 

2D-FT method can be improved by using the LRT methods and SVD-based method. However, different 5 

application conditions of the two methods should be taken into account. 6 

 (1) LRT methods 7 

The merits of the LRT methods originate from the theory of the Radon transform. The linear-path 8 

functions, i.e., wave-packets in rays, can be projected to the Radon domain as different energy foci along 9 

the linear slant-stack operator. Furthermore, the inversion based sparse technique, so-called high-resolution 10 

LRT method, can be employed to sharpen the 𝜏﹣𝑝 and 𝑘﹣𝑓  resolution. As a result, only the less 11 

dispersive modes with clear temporal rays can be concentrated as foci by using high-resolution LRT 12 

methods with sparsity.  13 

For case I (see Fig. 1), if the wave-packets actually propagate at significantly different velocities and if 14 

the temporal overlapping is mainly caused by the short propagation distance instead of dispersion, then the 15 

modes can be perfectly separated by the slowness range selection in the Radon domain. Furthermore, 16 

considering the reversibility of the LRT method between (𝑘, 𝑓) and (𝑥, 𝑡) fields, the LRT method is 17 

capable of providing another good solution to separate some narrowband modes, for example, to extract the 18 

slowest fundamental A0 modes in long bone 29. The extraction of A0 mode in 𝜏﹣𝑝 field might be more 19 

efficient than the temporal wave-packets extraction using the so-called group velocity mask filtering 45.  20 

However, for case II (Figs. 2 and 4), i.e., wideband multimodal signals with high attenuation and 21 

dispersion, it has been shown that the LRT methods can only enhance the resolution of some 22 

high-amplitude modes close to the center frequency of the probe, which actually fails to achieve a 23 

wideband dispersion curves extraction. 24 

For case III (Fig. 3), the axial transmission signals, measured from the 25.5 mm-thick PMMA plate, 25 

mainly consist of non-dispersive body waves, which are similar to the seismic signals measured from the 26 

large-scale media with multiple ray-paths. The LRT methods are able to extract the individual temporal 27 

wave-packets propagating along different paths, even for the reflected signals with low amplitudes. The 28 

slowness of each wave-packet can be directly read from the τ-p domain. The results suggest that the LRT 29 

methods are suitable for extracting FAS 6 and other multipath body waves 9 in the long bone.  30 

A beamforming and angle steering strategy at the emission stage can be used to obtain the ultrasonic 31 

guided modes with narrowband phase velocity spectrum leading to relatively clear ray contributions in the 32 

distance-time diagram 46. For instance, the phase velocities of the multimode signals are approximately in a 33 

range of 3 to 5  𝜇s ∙ 𝑚𝑚−1 28. In such case, although mode dispersion and temporal overlapping exist, 34 

because of the presence of relatively clear rays for the different modes, the high-resolution LRT method 35 

can still be used to improve the resolution of 𝑘﹣𝑓 dispersion curves imaging. However, without enough 36 

enhancement of the low-amplitude modes, the LRT methods usually provide identical maxima loci in 37 

comparison to 2D-FT. Regarding the identification of those modes with high dispersion and weak 38 

amplitude in wide 𝑘﹣𝑓 ranges, e.g., S1 and S2 modes in Fig. 4, some improvements are still necessary. 39 

We found that (1) the high-resolution LRT methods can enhance the 𝑘﹣𝑓 resolution of some modes 40 

with narrow velocity range, e.g., two fundamental Lamb modes (S0 and A0) in Figs.1 e-f and S0, A0 and 41 

A1 and S1 modes in Fig. 4e; (2) in contrast, for wideband highly-dispersive and low-amplitude modes, it is 42 

still challenging to concentrate 𝑘﹣𝑓 trajectories using the LRT methods, e.g., for guided waves signals in 43 

Figs. 2 and 4 corresponding to case II. The sparse assumption of the Radon projection of the linear events in 44 

the (𝑥, 𝑡) field is well satisfied when different wave-packets propagate at constant velocities (Fig. 3 case 45 
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III). For the multimode signals with severe dispersion, the assumption is valid, when there are still clear 1 

linear events in (𝑥, 𝑡) domain, for instance, signals with only S0 and A0 modes in Fig. 1 (case I) and some 2 

seismic data presented in 34,47,48. However, for case II, both the dispersion and short propagation distances 3 

of a few centimeters are responsible for modes overlapping for wavenumbers ranging from 0 to 5 𝑟𝑎𝑑 ∙4 

𝑚𝑚−1 10,28,29. As a consequence, there is no clear linear events observed in the wideband multimode 5 

signals (see Figs. 2 and 4), so that the low-amplitude signals cannot be effectively enhanced by using the 6 

slant-stack operator of the LRT methods. Such a challenge causes the inefficiency of the sparse penalty 7 

term, i.e., norm of the 𝑊(𝑝, 𝑓), involved in the LRT methods (Fig. 6). It could explain the difficulties 8 

during our application of the LRT methods for extracting the wideband dispersion curves, in particular for 9 

the low-amplitude multimode signals under a poor SNR (case II Figs. 2 and 4). 10 

 (2) SVD-based method 11 

For both narrowband (case I) and wideband (case II) guided signals, the multi-emitter and 12 

multi-receiver configuration combined with the singular vectors selection strategy of the SVD allows 13 

achieving a stable performance for noise filtering and extraction of the dispersion curves.  14 

C. Other Potential Approaches and Improvements 15 

Many classical spectra estimation methods 49, such as the Burg method or the multiple signal 16 

classification method (MUSIC), can be used to achieve high-resolution wavenumber estimation. Recently, 17 

sparse methods have been introduced for dispersion curves extraction. Harley et al. 26 have proposed a 18 

compressed-sensing-based sparse wavenumber method for the recovery of the dispersion curves. These 19 

authors showed that the sparse penalty regularization can be directly performed using the wavenumber 20 

penalty. Such a sparse strategy in the (𝑘, 𝑓) field may be more efficient and convenient. Currently, the 21 

sparse wavenumber extraction method proposed by Harley et al. has been verified on aluminum metal 22 

plates 26. The practical challenge encountered with axial transmission in cortical bone is to efficiently 23 

enhance the weak modes under the conditions of severe broadband overlapping (more than 5 modes in 24 

some frequency band, see Fig. 4). The sparse singular value decomposition (S-SVD) technique, i.e., an 25 

improved SVD-based method by using the sparse strategy in (𝑘, 𝑓) rather than the (𝜏, 𝑝) domain, may 26 

significantly overcome the limitation of poor wavenumber resolution 37,50. Other improvements for 3D 27 

multi-emitter and multi-receiver space-time signal processing, e.g., high-dimensional seismic data 28 

processing 51, might be also helpful for guided waves dispersion analysis, but the application has not been 29 

reported in community of ultrasonic bone evaluation to date. In addition, other guided modes excitation 30 

technology, e.g., coded excitation52-54 and wideband dispersion reversal method55 etc., can also be helpful 31 

to enhance the SNR of the ultrasonic axial transmission signals in the long cortical bone. 32 

Generally speaking, in order to interpret the relatively complex guided signals, the signal processing 33 

methods should be robust enough to allow the wideband dispersion curve extraction and the low-amplitude 34 

mode detection. By retaining the singular values above noise level, the SVD-based method significantly 35 

enhances the weak mode extraction when they are poorly detected by the 2D-FT method and LRT methods. 36 

In this sense, the SVD-based method could be more suitable for signal processing of the ultrasonic guided 37 

waves in the long bone, especially for highly dispersive wideband signals, in presence of severe attenuation 38 

and low SNR.  39 

VI. CONCLUSION 40 

Different signal processing methods are necessary to cover the entire cortical bone thickness range of 41 

the human long bone. The LRT methods have the advantage of the reversibility between (𝜏, 𝑝) and (𝑥, 𝑡) 42 

fields showing a good ability to separate modes with large velocity difference, which is suitable for data 43 

analysis of ultrasonic guided waves at low 𝑓 ∙ ℎ range (𝑓 ∙ ℎ < 1 MHz ∙ 𝑚𝑚), e.g., signals consisting of two 44 

fundamental modes S0 and A0 with a large velocity difference presented in the study (Fig. 1). For the 45 

highly dispersive multimode signals in a broadband 𝑓 ∙ ℎ range (0<𝑓 ∙ ℎ < 6 MHz ∙ 𝑚𝑚), which are quite 46 



J. Acoust. Soc. Am. 140 (3), September 2016                                                     Xu et al.: Dispersion Curves Extraction of Guided Waves 12 

 

usual in the axial transmission measurement of the human long bone (Figs. 2 and 4), the SVD-based 1 

method shows more robust performances for weak mode enhancement and noise filtering. Finally, 2 

regarding computation time, the SVD-based method can be accomplished efficiently without any iterations, 3 

but the  𝑙1-norm and Cauchy norm LRT methods are relatively time-consuming due to the reweighting 4 

strategy at each frequency.  5 

Future work will be to improve the resolution of the SVD method using the sparse strategy, i.e., recently 6 

proposed S-SVD method 37,50, which may achieve a high-resolution extraction of the dispersion curves of 7 

ultrasonic guided waves. 8 
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List of tables: 1 

Table I. Characteristics of ultrasonic signals in the long cortical bone at different 𝒇 ∙ 𝒉 ranges 2 

frequency-thickness 

product (𝑓 ∙ ℎ) (MHz ∙
𝑚𝑚) 

Case I Case II Case III 

𝑓 ∙ ℎ < 1 1 < 𝑓 ∙ ℎ < 6 6 < 𝑓 ∙ ℎ 

Signal characteristics 1. Two fundamental 

guided modes are 

measured, i.e., a small 

amplitude and fast 

wave-packet 

(symmetric S0) and a 

high amplitude and 

slow wave-packet 

(asymmetric A0);  

2. Speed values are 

different enough so that 

the two wave-packets 

do not overlap in time 

even for relatively short 

propagation distances 

(a few cm).  

3. The dispersion 

information of the 

lateral arrival A0 mode 

can be used to estimate 

cortical thickness 11,56. 

1. Under the wideband 

excitation, more than 

5 guided modes with 

overlapping velocity 

ranges; 

2. For the relatively 

short propagation 

distances (a few cm) 
8,12,18,44,57, a complete 

dispersion extraction 

of the overlapping 

multimode is still 

challenging. 

1. Similar to many 

geophysical 

applications, mainly 

body waves with 

linear ray paths 9; 

2. FAS is the lateral 

wave propagating at 

the bulk compression 

velocity 7,58;  

3. Velocities of S0 and 

A0 modes converge 

to the Rayleigh 

velocity. Velocities of 

other guided modes 

converge to the shear 

velocity 35. 

  3 
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Table II. Signal processing methods for assessment of the long cortical bone using axial transmission 1 

frequency-thickness 

product (𝑓 ∙ ℎ) (MHz ∙
𝑚𝑚) 

Case I: Low range Case II: Middle range Case III: High range 

𝑓 ∙ ℎ < 1 1 < 𝑓 ∙ ℎ < 6 6 < 𝑓 ∙ ℎ 

S
ig

n
al

 p
ro

ce
ss

in
g

 m
et

h
o
d
s 

2D-FT 15 1. Separation of several 

low-order modes from 

narrowband signals 

measured in bovine bone 

ex vivo.43,44 

N/A N/A 

SVD 8 1. Enhancement of weak modes; 

2. Applicable to extract dispersion curves from 

wideband guided wave signals without a priori 

knowledge; 

3. Extraction of wideband attenuation for each guided 

mode 27; 

4. Bone-mimicking phantoms 38,59,60, ex vivo 14 and in 

vivo measurements of human bones10.  

N/A 

High-resolution 

LRT 32 

1. High-resolution solution of the mode trajectories 

basing on a linear slant stack of the distance-time 

data 28,29; 

2. Cervine tibiae 28 with narrow k-band angle beam 

excitation; 

3. Extraction of the slowest A0 mode from wideband 

multimode signals in bovine femur in vitro 29. 

1. Thick bones, e.g., 

tibia, have not been 

tested yet, 

2. General acceptance in 

seismic field for 

multichannel 

processing of signals 

with ray 

characteristics in 

distance-time domain 
39. 

Group velocity 

mask filtering 45 

1. Bone-mimicking 

phantoms 61, ex vivo 

human long bones 17,56; 

2. Extraction of A0 mode 

component from 

narrowband guided 

waves signals. 

N/A N/A 

Time-frequency 

extraction 62 

1. Wideband A0 mode separation without a prior 

velocity knowledge. 

2. Ex-vivo measurement of bovine tibiae 20,44 and of 

human long bone 11. 

N/A 

Joint 

approximate 

diagonalization 

of 

eigen-matrices 

(JADE) method 
63 

N/A 1. Blind identification, 

has been used to 

separate the 

narrowband guided 

waves for cortical 

thickness 

determination of 

bovine tibiae 13. 

N/A 

N/A: to the best knowledge of the authors, it has not been reported in the literatures of cortical bone guided waves 2 

processing.  3 

 4 
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Table III. Shear and longitudinal velocities, density and thickness of the specimens used in experiments 1 

Specimens ρ (𝑔 ∙ 𝑐𝑚−3) h (mm) 𝑉𝑇 (𝑚𝑚 ∙ 𝜇𝑠−1) 𝑉𝐿(𝑚𝑚 ∙ 𝜇𝑠−1) 

Bone-mimicking plate 27 1.64 4  1.62 (𝑉𝐿‖, 𝑉𝐿⊥) = (3.57, 2.91)  
PMMA 27 1.18 25.5  1.37 2.7 

Human radius specimen 14 1.85 1.58 1.8 (𝑉𝐿‖, 𝑉𝐿⊥)  = (4.0, 3.41) 

 2 

  3 
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List of figure captions:  1 

 2 

Fig. 1. (color online) Synthetic signals, narrow wavenumber-band Lamb modes A0 and S0 on a 2 3 

mm-thick Sawbone plate with peak-to-peak amplitudes of 1 and 0.3, and SNR of 30dB, (a) 4 

distance-time diagram of the array-signals, (b) 2D-FT 𝑘﹣𝑓 result, (c) SVD 𝑘﹣𝑓 result, (d) the 𝜏﹣𝑝 5 

energy distributions obtained by LRT with 𝑙2 -norm, and 𝑘﹣𝑓  results obtained by LRT with 6 

high-resolution regularization strategies, i.e., (e) 𝑙1-norm, (f) Cauchy norm, respectively. 7 

  8 
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 1 

 2 
Fig. 2. (color online) Experimental signals measured in a 4 mm-thick bone-mimicking plate, (a) 3 

distance-time diagram of the array-signals, (b) 2D-FT 𝑘﹣𝑓 result, (c) SVD 𝑘﹣𝑓 result, (d) the 𝜏﹣𝑝 4 

energy distributions obtained by LRT with 𝑙2-norm, and 𝑘﹣𝑓 results obtained by LRT with high 5 

resolution regularization strategies, i.e., (e) 𝑙1-norm, (f) Cauchy norm, respectively.  6 

  7 
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 1 

 2 

Fig. 3. (color online) Experimental signals measured in the 25.5 mm-thick PMMA plate, (a) 3 

distance-time diagram of the synthetic array-signals, (b) 2D-FT 𝑘﹣𝑓 mode energy distribution, (c) 4 

SVD k-f mode energy distribution, (d) the 𝜏﹣𝑝 energy distributions obtained by LRT with  𝑙2-norm, 5 

and 𝑘﹣𝑓 energy distributions obtained by LRT with high resolution regularization strategies, i.e., (e) 6 

 𝑙1-norm, (f) Cauchy norm, respectively. 7 

  8 



J. Acoust. Soc. Am. 140 (3), September 2016                                                     Xu et al.: Dispersion Curves Extraction of Guided Waves 22 

 

 1 

 2 

Fig. 4. (color online) Experimental guided signals measured in the 2.5 mm-thick ex-vivo human radius, 3 

(a) distance-time diagram of the synthetic array-signals, (b) 2D-FT 𝑘﹣𝑓 mode energy distribution, (c) 4 

SVD 𝑘﹣𝑓  mode energy distribution, (d) the 𝜏﹣𝑝  energy distributions obtained by LRT with 5 

 𝑙2 -norm, and 𝑘﹣𝑓  energy distributions obtained by LRT with high resolution regularization 6 

strategies, i.e., (e) 𝑙1-norm, (f) Cauchy norm, respectively. 7 

  8 
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 1 

 2 

Fig. 5. (color online) L-curves of the synthetic signals (case I shown in Fig. 1), i.e., narrow 3 

wavenumber-band Lamb modes A0 and S0 on a 2-mm-thick Sawbones plate, (a)  𝑙2-norm, (b) 𝑙1-norm, 4 

(c) Cauchy norm. The slowness 𝑝 and frequency f range from 0 to 2.56 𝜇s ∙ 𝑚𝑚−1 and 0.1 to 0.7 MHz, 5 

respectively.  6 

  7 

0

50

100

0

0.5

1

0

0.2

0.4

0.6

0.8



(a) l
2
 norm

Penalty Term

M
is

fi
t 

T
er

m

0

50

100

0

0.5

1

0

0.2

0.4

0.6

0.8



(b) l
1
 norm

Penalty Term
M

is
fi

t 
T

er
m

0

50

100

0

0.5

1

0

0.2

0.4

0.6

0.8



(c) Cauchy norm

Penalty Term

M
is

fi
t 

T
e
rm



J. Acoust. Soc. Am. 140 (3), September 2016                                                     Xu et al.: Dispersion Curves Extraction of Guided Waves 24 

 

 1 

 2 

Fig. 6. (color online) L-curves of signals measured in a 2.5 mm-thick human bone ex vivo (case II 3 

shown in Fig. 4), (a)  𝑙2-norm, (b) 𝑙1-norm, (c) Cauchy norm. The slowness 𝑝 and frequency f range 4 

from 0 to 2.56 𝜇s ∙ 𝑚𝑚−1 and 1.1 to 1.6 MHz, respectively.  5 
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 1 

 2 

Fig. 7. (color online) Singular values 𝜎𝑖   in dB scale versus frequency for (a) case I: synthetic signals, 3 

narrow wavenumber-band Lamb modes A0 and S0 on a 2-mm-thick Sawbones plate, (b) case II: 2.5 4 

mm-thick human bone ex vivo. The five experimental singular values correspond to the number of 5 

emitters. The SNR threshold is shown with horizontal line. The singular values above the threshold 6 

define the signal subspace, and below the threshold the noise subspace. 7 
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